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A NOTATIONS & THEORETICAL ANALYSIS

A.1 NOTATIONS

For ease of reference, we list the notations in Table 4.

Table 4: Important notations used in the paper

SYMBOL MEANING

f Black box function
X Support of f
x∗ Optima (taken to be maxima for consistency)
D Offline dataset
N Size of offline dataset
Dtraj Trajectory dataset
num trajs Number of trajectories in Dtraj

T A trajectory
T Length of a trajectory
Q Query budget for black-box function
P Prefix length
Ri Regret Budget at timestep i
R1 Initial Regret Budget
R̂ Evaluation Regret Budget
gθ Autoregressive generative model with parameters θ
K, τ SORT-SAMPLE hyperparameters
NB Number of bins
C Context Length

A.2 THEORETICAL ANALYSIS

One crucial component in the SORT-SAMPLE is sorting the trajectories in the increasing order
of the function values. Although our primary motivation for sorting is derived from the empiri-
cal observations from online black-box optimizers (Figure 1c), we note that for a certain class of
functions that are non-trivial to solve from the perspective of optimization (maximization for our
paper), lower (higher) function values occupy a larger (smaller) domain. Thus, intuitively we can
relate lower function values with exploration and higher function values with exploitation. With this
perspective, sorting can be seen as moving from a high-diversity region to a low-diversity region -
a behavior typically seen in online black-box optimizers (Bijl et al., 2016; Garivier et al., 2016). In
this section, we try to formally prove such properties for this constrained class of functions.

We consider the simplified case of differential 1D functions with certain assumptions for simplicity,
and further extend this notion to a more general D-dimensional case. First, we define a notion of
ϵ-high points.
Definition 1. ϵ-high values. Let the range of f be denoted as [ymin, ymax]. Then, a function value
y in this range is ϵ-high if y ≥ ymin + ϵ(ymax − ymin).

Intuitively, the above definition implies that y is ϵ-high if it is in the top 1 − ϵ fraction of the range
of f . The following result characterizes the relative diversity of regions consisting of ϵ-high points
for 1-D functions.
Proposition 1. Let f : [a, b]→ R, a, b ∈ R, be a real-valued, continuous and differentiable function
such that the f(a) and f(b) are not ϵ-high. Let H ⊆ [a, b] be a Lebesgue-measurable set of x values
for which f(x) is ϵ-high, with ϵ > 0.5. Let Hc = [a, b] \H . Without loss of generality, let’s assume
that f(a) ≤ f(b). If the Lipchitz constant L of f is upper bounded by

2(ϵ(ymax − ymin) + ymin − f(a))

b− a
, (6)

then |H| < |Hc|, where | · | denotes volume of a set w.r.t. the Lebesgue Measure.
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Proof of Proposition 1.

Note that if no point in the domain [a, b] achieves ϵ-high function value, then the statement holds
trivially true. So, we assume that there is atleast one point which has ϵ-high function value. Let
x1 and x2 be the smallest and largest such points in the domain. Since the boundary points doesn’t
have ϵ-high values, |Hc| ≥ (x1 − a) + (b − x2) and |H| ≤ (x2 − x1). Thus, if we prove that
(x1−a)+(b−x2) ≥ (x2−x1), then we are done. To prove this, we try to prove (x1−a) ≥ (x2−x1).

Assume, on the contrary, that (x1 − a) < (x2 − x1). Rearranging, we get

2

x2 − a
<

1

x1 − a
(7)

Now, by the definition of Lipchitz constant, we have:

f(x1)− f(a)

x1 − a
≤ L

⇒2(f(x1)− f(a))

x2 − a

7
≤ L

⇒2(ϵ ∗ (ymax − ymin) + ymin − f(a))

b− a
≤ L

(8)

Last inequality holds because x2 − a ≤ b − a. This inequality contradicts the bound 6 on L ,
completing our proof for Proposition 1.

