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A Experimental Settings

A.1 URL of Code Implementation

Our code and data are available at https://github.com/YoonyeongKim/LADA.

A.2 Active Learning Scenario

Table 1 shows the details of the active learning scenario and the hyper-parameters that are used in
LADA or baseline models. It should be noted that when adopting Variational Adversarial Active
Learning (VAAL) [1] and Learning Loss for Active Learning (LL4AL) [2] as the acquisition function
in LADA, we use Mixup att the input level with pixels, which will be discussed in Section D. The
initial budget is a random but balanced labeled set for the initial training of the classifier network, fθ.
At each acquisition iteration, we randomly sub-sample 2,000 data instances from the unlabeled pool
to calculate the acquisition score, following the prior work [3]. After calculating the acquisition score
of the unlabeled data instances, we select top-b instances according to the acquisition score, where b
indicates the budget.

Table 1: Details of active learning scenario in each dataset

Dataset
Initial Budget

Budget b
Acquisition τ in fixed Manifold Mixup N of sampling λ in LADA

(Data num. of each class) Iterations (Mixup of input level) with Manifold Mixup
Fashion 20 (2) 10 100 2.0 (0.2) 10
SVHN 20 (2) 10 100 2.0 (0.2) 1

CIFAR-10 20 (2) 10 100 2.0 (0.2) 10
CIFAR-100 1000 (10) 100 100 2.0 (0.2) 5

When applying LADA framework with Mixup as the augmentation, we randomly paired the sub-
sampled 2,000 data instances, resulting in the construction of 1,000 pairs. Then, we learned the
mixing policy, τi, for the i-th pair. After learning the policy, we select top- b2 pairs of data instances to
equally utilize the budget of querying the oracle.

A.3 Network Structure and Training Details

The classifier network, fθ, adopts 18-layer residual network (Resnet-18) [4]. We utilize the Adam
optimizer [5] with a learning rate of 1e-03. After the acquisition, the classifier network is trained for
50 epochs, following the prior work [3]. The batch size for training the classifier network is 10 for
Fashion, SVHN, CIFAR-10; and 100 for CIFAR-100.
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The policy generator network, πφ, consists of two convolutional layers with the ReLU activation
followed by the max-pooling layer, and three fully connected layers. To construct the vicinal space
of the real data instances carefully, we use the sigmoid function as the activation function of the
last fully-connected layer of the policy generator network. Using the sigmoid function also makes
it possible to constraint the value of τ to be non-negative. Table 2 and Table 3 show the details
of the network structure in each dataset. It should be noted that the policy generator network is
a simple neural network compared to the classifier network. When randomly selecting the k-th
layer to perform Manifold Mixup, we choose from the output layer of each block in the classifier
network, following the prior work [6]. The output shape of each block in Resnet-18 is the same
among each block, so the shape of the feature maps that are put into the policy generator network,
πφ, is maintained the same. The training procedure of πφ utilizes the Adam optimizer with a learning
rate of 5e-05, and we train πφ for 10 epochs for a given batch. The batch size of training the policy
generator network is 100 for all dataset.

Table 2: Structure of the policy generator network, πφ, in Fashion dataset
Layer Type Input Kernel Num. Kernel Size Stride Padding Activation Output

1 Convolution1 128×28×28 6 5×5 1 2 ReLU 6×28×28
2 Max-Pooling 6×28×28 − 2×2 2 − − 6×14×14
3 Convolution2 6×14×14 16 5×5 1 − ReLU 16×10×10
4 Max-Pooling 16×10×10 − 2×2 2 − − 16×5×5
5 Flatten 16×5×5 − − − − − 400
6 FC1 400 − − − − Tanh 120
7 FC2 120 − − − − Tanh 60
8 FC3 60 − − − − Sigmoid 1

Table 3: Structure of the policy generator network, πφ, in SVHN, CIFAR-10 and CIFAR-100 dataset
Layer Type Input Kernel Num. Kernel Size Stride Padding Activation Output

1 Convolution1 128×32×32 6 5×5 1 2 ReLU 6×32×32
2 Max-Pooling 6×32×32 − 2×2 2 − − 6×16×16
3 Convolution2 6×16×16 16 5×5 1 − ReLU 16×12×12
4 Max-Pooling 16×12×12 − 2×2 2 − − 16×6×6
5 Flatten 16×6×6 − − − − − 576
6 FC1 576 − − − − Tanh 120
7 FC2 120 − − − − Tanh 60
8 FC3 60 − − − − Sigmoid 1

A.4 Complexity Analysis

Table 4 reports the computational complexity of Max Entropy and LADAEntMix, in terms of scoring,
sorting, and training. In Table 4, U is the size of the unlabeled dataset, L is the size of the labeled
dataset,R is the complexity of feed-forwarding through the classifier network andG is the complexity
of feed-forwarding through the policy generator network. We utilized Titan X GPUs to implement
our framework.

