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Framework HPO Configuration Training Tuning Analysis
Ray ✓ ✗ ✗ ✓ ✗

Lighting ✗ ✗ ✓ ✗ ✗

Optuna ✓ ✗ ✗ ✗ ✓
Hydra ✗ ✓ ✗ ✗ ✗

ABLATOR ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓

Table 1: Popular Machine Learning frameworks are used for different experiment stages such as hyper-
parameter selection (‘HPO’), removing boilerplate code for configuring experiments (‘Configuration’),
removing boiler plate code for running experiments at scale (‘Tuning’) and performing analysis on
the hyperparameter selection (‘Analysis’). ABLATOR is the only framework that addresses the entire
life-cycle of an ablation experiment.

A Comparison

Figure 1: Ablators are materi-
als that are depleted during op-
eration [19]. An experimen-
tal ABLATOR should not interfere
with the experimental result.

In table 1 we compare ABLATOR with popular machine learning
frameworks Ray [26], Optuna[2], Lighting[9], and Hydra[34] as
they can be used at different stages of an experiment. Practitioners
would need to write different code during prototyping i.e. with
‘Lighting’, and make changes to their code for scaling the exper-
iment with i.e. ‘Ray’. Current practices are error-prone and cum-
bersome as we discuss in RQ2 of the main text and appendix C.1.
ABLATOR is the only framework that can address all stages of the
experiment and thus fully supports automation.

Tools like AutoPytorch [38], AutoGluon[8], AutoSkLearn[11],
H2O AutoML[22], SMAC3[23] support limited use-cases. The num-
ber of ablating models is limited by design [22, 8], or execution is
limited to statistical models [11], when neural networks are sup-
ported [23] there is no way to manage GPU resources [38]. None
of the tools support experiment persistence that is important for
Machine Learning experiments, that can take significant amount
of time and the execution can be interrupted. ABLATOR is the only
tool that can address complex use-cases, such as training of Rein-
forcement Learning algorithms, removes boilerplate code for training and scaling of experiments
and allows practitioners to focus on prototyping.

B Experimental Setup

For our experiments, the search space is defined in fig. 3. For all our results we set a cut-off for
performance where we exclude trials which perform close to random. Our motivation is based on
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1 class MyModelWrapper(ModelWrapper):

2
3 def config_parser(self , config: RunConfig):

4 config.model_config.d_out = self.dataset.d_out

5 return config

6
7 config = RunConfig.load("config.yaml")

8
9 model = MyModelWrapper(model_class=Transformer)

10 # Prototyping

11 trainer = ProtoTrainer(model=model ,run_config=config)

12 # Distributed Execution

13 trainer = ParallelTrainer(model=model ,run_config=config)

14 trainer.launch ()

1 class Transformer(nn.Module):

2 def __init__(self , config: ModelConfig):

3 super().__init__ ()

4 self.residual = config.residual

5
6 def forward(self , x: Tensor) -> Tensor:

7 for layer in self.layers:

8 x_prime = layer(x)

9 if self.residual:

10 x_prime = x_prime + x

11 x = x_prime

12 return x

Figure 2: ABLATOR illustration of the implementation used for our experiments. On the left is the code
specific to the ablation experiment where we use a ProtoTrainer with built-in training mechanisms.
While the ParallelTrainer is used to scale the model to a large cluster of nodes. On the right it is the
PyTorch model from the official implementation of FT-T [14] that uses the configuration from figure 2
in the main text. It required minimal changes to Transformer to evaluate our hypothesis. We provide
analysis in RQ1 of the main text.

the post-randomization exclusion strategy following similar work in clinical trials [10]. We set the
exclusion performance cut-off as the performance of the model to the dataset on a pre-defined fixed
value. We determined the value empirically where we train a model and evaluate the performance in
the validation set after a few training steps i.e. close to random. The ‘Cut-Off Perf.’ for each dataset
are in table 2 and are applied to the accuracy score for the classification data set and RMSE for the
regression data set (‘Regr.’). The cut-off is only applicable for analysis on the mean performance and
figures, where the nonconvergent solutions are excluded. The hyperparameters of our experiment
are in fig. 3. We base the choice of our hyperparameters on the defaults of [14].