Now, we show an extension of this proposition for D-dimensional functions with hypercube do-
mains.
Proposition 2. Let f : X → R be a D-dimensional, real-valued, continuous, and differentiable
function with hypercube domain X = [a1, b1] × [a2, b2], · · · ,×[aD, bD] , such that none of the
boundary points are ϵ-high, for some fixed ϵ. Here by boundary points, we mean the points on the
surface of the domain hypercube. Let ymax and ymin be the maximum and the minimum values
attained by f . Let H ⊆ X be a Lebesgue-measurable set of points for which f(x) is ϵ-high. Let
Hc = X \H . If the Lipchitz constant L of f is upper bounded by

2(ϵ ∗ (ymax − ymin) + ymin − max
x2,··· ,xD

f(a1, x2, · · · , xD))

b1 − a1
, (9)

then |H| < |Hc|, where | · | denotes volume of a set w.r.t. the Lebesgue Measure.

Proof. We prove this proposition by induction on the number of dimensions D. Notice that for
D = 1, the statement reduces to Proposition 1, which we have already proved. Next, we assume
that the statement holds for (D − 1)-dimensional functions and prove it for D dimensions, with
D > 1.

Let’s defineHD,ϵ : FD → BD to be a functional that maps any D-dimensional function, say f , to a
Lebesgue-measurable subset of RD that corresponds to the set of points where f(x) is ϵ-high. , Here,
FD and BD denote the set of all D-dimensional functions and the set of all Lebesgue-measurable
subsets of RD respectively.

We similarly define the mapping Hc
D,ϵ to be a functional mapping a function f to the complement

of its ϵ-high region. Thus, H = HD,ϵ(f) and Hc = Hc
D,ϵ(f). Now, by definition,

|HD,ϵ(f(•, · · · , •)| =
∫
xD

|HD−1,ϵ(f(•, · · · , •, xD))| dxD (10)

And similarly,

|Hc
D,ϵ(f(•, · · · , •)| =

∫
xD

|Hc
D−1,ϵ(f(•, · · · , •, xD))| dxD (11)

Consequently, to prove |HD,ϵ(f(•, · · · , •)| ≤ |Hc
D,ϵ(f(•, · · · , •)|, we prove

|HD−1,ϵ(f(•, · · · , •, xD))| ≤ |Hc
D−1,ϵ(f(•, · · · , •, xD))| for every xD ∈ [aD, bD].
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To do this, we first fix the Dth dimension to be c. In other words, we are considering the (D − 1)-
dimensional slice of f(x1, · · · , xD) with xD = c. Let g be such a slice with g(x1, · · · , xD−1) =
f(x1, · · · , xD−1, c). First we need ϵg for which ϵg-high value for g is ϵ-high for f :

ϵg(ygmax − ygmin) + ygmin = ϵ(ymax − ymin) + ymin (12)

where ygmax and ygmin are the minimum and maximum values respectively achieved by g. By
this choice of ϵg , we are ensuring that a point (x1, · · · , xD−1, c) is ϵ-high w.r.t f if and only if
(x1, · · · , xD−1) is ϵg-high w.r.t g. In other words,

HD−1,ϵg (g) = HD−1,ϵ(f(•, · · · , •, c))
Hc

D−1,ϵg (g) = Hc
D−1,ϵ(f(•, · · · , •, c))

(13)

Let the Lipchitz constant of g be Lg . First we show that Lg ≤ L. By definition of Lipchitz constant,
for x = (x1, · · ·xD−1), z = (z1, · · · , zD−1) in the domain of g,

Lg = sup
x̸=z

|g(x1, · · · , xD−1)− g(z1, · · · , zD−1)|√
D−1∑
i=1

(xi − zi)2

= sup
x̸=z

|f(x1, · · · , xD−1, c)− f(z1, · · · , zD−1, c)|√
D−1∑
i=1

(xi − zi)2 + (c− c)2

≤ L

(14)

Where last inequality is by definition of L w.r.t f . Combining this with our bound on L in 9, we get

Lg ≤
2(ϵ ∗ (ymax − ymin) + ymin − max

x2,··· ,xD

f(a1, x2, · · · , xD))

b1 − a1

≤
2(ϵ ∗ (ymax − ymin) + ymin − max

x2,··· ,xD−1

f(a1, x2, · · · , c))

b1 − a1
(fixing Dth dimension)

12
≤

2(ϵg ∗ (ygmax − ygmin) + ygmin − max
x2,··· ,xD−1

g(a1, x2, · · · , xD−1))

b1 − a1

(15)

