
Figure 8: MNIST dataset
Figure 9: MVTec-AD dataset

Figure 10: The training, test (and anomaly for MVTec-AD) distribution of the labels for the MVTec-AD and MNIST
dataset

Appendix284

A Dataset information285

The detailed labels distribution for some of the anomaly detection datasets is described in figure 10.286

B Details of Anomaly localisation experiments287

B.1 Architecture288

For the models used on MNIST and UCSD pedestrians, no explicit model architecture was specified. However, the289

codebase from the authors did provide a simple VAE architecture to be used on MNIST, which provided decent290

qualitative results. We adapted this model to fit the resized UCSD pedestrian images, by adding an extra convolutional291

layer. Initially, adding two additional convolutional layers to the existing two convolutional layers seemed logical,292

as to help reduce the number of parameters. This resulted in poor performance relative to the results reported in the293

paper, with the attention maps highlighting large regions of the pedestrian paths, instead of localizing its attention294

on smaller regions. Instead, the better architecture seemed to be 3 total convolutional layers for the encoder, rather295

than 4. Although the exact model used on the UCSD dataset is unclear, we could infer that parts of the model were296

correct, as the first 3 convolutional layers are supposed to output shapes of 50x50, 25x25 and 12x12, which was the297

case after the addition of the third convolutional layer. The model used on the MVTec-AD dataset was said to be a298

ResNet-18 based VAE. Even though the ResNet-18 architecture is a well defined model, this is usually the case for299

classification problems, whereas in the case of attention generation, we require a ResNet-18 based encoder and decoder300

model. To build the ResNet-18 Encoder/Decoder, we used a ResNet-18 VAE implementation from PyTorch Lightning301

Bolts, which replaces the last two layers in the encoder to map to our latent space dimension of 32. For the decoder, it is302

the same model, but using transpose convolutions and upsampling layers instead.303

C Details of Disentanglement experiments304

C.1 Architecture305

The Variational Autoencoder architecture used in all the experiments is depicted in table 5. Additionally, the discrimina-306

tor is a 6 layers Multilayer Perceptron with leaky ReLU (lReLU) activation that outputs 2 values. The lReLU is applied307

between every two FC layers with a negative slope of 0.2.308

C.2 About training time309

As mentioned previously, there are several motives that led to reduce the training computation time. Similarly to (Kim310

and Mnih, 2019) after 150000 iterations, the variations in the training losses are smaller and the results tend to stabilize311

(see figure 11). This might be related to the fact with the batch size of 64 images, this training schedule consisted312

10



MNIST UCSD
Encoder Tensor Shape Encoder Tensor Shape
Input 28× 28 binary image Input 100× 100 binary image
4× 4 conv. ReLU 64, 2, 1 14× 14× 64 4× 4 conv. ReLU 64, 2, 1 50× 50× 64
4× 4 conv. ReLU 128, 2, 1 7× 7× 128 4× 4 conv. ReLU 128, 2, 1 25× 25× 128
Flatten 6272 5× 5 conv. ReLU 128, 2, 1 12× 12× 128
Linear 1024 4× 4 conv. ReLU 128, 2, 1 6× 6× 128
ReLU 1024 Flatten 4608
Linear 32 Linear 1024

ReLU 1024
Linear 32

Decoder Tensor Shape Decoder Tensor Shape
Input latent variables ∈ Rz Input latent variables ∈ Rz

linear 1024 linear 1024
ReLU 1024 ReLU 1024
linear 6272 linear 4608
ReLU 6272 ReLU 4608

Reshape 7× 7× 128 Reshape 6× 6× 128
ReLU 7× 7× 128 ReLU 6× 6× 128
4× 4 upconv. ReLU 64, 2, 1 14× 14× 64 4× 4 upconv. ReLU 128, 2, 1 12× 12× 128
ReLU 14× 14× 64 5× 5 upconv. ReLU 128, 2, 1 25× 25× 128
4× 4 upconv. ReLU 1, 2, 1 28× 28× 1 4× 4 upconv. ReLU 64, 2, 1 50× 50× 64
Sigmoid 28× 28× 1 4× 4 upconv. 1, 2, 1 100× 100× 1

Sigmoid 100× 100× 1

Table 3: Architecture details of the encoder and decoder used for the MNIST experiments on the left and for the UCSD
experiments on the right. The notation per layer is - kernel size, type of 2D convolution, activation function, output
shape, stride, padding. Moreover, upconv represents the transpose convolution.