1 # Train Configurations

2 train_config.optimizer_config.name: ["adam", "adamw","adabelief","radam","sgd"]

3 train_config.optimizer_config.lr: [0.01 ,0.0001]

4 train_config.epochs: [5,20]

5 # Dataset Specific

6 train_config.dataset: ["year","yahoo","helena","covtype","epsilon","jannis","adult","aloi","higgs_small","microsoft","

california_housing"]

7 train_config.normalization: ["standard", "quantile"]

8 train_config.cat_nan_policy: ["new", "most_frequent"]

9 train_config.cat_policy: ["ohe", "indices", "counter"]

10 train_config.cat_min_frequency: [0 ,0.2]

11 train_config.dataset_seed: [0, 100]

12 # Model Configurations

13 model_config.token_bias: [True , False]

14 model_config.n_layers: [1, 10]

15 model_config.d_token: [8, 128]

16 model_config.n_heads: [1, 12]

17 model_config.d_ffn_factor: [1, 5]

18 model_config.attention_dropout: [0, 0.3]

19 model_config.ffn_dropout: [0, 0.3]

20 model_config.residual_dropout: [0 ,0.3]

21 model_config.prenormalization: [True , False]

22 model_config.initialization: ["xavier", "kaiming"]

23 model_config.activation: ["relu","gelu","geglu","reglu","leaky_relu","sigmoid"]

24 model_config.residual: [True , False]

25 model_config.mask_type: ["mix","global","full","random"]

26 model_config.random_mask_alpha: [0.5, 1]

Figure 3: We present the hyper-parameters we use for our experiment in the yaml format pro-
vided by ABLATOR. Numerical attributes are sampled from an interval and can be discrete i.e.
model_config.n_layers or floating point i.e. model_config.ffn_dropout. The configuration is parsed
with strict type-checking by ABLATOR configuration library. We discuss details of each hyper-parameter
in appendix B
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B.1 Train Configuration

In this section we list the parameters that we ablate that are specific to the training procedure and
preprocessing of the dataset.

Hyper-Parameters; We vary the number of epochs (epochs), optimization algorithm
(optimizer_config.name) (‘Adam’ [20], ‘AdamW’ [25], ‘AdaB’ [37], ‘RAdam’ [24] and ‘SGD’ [30])
and learning rate (lr).

Normalization (normalization); For pre-processing of raw data set features, we use trans-
formations provided by scikit-learn [28]. We evaluate a ‘quantile’1 transformation, where the
features are discretized and mapped to a normal distribution and ‘standard’ 2 where the features
are standardized by their mean and variance from the train set.

Imputation policy (cat_nan_policy); For imputing missing values, we use two strategies,
imputing by defining a new categorical token or replacing with the most frequent value.

Categorical Policy; We use different methods to provide the categorical features to the model,
such as providing them by their indices, one-hot encoding them or using a ‘LeaveOneOut’3 encoding.

Rare Categorical Policy (cat_min_frequency); For rare categorical values, such that they
appear with a probability less than cat_min_frequency of the train data, we replace them with a
special category.

Random Seed (random_seed); we randomly sample a seed that, in turn, is used for the initializa-
tion of the training. Using different seed allows us to test identical configurations under different
initial training conditions.

B.2 Model Configuration

In this section we list the parameters that we ablate that are specific to the model definition.
Token Bias (token_bias) is the learnable bias term added to the token embedding computed

from the features that are used as input to the model.
Model Capacity; We control the number of parameters to the model with the number of layers

(n_layers), dimensionality of the token embedding d_token, number of heads (n_heads), and the
expansion factor of the hidden dimension (d_fnn_factor).

Dropout; We experiment with dropout on the residual connection (residual_dropout), the
feed-forward network (FFN) output before the residual connection (fnn_dropout) and the output
of the attention mechanism (attention_dropout).

Prenormalization (prenormalization) refers to applying layer normalization before and after
the residual connection.

Weight Initialization (initialization); we ablate two differentweight initialization algorithms
for Tablator; xavier [13] and kaiming [16].