Thus, the Lipchitz bound assumption is followed by g with ϵ = ϵg . Also, the boundaries are not ϵg-
high w.r.t g because of the choice of ϵg . This implies, by inductive assumption, that |HD−1,ϵg (g)| ≤
|Hc

D−1,ϵg (g)|. This, combined with equality 13 proves that that |HD−1,ϵ(f(•, · · · , •, c))| ≤
|Hc

D−1,ϵ(f(•, · · · , •, c))|. Since this is true for all c ∈ [aD, bD], by equations 10 and 11, our proof
for |HD,ϵ(f(•, · · · , •)| ≤ |Hc

D,ϵ(f(•, · · · , •)| is complete.

B EXPERIMENTAL DETAILS

B.1 SORT-SAMPLE

In SORT-SAMPLE, the score of each bin is calculated according to the formula

si =
|Bi|

|Bi|+K
exp

(
−|ŷ − ybi |

τ

)
The two variables K and τ here act as smoothing parameters. K controls the relative priority given
to the larger bins (bins with more points). Higher value of K assigns higher relative weight to these
large bins compared to smaller bins, whereas a low value of K the weight assigned to large and
small bins would be similar. In the extreme case where K = 0, the weight due to |Bi|

|Bi|+K will
always be 1, regardless of bin size. For very large value of K, the weight will be approximately
linearly proportional to the bin size |Bi|. The later case is not desirable because if there is a bin
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(a) Varying K and τ (b) Varying NB

Figure 6: We plot the best achieved function value for different combinations of K, τ and NB .
As expected, we don’t see much sensitivity to the choice of K and τ . For NB , as expected, we a
significant decrease for NB = 1, but NB = 32 is comparable to NB = 64

which has very large number of points (which might be a low quality bin), then most of the total
weight will be given to that bin because of the linear proportionality.

Temperature τ controls how harshly the bad bins are penalized. Lower the τ value, lower the relative
score of the low quality bins (bins with high regret) and vice versa.

In our experiments, we don’t tune the values of K, τ , and number of bins NB . In all the tasks, we
use K = 0.03 × N and τ = R10, where R10 is the 10th percentile regret value in D. For Branin
task, we use , NB = 32 and for all the Design-Bench tasks, we use NB = 64. Empirically, as we
show in Figure 6a, we didn’t observe much effect on K in the range [0.01, 0.1], and for τ from the
50th to the 10th percentiles of R. Figure 6b shows variation with NB , keeping all other parameters
fixed. As expected, NB = 1 doesn’t perform well, as having just one bin is equivalent to having no
re-weighting. Beyond 32, we don’t see much variation with the value of NB .

B.2 MODEL ARCHITECTURE & IMPLEMENTATION

Architecture We use a GPT (Radford et al., 2019) like architecture, where each timestep refers to
two tokens Rt and xt. Similar to Chen et al. (2021), we add a new learned timestep embedding (in
addition to the positional embedding already present in transformers). Each token Rt and xt that
goes as input to our model is first projected into a 128 dimensional embedding space using a linear
embedding layer. To this embedding, we also add the positional and timestep embeddings. This
is passed through a causally masked transformer. The prediction head for Rt predicts x̂t, which
is then used to compute the loss. The output of the prediction head for xt is discarded. At each
timestep, we feed in the last C timesteps to the model, where C here refers to the context length.
For continuous tasks, the prediction head for Rt outputs a d-dimensional prediction x̂t. For discrete
tasks, the prediction head outputs a V × d-dimensional prediction, where V refers to the number
of classes in the discrete task. Thus, each dimension in X corresponds to a V -dimensional logits
vector.

Code Our code (available at the anonymized link here) is built upon the code from minGPT 3 and
Chen et al. (2021) 4. All code we use is under the MIT licence.

Training The parameter details for all the tasks are summarized in the Table 5. Note that almost
all of the parameters are same across all the Design-Bench tasks. Number of layers is higher for
continuous tasks, as they are of higher dimensionalities. For all the tasks, we use a batch size of 128
and a fixed learning rate of 10−4 for 75 epochs. All training is done using 10 Intel(R) Xeon(R) CPU
cores (E5-2698 v4443 @ 2.20GHz) and one NVIDIA Tesla V100 SXM2 GPU.