Figure 11: Disentanglement metric over iterations of the AD-FactorVAE with λ = 1.0. The horizontal lines mark the
disentanglement score at iteration 150000 and it is observed that the fluctuations in the score are minimal until 300000
iterations.

of 13 epochs over the 737280 images which is a considerable training schedule given the dimensions of the dataset.313

Additionally, for better results, given the computational resources available, we decided to prioritize training with more314

than one random seed over training longer. Hence we decided to train the models with 150000 iterations.315

D Results for Stacked Restricted Boltzmann Machine extension316

11



Encoder Tensor Shape Decoder Tensor Shape
Layers Input 100× 100 binary image Input latent variables ∈ Rz

Layer 0 7× 7 conv. ReLU 64, 2, 3 128××128× 64 Linear 8192
BatchNorm 128××128× 64 Interpolate 8× 8× 512
ReLU 128××128× 64
3× 3 MaxPool 64, 2, 1 64× 64× 64

Layer 1, Encoder block 0 3× 3 conv. 64, 1, 1 64× 64× 64 3× 3 conv. 512, 1, 1 8× 8× 512
BatchNorm 64× 64× 64 BatchNorm 8× 8× 512
ReLU 64× 64× 64 Interpolate 8× 8× 512
3× 3 conv. 64, 1, 1 64× 64× 64 3× 3 conv. 256, 1, 1 16× 16× 256
Batchnorm 64× 64× 64 Batchnorm 16× 16× 256

Layer 1, Encoder block 1 3× 3 conv. 64, 1, 1 64× 64× 64 3× 3 conv. 256, 1, 1 16× 16× 256
BatchNorm 64× 64× 64 BatchNorm 16× 16× 256
ReLU 64× 64× 64 ReLU 16× 16× 256
3× 3 conv. 64, 1, 1 64× 64× 64 3× 3 conv. 256, 1, 1 16× 16× 256
Batchnorm 64× 64× 64 BatchNorm 16× 16× 256

Layer 2, Encoder 0 3× 3 conv. 128, 2, 1 32× 32× 128 3× 3 conv. 256, 1, 1 16× 16× 256
BatchNorm 32× 32× 128 BatchNorm 16× 16× 256
ReLU 32× 32× 128 ReLU 16× 16× 256
3× 3 conv. 128, 1, 1 32× 32× 128 Interpolate 16× 16× 256
Batchnorm 32× 32× 128 3× 3 conv. 128, 1, 1 32× 32× 128

Downsample 1× 1 conv. 128, 2, 0 32× 32× 128 BatchNorm 16× 16× 128
BatchNorm 32× 32× 128 Interpolate 16× 16× 128

3× 3 conv. 128, 1, 1 32× 32× 128
Layer 2, Encoder Block 1 3× 3 conv. 128, 2, 1 32× 32× 128 3× 3 conv. 128, 1, 1 32× 32× 128

BatchNorm 32× 32× 128 BatchNorm 32× 32× 128
ReLU 32× 32× 128 ReLU 32× 32× 128
3× 3 conv. 128, 1, 1 32× 32× 128 Interpolate 32× 32× 128
Batchnorm 32× 32× 128 3× 3 conv. 128, 1, 1 32× 32× 128

BatchNorm 32× 32× 128
Interpolate 32× 32× 128
3× 3 conv. 128, 1, 1 32× 32× 128

Layer 3, Encoder Block 0 3× 3 conv. 256, 2, 1 16× 16× 256 3× 3 conv. 128, 1, 1 32× 32× 128
BatchNorm 16× 16× 256 BatchNorm 32× 32× 128
ReLU 16× 16× 256 ReLU 32× 32× 128
3× 3 conv. 256, 1, 1 32× 32× 128 Interpolate 32× 32× 128
Batchnorm 16× 16× 256 3× 3 conv. 64, 1, 1 64× 64× 64