Table 4: Computational complexity of Max Entropy and LADAEntMix, in big-O notation. Scoring
denotes the calculation of the acquisition score for the unlabeled dataset. Sorting denotes the quick-
sort algorithm to sort the unlabeled data instances by the acquisition scores. Training denotes the
learning of the classifier network with the labeled dataset, which is selected by the acquisition score;
and annotated by the oracle.
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B Experimental Results

B.1 Test accuracy on Fashion, SVHN and CIFAR-100 Dataset

Figure 1 compares the LADA framework with other data augmented active learnings, on Fashion,
SVHN, and CIFAR-100 datasets.

(a) Fashion (b) SVHN (c) CIFAR-100

Figure 1: Test accuracy over the acquisition iterations on Fashion, SVHN and CIFAR-100 dataset

B.2 Learning of the Policy Generator Network

Figure 2 shows the value of τ∗ that is dynamically inferred over the acquisition iterations. In the
relatively simple dataset such as Fashion, the inferred τ∗ is close to 1.0, which results in a less-sharp
shape of Beta distribution. Hence, LADA explores broad space between two instances of the pair.
Meanwhile, in the complex dataset such as SVHN, CIFAR-10 and CIFAR-100, τ∗ is inferred as
a relatively small value at the initial iterations, which results in a sharp shape of Beta distribution.
Hence, at the initial iterations, LADA generates virtual instances in the vicinity of each data instance
of the pair. However, after some iterations of training the classifier network, the inferred τ∗ increases
and LADA explores more broad space between the two instances of the pair to find more informative
data instances, i.e. data instances with high predictive entropy value.

(a) Fashion (b) SVHN

(c) CIFAR-10 (d) CIFAR-100

Figure 2: Optimal τ∗ over the acquisition iterations, inferred by the policy generator network, πφ
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B.3 Test accuracy with Larger Number of Data

To show the robustness of the LADA framework, we also experiment with the larger number of
instances, following the setting of the prior work of [2]. For CIFAR-10 dataset, we construct the
initial labeled dataset with 1,000 instances. The budget size, b, per acquisition is 1,000 and we repeat
the acquisition until we collect 10,000 labeled dataset. For CIFAR-100 dataset, the initial labeled
dataset consists of 5,000 instances. The budget size, b, per acquisition is 2,500 and the acquisition
iteration is repeated until the size of the labeled dataset becomes 20,000. We train the classifier
network for 50 epochs after each acquisition, with the Adam optimizer and the learning rate of 1e-03.
We experiment by adopting VAAL and LL4AL as facq , and Mixup as faug , for the LADA framework.
Figure 3 shows that the performance gain by the LADA framework is apparent when the number of
labeled instances are small, which corresponds to the earlier iterations of the acquisition. Table 5
reports the averaged test accuracy of each replication for the baselines and the LADA frameworks,
and the accuracy of each replication represents the best accuracy over the acquisition iterations.

(a) LADA with VAAL on CIFAR-10 (b) LADA with LL4AL on CIFAR-10

(c) LADA with VAAL on CIFAR-100 (d) LADA with LL4AL on CIFAR-100

Figure 3: Test accuracy over the acquisition iterations on CIFAR-10 and CIFAR-100 datasets, with
the larger number of data

Table 5: Comparison of the averaged test accuracy on CIFAR-10 and CIFAR-100 dataset with the
larger number of data

Method CIFAR-10 CIFAR-100

VAAL-bsed
VAAL 82.90±0.52 53.85±1.40

LADAfixed
VAALMix 83.29±0.36 54.39±1.36

LADAVAALMix 83.32±0.31 54.64±0.73

LL4AL-based
LL4AL 83.58±0.36 54.60±1.24

LADAfixed
LL4ALMix 83.94±0.88 55.06±0.13

LADALL4ALMix 84.52±0.87 56.17±0.78
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C Optimal Mass Transport Gradient Estimator

In the backpropagation for training the policy generator network πφ, we have a process of sampling
λ from the Beta distribution parameterized by τ . To enable the backpropagation signals to pass by,
we need the pathwise gradient estimator, or the reparameterization tricks.