3https://github.com/karpathy/minGPT
4https://github.com/kzl/decision-transformer

17

https://drive.google.com/drive/folders/13-UWNpVWXVVf_bMSGR-LoSS-3GyAj2TB?usp=sharing
https://github.com/karpathy/minGPT
https://github.com/kzl/decision-transformer


Under review as a conference paper at ICLR 2023

B.3 EVALUATION

For all the Design-Bench tasks (except NAS), we use a query budget Q = 256. For NAS, we use a
query budget of Q = 128 due to compute restrictions. Since we use a trajectory length of 128 and a
prefix length of 64, this means that we can roll-out four different trajectories. There are two variable
parameters during the evaluation: Evaluation RB (R̂) and the prefix sub-sequence. We empirically
observed that R̂ has more impact on the variability of rolled-out points compared to prefix sub-
sequence. Hence, we roll-out trajectory for 4 different low R̂ values (0.0, 0.01, 0.05, 0.1). These
values are kept fixed across all the tasks and are not tuned. They are chosen to probe the interval
[0.0, 0.1], while giving slightly more importance to the low values by choosing 0.01. Evaluation
strategies with lower query budget Q available are discussed in the section C.2

Table 5: Important parameters for all the tasks

TASK Type HEADS LAYERS T P C NB num trajs

Branin (toy) Continuous 4 8 64 32 32 32 400

TFBind8 Discrete 8 8 128 64 64 64 800
TFBind10 Discrete 8 8 128 64 64 64 800
ChEMBL Discrete 8 8 128 64 64 64 800

NAS Discrete 8 8 128 64 64 64 800
D’Kitty Continuous 8 32 128 64 64 64 800

Ant Continuous 8 32 128 64 64 64 800
Superconductor Continuous 8 32 128 64 64 64 800

B.4 FIXED VS. UPDATED RB DURING EVALUATION

During the evaluation of the prediction sequence, we proposed to keep the Regret Budget (RB) fixed.
One alternative strategy is to sequentially update RB after every iteration, i.e. predict xt from Rt,
and compute Rt+1 = Rt − (f(x∗) − f(xt)). However, there are two issues with such an update
rule:

1. Updating RB adds a sequential dependency on our model during evaluation, as we must
query f(xt) to compute Rt+1. Thus, generating the Q candidate points is not purely offline.

2. While updating the regret budget Rt, it is possible that at some timestep t, Rt becomes
negative. Since the model has never seen negative RB values during training, this is unde-
sirable.

Hence, we do not update RB during evaluation, and instead provide a fixed R̂ value at every timestep
after the prefix length. This way, point proposal is not dependent on sequential evaluations of f ,
making it much faster as the evaluations on f can then be parallelized. Furthermore, by not updating
R̂ we sidestep the issue of negative RBs. Empirically, as we see in Figure 7, there is not much
difference across different strategies, which justifies our choice of not updating RB, allowing our
method to be purely offline.

B.5 BASELINES

For the gradient ascent baseline of Branin task, we train a 2 layer neural network (with hidden layer
of size 128) as a forward model for 75 epochs with a fixed learning rate of 10−4. For gradient ascent
on the learnt model during evaluation, we report results with a step size of 0.1 for 64 steps. We
average over 5 seeds, and for each seed we perform two random restarts.

For the baselines in the Design-Bench tasks, we run the baseline code 5 provided in Trabucco et al.
(2022) and report results with the default parameters for a query budget of 256.

5We were not able to reproduce the results of (Fu & Levine, 2021) and (Yu et al., 2021) on the latest version
of Design-Bench.
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Figure 7: Comparison between 3 strategies: (1) do not update the RB at all (blue), (2) update the
RB but do not handle the case when Rt becomes negative (orange) and (3) don’t make the update if
the update is going to make the RB negative and update otherwise (green). In all three cases, we see
similar performance.