Downsample 1× 1 conv. 256, 2, 0 16× 16× 256 BatchNorm 64× 64× 64
BatchNorm 16× 16× 256

Layer 3, Encoder Block 1 3× 3 conv. 256, 2, 1 16× 16× 256 3× 3 conv. 64, 1, 1 64× 64× 64
BatchNorm 16× 16× 256 BatchNorm 64× 64× 64
ReLU 16× 16× 256 ReLU 64× 64× 64
3× 3 conv. 256, 1, 1 16× 16× 256 3× 3 conv. 64, 1, 1 64× 64× 64
Batchnorm 16× 16× 256 BatchNorm 64× 64× 64

Layer 4, Encoder 0 3× 3 conv. 512, 2, 1 8× 8× 512 3× 3 conv. 64, 1, 1 32× 32× 64
BatchNorm 8× 8× 512 BatchNorm 32× 32× 64
ReLU 8× 8× 512 ReLU 32× 32× 64
3× 3 conv. 512, 1, 1 8× 8× 512 Interpolate 32× 32× 64
Batchnorm 8× 8× 512 3× 3 conv. 64, 1, 1 32× 32× 64

Downsample 1× 1 conv. 512, 2, 0 8× 8× 512 BatchNorm 32× 32× 64
BatchNorm 8× 8× 512 Interpolate 32× 32× 64

3× 3 conv. 64, 1, 1 64× 64× 64
BatchNorm 64× 64× 64

Layer 4, Encoder 1 3× 3 conv. 512, 1, 1 8× 8× 512 3× 3 conv. 64, 1, 1 64× 64× 64
BatchNorm 8× 8× 512 BatchNorm 64× 64× 64
ReLU 8× 8× 512 ReLU 64× 64× 64
3× 3 conv. 512, 1, 1 8× 8× 512 3× 3 conv. 64, 1, 1 64× 64× 64
Batchnorm 8× 8× 512 BatchNorm 128× 128× 64

Table 4: Architecture details of the encoder and decoder used on the MVTec-AD experiments. The notation per layer is
- kernel size, type of 2D convolution, activation function, output shape, stride, padding.

12



Encoder Tensor Shape
Input 64× 64 binary image
4× 4 conv. ReLU 32, 2, 1 32× 32× 32
4× 4 conv. ReLU 32, 2, 1 16× 16× 32
4× 4 conv. ReLU 64, 2, 1 8× 8× 64
4× 4 conv. ReLU 64, 2, 1 4× 4× 64
1× 1 conv. ReLU 128, 1, 0 1× 1× 128
1× 1 conv. ReLU 2 ∗ z, 1, 0 2 ∗ z
Decoder Tensor Shape
Input latent variables ∈ Rz

1× 1 conv. ReLU 128, 1, 0 1× 1× 128
4× 4 upconv. ReLU 64, 1, 0 4× 4× 64
4× 4 upconv. ReLU 64, 2, 1 8× 8× 64
4× 4 upconv. ReLU 32, 2, 1 16× 16× 32
4× 4 upconv. ReLU 32, 2, 1 32× 32× 32
4× 4 upconv. 1, 2, 1 64× 64× 1

Table 5: Architecture details of the encoder and decoder used on the dsprites experiments. The notation per layer is -
kernel size, type of 2D convolution, activation function, output shape, stride, padding. Moreover, upconv represents the
transpose convolution.

(a) Trained on digit 1, evaluated
on digit 7, with gradients and
activations from layer 6

(b) Trained on digit 1, evaluated
on digit 7, with gradients and
activations from layer 7

(c) Trained on digit 1, evaluated
on digit 9, with gradients and
activations from layer 6

(d) Trained on digit 1, evaluated
on digit 9, with gradients and
activations from layer 7

Figure 12: 8 layered Stacked RBM results trained on MNIST digits 1, for different layers and digits

13


	Dataset information
	Details of Anomaly localisation experiments
	Architecture

	Details of Disentanglement experiments
	Architecture
	About training time

	Results for Stacked Restricted Boltzmann Machine extension