Suppose we designate the Beta distribution parameterized by τ from which we sample λ, as qφ(λ), and
designate the objective function originated from λ as fφ(λ), or L. Here, φ refers to the parameters of
the policy generator network πφ. What we have to compute is the derivative of L w.r.t. the parameter
φ as below.

∇φL = ∇φEqφ(λ)[fφ(λ)] (1)

In the reparameterization trick, the continuous random variable whose probability density qφ(λ) is
reparameterized such that we can rewrite expectations as below.

Eqφ(λ)[fφ(λ)]→ Eq0(ε)[fφ(g(ε;φ))] (2)

Since the expectation w.r.t. q0(ε) does not depend on φ, gradients w.r.t. φ can be computed. However,
the reparameterization trick is non-trivial to apply to the Beta distribution, since the required shape
transformation g(ε;φ) for the Beta distribution does not have special functions.

To deal with this, we use the optimal mass transport (OMT) gradient estimator, which utilizes the
implicit differentiation. By making use of implicit differentiation, the gradient of Eq.(1) is computed
as below [7, 8].

∇φL = Eqφ(λ)[
dfφ(λ)

dλ

dλ

dφ
+
∂fφ(λ)

∂φ
] (3)

dλ

dφ
= −

∂Fφ
∂φ (λ)

qφ(λ)
(4)

In Eq.(3) ∼(4), the key ingredient needed to compute the gradient is computing the derivative of
the CDF, or the ∂Fφ

∂φ (λ). For Beta distribution in the policy generator network πφ, the CDF of the

distribution is given by Fτ,τ (λ) = B(λ;τ,τ)
B(τ,τ) where B(λ; τ, τ) is the incomplete beta function and

B(τ, τ) is the beta function. Then, by using a Taylor series expansion, we can compute B(λ; τ, τ) in
powers of λ as below.

B(λ; τ, τ) = λτ (
1

τ
+

1− τ
1 + τ

λ+
1− 3τ

2 + τ2

2

2 + τ
λ2 + · · · ) (5)

This allows us to compute the derivatives of the beta function w.r.t. τ and further the derivative of
Eq.(3).

Finally, we use rsample function in PyTorch for the implementation of the OMT. Representing
the policy generator network πφ as MLP, the implementation code of sampling λ from the Beta
distribution parameterized by τ is as below.

tau = MLP(x1,x2)
f = distribution.beta.Beta(tau, tau)
lambda = f.rsample()
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D LADA with Various Acquisition

Since the LADA framework is proposed as a generalized framework that can adopt various types of
acquisition and augmentation functions, we apply various types of acquisition and augmentations.

In VAAL, the acquisition score of each data instance is calculated independently by the current
classifier network, fθ. Also, the discriminator, ϕV AAL, is trained with the VAE’s latent variable z
as an input, and VAE is trained with raw-level data instances, x. For LL4AL, the acquisition score
is calculated via the loss prediction module, fLPM , which receives depth-wise features from the
classifier network, fθ, as input. Hence, we use the input feature Mixup as the data augmentation for
LADA with these two acquisition functions.

Eq. 6 and Eq. 7 are the learning objective of data augmentation policy, τ , of LADA with VAAL,
i.e., LADAVAALMix, and LADA with LL4AL, i.e., LADALL4ALMix, respectively, where λi ∼
Beta(τi, τi). Eq. 6 and Eq. 7 are analogous to the objective of LADA with Max Entropy, which we
mainly described in Section 3.3.1.

τ∗i = argmax
τ

fV AALacq (λixi + (1− λi)x′i;ϕV AAL)

= argmax
τ

P(λixi + (1− λi)x′i ∈XU ;ϕ
V AAL) (6)

τ∗i = argmax
τ

fLL4AL
acq (λixi + (1− λi)x′i; fLPM )

= argmax
τ

fLPM (fkθ (λixi + (1− λi)x′i)|k ∈ K) (7)

Figure 4 illustrates the inferring process of the augmentation policy, τ , through the policy generator
network, πφ: Figure 4a for LADAVAALMix and Figure 4b for LADALL4ALMix, respectively. We
introduce a simplifying notation, xmix, to represent λixi + (1− λi)x′i. Also, L̂(xmix) denotes the
predictive loss of the mixed instance, xmix, which is the output of the loss prediction module, fLPM ,
of LL4AL.