B.6 DESIGN-BENCH TASKS

For the Design-Bench tasks, we pre-process the offline dataset to normalize the function values
before constructing the trajectory datasetDtraj. Normalized ynorm values are computed as ynorm =

y−ymin

ymax−ymin
, where ymin and ymax are minimum and maximum function values of a much larger

hidden dataset. Note that we only use the knowledge of ymin and ymax from this hidden dataset,
and not the corresponding x values. With this normalization procedure, we use 1.0 as an estimate of
f(x∗) while constructing trajectories in Dtraj.The results we report in Table 2 are also normalized
using the same procedure, similar to prior works (Trabucco et al., 2022; 2021). We also report
unnormalized results in Table 7.

Table 6: Task details

TASK SIZE DIMENSIONS TASK MAX

TFBind8 32898 8 1.0
TFBind10 10000 10 2.128
ChEMBL 1093 31 443000.0

NAS 1771 64 69.63
D’Kitty 10004 56 340.0

Ant 10004 60 590.0
Superconductor 17014 86 185.0

B.7 HOPPER TASK

We didn’t include the Hopper task in our results in Table 2 because of the inconsistency between the
offline dataset values and the oracle outputs. Hopper data consist of 3200 points, each with 5126
dimensions. The lowest and highest function values are 87.93 and 1361.61. Figure 8 shows the
distribution of the normalized function values. This distribution is extremely skewed towards low
function values. Only 6 points out of 3200 have a normalized function value greater than 0.5.

We noticed that the oracle of Hopper is highly inaccurate for points with higher function values.
Figure 9 shows the function values in the dataset vs. the oracle output for the top 10 best points in
the data, clearly showing the inconsistency between the two. In fact, the oracle minima and maxima
for the dataset are just 56.26 and 786.79, respectively, far from the actual dataset values. Due to
such discrepancies, we have decided not to include the Hopper task in our analysis.
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Figure 8: Histogram of normalized function val-
ues in the Hopper dataset. The distribution is
highly skewed towards low function values.

Figure 9: Dataset values vs Oracle values for top
10 points. Oracle being noisy, we show mean and
standard deviation over 20 runs.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 ABLATIONS ON SORT-SAMPLE STRATEGY

SORT-SAMPLE algorithm has two main components: Sampling after re-weighting and sorting.
Our sorting heuristic is primarily motivated by typical runs of online optimizers. To show this,
we run an online GP to optimize the three synthetic functions, namely the negative Branin, negative
Goldstein-Price and negative Six hump camel functions and plot the function values for the proposed
points. Figure 10 shows sample trajectories of the function values of the proposed maxima after each
function evaluation. We can see, on average, the function values tend to increase over time as the
number of queries increases. Such behavior has also been reported for other black-box functions
and setups, see e.g. (Bijl et al., 2016).

Figure 10: Mean and standard deviations of 10 trajectories unrolled by a simple GP-based BayesOpt
algorithm on the 3 synthetic functions.

However, in this section, we do perform ablations to see the effects of these components. To this
end, we construct trajectories using 4 strategies:

1. Random: Uniformly randomly sample a trajectory from the offline dataset.
2. Random + Sorting: Uniformly randomly sample a trajectory from the offline dataset and

sort it in ascending order of the function values.
3. Re-weighting + Partial Sorting: Perform re-weighting, uniformly randomly sample ni

number of points from each bin, and concatenate them from lowest quality bin to the high-
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est quality bin. This way, the trajectory will be partially sorted, i.e. the order of the bins
themselves is sorted, but the points sampled from a bin will be randomly ordered. In this
case, the trajectories are not entirely monotonic w.r.t. the function values. Intuitively, this
intermingles exploration and exploitation phases within and across bins respectively.

4. Re-weighting + Sorting (default in BONET): Sort the trajectory obtained in strategy 3. This
is the default setting we use in our experiments.

Figure 11 contains the results obtained by each of the four strategies. Note that while going from
strategy 1 to 2, we keep the points sampled in a trajectory the same, so the only difference be-
tween them is sorting. Figure 11 shows that strategy 1 clearly outperforms strategy 2. This means
that sorting has a significant impact on the results. Next, note that strategy 2 and 4 differ only in
their sampling strategy, and strategy 4 outperforms strategy 2, which shows the effectiveness of
re-weighting. This experiment justifies our choice for both re-weighting and sorting.

Figure 11: Results with various trajectory construction strategies for D’Kitty task, averaged over 5
runs. Comparing blue and orange bars, it is evident that sorting is improving the results. Similarly,
comparison of orange bar with red bar shows that re-weighting further improves the results.

C.2 ANALYSIS ON QUERY BUDGET Q

So far, we have been discussing the results with query budget Q = 256. Here, we describe the
evaluation strategy we use when lower query budget is available. Our strategy will be to give higher
preference to lower R̂ values when lower budget is available. For example, when Q = 192, we
only roll-out and evaluate for R̂ ∈ {0.0, 0.01, 0.05}. For 192 < Q ≤ 256, we will roll-out for R̂ ∈
{0.0, 0.01, 0.05, 0.1}, evaluate the entire predicted sub-sequences of lengths 64 for {0.0, 0.01, 0.05},
and evaluate the first Q− 192 points in the predicted sub-sequences for R̂ = 0.1. In the Figure 12,
we present the results for different query budgets for our method compared to important baselines,
for the D’Kitty task. We outperform the baselines for almost all the query budget values.

C.3 ADDITIONAL ABLATIONS

Here we present ablations similar to Section 3 on the D’Kitty task, and observe similar trends to
what we see in the Branin ablations.

C.4 EFFECT OF PREFIX SEQUENCES

During the evaluation, the unrolled trajectory depends on two factors affecting the unrolled output:
Evaluation Regret Budget R̂ and the prefix sequence. Empirically, we found that R̂ has a larger
impact on the unrolled trajectory than the prefix sequence. To show this, we first evaluate the Branin
task for 10 different randomly sampled prefix sequences for a fixed R̂ and then do the same with
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Figure 12: Results for various query budget values Q for D’Kitty task, averaged over 5 runs. We
match or outperform other baselines on almost all the values of Q.

(a) P = 64, without updating RB (b) P = 64, with updating RB

Figure 13: Figures 13a and 13b show plots of the trajectories generated on DKitty for different
values of evaluation RB (0, 8 and 10). In Figure 13a we show results without updating RB, and in
Figure 13b we show results with updating. All the trajectories are averaged over 5 runs.

(a) Initial RB vs Cumulative Regret (b) Effect of R̂

Figure 14: Ablations on D’Kitty, averaged over 5 runs.

10 different R̂ values sampled from the range (0.0, 0.5) for the same prefix sequence. Figure 15
shows the standard deviation of the minimum regret of the 10 different unrolled trajectories for 3
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Table 7: Unnormalized 100th percentile results

BASELINE TFBIND8 TFBIND10 SUPERCONDUCTOR ANT D’KITTY CHEMBL NAS

D (best) 0.439 0.00532 74.0 165.326 199.231 443000.000 63.79

CbAS 0.958± 0.018 0.761± 0.067 83.178± 15.372 468.711± 14.593 213.917± 19.863 389000.000± 500.000 66.355± 0.79
GP-qEI 0.824± 0.086 0.675± 0.043 92.686± 3.944 480.049± 0.000 213.816± 0.000 387950.000± 0.000 69.722± 0.59

CMA-ES 0.933± 0.035 0.848± 0.136 90.821± 0.661 1016.409± 906.407 4.700± 2.230 388400.000± 400.000 69.475± 0.79
Gradient Ascent 0.981± 0.010 0.770± 0.154 93.252± 0.886 −54.955± 33.482 226.491± 21.120 390050.000± 2000.000 63.772± 0.000
REINFORCE 0.959± 0.013 0.692± 0.113 89.027± 3.093 −131.907± 41.003 −301.866± 246.284 388400.000± 2100.000 39.724± 0.000

MINs 0.938± 0.047 0.770± 0.177 89.469± 3.227 533.636± 17.938 272.675± 11.069 390950.000± 200.000 66.076± 0.46
COMs 0.964± 0.020 0.750± 0.078 78.178± 6.179 540.603± 20.205 277.888± 7.799 390200.000± 500.000 64.041± 1.390

BONET 0.975± 0.004 0.855± 0.139 80.84± 4.087 567.042± 11.653 285.110± 15.130 391000.000± 1900.000 66.779± 0.16

Figure 15: Standard deviation of the minimum regret of the unrolled trajectories with 1) 10 different
prefix sequences for a fixed R̂ and 2) 10 different R̂ for a fixed prefix sequence.

fixed R̂ and prefix sequences, respectively. The standard deviation for the variation in prefix length
is consistently lower than that for the variation in R̂, explaining our choice of spending query budget
on different R̂ rather than different prefix sequences.