(a) LADAVAALMix

(b) LADALL4ALMix

Figure 4: Process of inferring τ through πφ in LADA with various acquisition functions
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E LADA with STN Augmentation

As described in Section 3.2.1, STN consists of 1) a loclization network, fτ , i.e., a neural network pa-
rameterized by τ , 2) a grid generaotor function, fT , and 3) a sampler function, fS . The augmentation
policy of STN that is trained in LADA framework is the parameters of the localization network, fτ .
The transformation of the data instances, x, into x̃, is as below:

ν = fτ (x), (8)
g = fT (G; ν), (9)

x̃ = fSTNaug (x; τ) = fS(x, g) = fS(x, fT (G; ν)) (10)

= fS(x, fT (G; fτ (x)). (11)

The structure of STN is described in Figure 5.

Figure 5: Process of STN augmentation, inserted in the classifier network, fθ

Algorithm 1 shows the detailed process of LADA framework with Max Entropy as acquisition
function, facq , and STN as augmentation policy, faug .

Algorithm 1 LADA with Max Entropy and STN

Input: Labeled dataset X 0
L , Classifier fθ, STN fSTNaug (·; τ)

1: for j = 0, 1, 2, . . . do . active learning
2: Save the current augmentation policy of the STN, τ
3: Randomly sample X pool

U ⊂XU

4: τ∗ = argmaxτ
1
|XU |

∑
xU ∈XUH[ŷ|fSTNaug (xU ; τ); fθ]

5: Select XS = argmaxX ′
S⊂XU

∑
x∈X ′

S

(
H[ŷ|x; fθ] + H[ŷ|fSTNaug (x; τ∗); fθ]

)
,

with |X ′
S | = b

6: Query the selected dataset, XS

7: Update the labeled datset, X j+1
L = X j

L ∪XS

8: Augment the selected dataset, X̃S = fSTNaug (XS ; τ
∗)

9: Load the saved parameters of the STN, τ
10: for t = 0, 1, 2, . . . do . training fθ and fSTNaug (·; τ)
11: Update θ and τ with cross-entropy loss of X j+1

L , in end-to-end fashion
12: Update θ with cross-entropy loss of X̃S

13: end for
14: end for
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F tSNE Plot of Data Instances

This section shows the different behavior between Max Entropy and LADA during the active learning
iteration i for various dataset. In each figure, the numbers written in black represent the predictive
entropy of the unlabeled data instance (?) that were selected from the unlabeled pool. The numbers
written in red represent the maximum (*average) entropy of the virtual data instance (×) that were
generated from InfoMixup.

F.1 Fashion

(a) Max Entropy at i=7 (b) Max Entropy at i=28 (c) Max Entropy at i=33

(d) LADA at i=7 (e) LADA at i=28 (f) LADA at i=33

(g) Max Entropy at i=40 (h) Max Entropy at i=61 (i) Max Entropy at i=76

(j) LADA at i=40 (k) LADA at i=61 (l) LADA at i=76

Figure 6: tSNE plot of acquired instances (?) and augmented instances (×) in Fashion dataset
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F.2 SVHN

(a) Max Entropy at i=1 (b) Max Entropy at i=22 (c) Max Entropy at i=38

(d) LADA at i=1 (e) LADA at i=22 (f) LADA at i=38

(g) Max Entropy at i=46 (h) Max Entropy at i=64 (i) Max Entropy at i=66

(j) LADA at i=46 (k) LADA at i=64 (l) LADA at i=66

Figure 7: tSNE plot of acquired instances (?) and augmented instances (×) in SVHN dataset
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F.3 CIFAR-10

(a) Max Entropy at i=6 (b) Max Entropy at i=27 (c) Max Entropy at i=50

(d) LADA at i=6 (e) LADA at i=27 (f) LADA at i=50

(g) Max Entropy at i=77 (h) Max Entropy at i=91 (i) Max Entropy at i=98

(j) LADA at i=77 (k) LADA at i=91 (l) LADA at i=98

Figure 8: tSNE plot of acquired instances (?) and augmented instances (×) in CIFAR-10 dataset
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