C.5 EFFECT OF ESTIMATING yMAX

A key assumption of our method is the knowledge of ymax. Though in many problems this is not an
issue, there are many other problems where the value of ymax may not be known. A simple solution
could be to just estimate ymax. In Figure 16 we evaluate BONET on D’Kitty multiple varying values
of ymax starting from just beyond the dataset maxima. We find that the value of ymax initially affects
performance alot, but beyond a point, it plateaus..

Figure 16: Best points for different values of ymax on D’Kitty.
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Table 8: Results for when a random x% subsection of the offline dataset was withheld during training
from BONET

10% 50% 90% 99%

D (best) 74.21 74.20 73.99 65.71
BONET 286.60± 1.47 284.74± 23.68 274.11± 7.57 241.17± 18.07

Table 9: Results for when the top x% of the offline dataset was withheld during training from
BONET

10% 50% 90% 99%

D (best) 61.14 −40.40 −545.36 −548.89
BONET 267.68± 2.28 261.04± 28.09 211.56± 16.74 193.27± 5.51

C.6 ABLATION ON MODEL PARAMETERS

In this experiment we study the effect of changing the number parameters in BONET. We do this by
altering the number of layers and heads in BONET on D’Kitty. We find that increasing the number
of parameters helps up to a point, beyond which the model over-fits. It is important to note that
we present this study only to understand the impact of model size on our performance. We don’t
actually tune over these parameters in our experiments. They are kept fixed across all the discrete
and continuous tasks (refer to Table 5).

(a) Varying the number of layers in BONET.
Heads are fixed at 8

(b) Varying the number of heads in BONET. Lay-
ers are fixed at 16

Figure 17: We show the performance of various models with differing number of layers and heads
on D’Kitty to see their effect on BONET. We find that increasing the number of parameters helps
upto a point, beyond which it overfits.

C.7 ABLATIONS ON DATASET SIZE

To test the limits of BONET we run experiments where we withhold offline training data from
BONET and evaluate the performance. We have two settings, one where we withhold an x% size
random subsection of data in Table 8, and another where we withhold the top x percentile of data
during training and evaluation in Table 9. We see that with just reducing the number of points,
we don’t see as sharp of a drop off in performance as compared to when we withhold the good
points in the dataset. This leads us to believe that the dominating effect is not the size of the dataset
exactly, but the quality of points in the dataset. Further, note that even here the points proposed
are significantly larger than the maximum point in the dataset, which rules out the possibility of
memorization for BONET.
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C.8 NOISE ABLATION

We run an experiment where we add progressive larger amounts of noise to the y values in our
offline dataset while training our model, to test how robust BONET is to noisy data. We report the
results in Table 10 for D’Kitty. We find that, as expected, increasing noise reduces performance, and
BONET is in fact reasonably robust to noise, and the largest drop-off occurs when the magnitude of
noise is equal to the magnitude of values.

Table 10: Ablation on adding various magnitudes of noise to training data

NOISE SCALE SCORE

0% of max 285.110
2% of max 279.746

20% of max 255.925
100% of max 137.485

C.9 RANDOM BASELINE

One might argue that BONET just memorizes the best points in the offline dataset and outputs
random points close to those best points during evaluation. To rule out this possibility, we perform
a simple experiment for the D’Kitty task. We choose a small hypercube domain around the optimal
point in the offline dataset and uniformly randomly sample 256 points in that domain. In Table 11,
we show the results for different widths of this hypercube. 0 width means only the best point in the
dataset.

For smaller hypercubes around the best points in the offline dataset, we see that the best point
found by 256 random searches is roughly 225, which is significantly lower than what BONET finds
(291.08). For larger hypercubes, the points are highly diverse. These observations suggest that this
optimization problem cannot be solved by just randomly outputting points around the best point in
the dataset. If we look at the 256 points output by BONET, they are consistently good (mean is 220),
with comparatively very low variance. This suggests that BONET is not simply outputting random
points around the best points in the dataset.

D ADDITIONAL ANALYSIS

D.1 VIZUALIZATION OF PREDICTED POINTS

Here we try to visualize the predicted points of BONET compared to the points in the offline data to
study the nature of the points proposed by the model. As shown in Figure 18, BONET generalizes
well on the unseen maxima regions of the function and produces low regret points.

D.2 ACTIVE GP EXPERIMENT

We also run a experiment to compare BONET with an active BBO method. Namely, we compare
BONET with active BayesOpt, using the same GP prior and acquisition function (quasi-Expected
Improvement) as mentioned in Section 3. The difference between the active method and the offline
method we compare with in Table 2 is that while the active method directly optimizes the ground
truth function, the offline method first trains a surrogate neural network on the data, and then per-
forms bayesian optimization on the surrogate instead of the ground truth function. This is done to
make the BayesOpt baseline fully offline, and is the same procedure followed by Trabucco et al.
(2022; 2021). Note that this would result in an unfair comparison since the method is both online
and queries the oracle function resulting in it using more queries than our budget. As shown in Table
12, We find that using oracle actually doesn’t necessarily improve performance across all tasks, and
there are other tasks where the performance doesn’t change at all. And our model does outperform
even the oracle GP-qEI method on several tasks.
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Table 11: Results of using a simple sampling strategy randomly from a small hypercube centered
around the optima. We find that BONET considerably beats this baseline, indicating that general-
ization occurring with BONET is not fortuitous.

Width of hypercube Max. function Value Mean function Value Std. Deviation

0.0 199.23 199.23 0.0
0.005 212.66 190.68 9.28
0.01 222.44 182.13 12.21
0.05 226.10 −169.62 331.00
0.1 209.00 −368.71 261.37

BONET 291.08 221.00 24.43

Figure 18: Vizualization of 32 points unrolled by a sample evaluation trajectory of BONET com-
pared to 2000 points randomly sampled from the offline dataset. Three maxima regions don’t contain
any dataset points because of the removal of the top 10%-ile of uniformly sampled points, as de-
scribed in the section 3.1. However, almost all the unrolled points fall into a maxima region, clearly
showing the generalization capability of BONET.

Table 12: Comparison with GP-qEI on oracle function

TFBIND8 TFBIND10 SUPERCONDUCTOR ANT D’KITTY

GP-qEI (active) 0.945± 0.018 0.922± 0.231 94.587± 2.137 480.049± 0.000 213.816± 0.000
GP-qEI 0.824± 0.086 0.675± 0.043 92.686± 3.944 480.049± 0.000 213.816± 0.000
BONET 0.975± 0.004 0.855± 0.139 80.84± 4.087 567.042± 11.653 285.110± 15.130

D.3 T-SNE PLOTS ON D’KITTY

We show t-SNE plots on DKitty for the datasets of differing sizes, with the removal of randomly
sampled x% of the data (setting one described in the previous section). The blue points represent
points proposed by our model, and the red points represent points in the dataset. In general, blue
points do not overlap the red points, indicating that the points proposed by BONET are from a
different region.
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(a) 99% (b) 90%

(c) 50% (d) 10%

Figure 19: We show tSNE plots on DKitty for the datasets of differing sizes with the removal of
randomly sampled x% of the data. The blue points represent points proposed by our model, and the
red points represent points in the dataset. We find that in general, blue points do not overlap the red
points, indicating that the points proposed by BONET are from a different region.

27


	Notations & Theoretical Analysis
	Notations
	Theoretical Analysis

	Experimental Details
	SORT-SAMPLE
	Model architecture & implementation
	Evaluation
	Fixed vs. Updated RB during evaluation
	Baselines
	Design-Bench Tasks
	Hopper Task

	Additional Experimental Results
	Ablations on SORT-SAMPLE Strategy
	Analysis on query budget Q
	Additional Ablations
	Effect of Prefix Sequences
	Effect of estimating ymax
	Ablation on model parameters
	Ablations on Dataset Size
	Noise Ablation
	Random Baseline

	Additional Analysis
	Vizualization of Predicted Points
	Active GP experiment
	t-SNE plots on D'Kitty