Activation (activation); we ablate 6 different intermediate activation functions: RELU [1],
GELU[18], GEGLU [31], REGLU [31], Leaky RELU [33] and Sigmoid.

Residual (residual); we ablate whether the residual connections [17] on a transformer model
improve performance, where we remove them when False.

B.2.1 Attention Mask. We experiment with 4 types of masks. ‘Full’, ‘Global’, ‘Random’ and ‘Mix’ that
are inspired by BigBird [35] and evaluated on Tablator. We define 𝛼 as a hyperparameter that
corresponds to the random probability of a token attending another token. A new random mask is
calculated on each training iteration with the same 𝛼 . A random mask is similar to dropout applied
in the context of the attention mask. Global attention evaluates whether attention is effective
for ‘Tablator’. Illustrations of masks are in fig. 4 and results on the effectiveness of mask are in
appendix C.2.

1https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.quantile_transform.html
2https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
3https://contrib.scikit-learn.org/category_encoders/leaveoneout.html
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Figure 4: We use 4 type of masks for our experiments with Tablator; ‘Full’, ‘Global’, ‘Random’ and
‘Mix’. F1 through F3 correspond to the hidden embedding for features 1 through 3. While [CLS] is a
special token auxiliary token to a downstream task that prepended to the features; a technique used
for Transformer model [32]. We present the attention matrix where for each row the features are
attending to the column features. ‘Masked’ tokens are prevented from attending or being attended to,
and thereby their context is not used in computing of the attention mechanism in Transformer model.
Mask sparsity can improve performance in some cases [35].

B.3 Dataset and Code

We use the code and the preprocessed dataset provided by FT-Transformers [14] official implemen-
tation 4 and released under the MIT copyright license5. The datasets with their corresponding
attributes are listed on table 2.

B.4 Experiment Execution

For our experiments of RQ3 in the main text we use a GPU cluster of 3 nodes. We use a total of
24 x A100 GPU and we set a cutoff time limit for the execution of our experiments of 24 hours.
Each node has 680 GB of memory; 96 virtual CPUs. For the experiments of RQ2 we use a single
node and train on a subset of datasets; ‘CO’ and ’MI’ as they were the largest for classification and
regression, respectively.

C Additional Results

In this section, we present additional results to the Research Questions of the main text.

C.1 RQ2

We summarize the recommendations on the most common errors in ML research in table 4. In
table 3 we present detailed results on sampling strategy bias.

4https://github.com/Yura52/tabular-dl-revisiting-models
5https://opensource.org/license/mit/
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Name Cont. Cat. Train Val. N. Classes Cut-Off
Perf.

Year (‘YE’) [5] 90 - 370972 92743 10.5
Yahoo (‘YA’) [7] 699 - 473134 71083 0.95
Microsoft (‘MI’) [29] 136 - 723412 235259 0.82
Housing (‘CA’) [27] 8 - 13209 3303 1.1
Aloi (‘AL’) [12] 128 - 69120 17280 1000 0.08
Helena (‘HE’) [15] 27 - 41724 10432 100 0.08
CovType (‘CO’) [6] 54 - 371847 92962 7 0.55
Jannis (‘JA’) [15] 54 - 53588 13398 4 0.55
Epsilon (‘EP’) [14] 2000 - 320000 80000 2 0.55
Higgs (‘HI’)[3] 28 - 62752 15688 2 0.55
Adult (‘AD’) [21] 6 8 26048 6513 2 0.77

Features Size

Regr.

Table 2: The dataset used in our work are identical to FT-Transformers [14]. We set a threshold on
the performance for nonconvergent models that correspond to the difficulty of the dataset as well
as the task type. i.e. AD as it was an easy dataset, most nonconvergent solutions obtained a high
accuracy score. We detail the methodology for identifying nonconvergent solutions in appendix B. The
datasets have variable size, number of features, and number of classes which make it a comprehensive
benchmark.

Optim. (O) Method Best Mean 𝑃 (O)
AdaB [37] Random 0.83 0.82 0.13

TPE 0.78 0.73 0.07
Adam [20] Random 0.89 0.79 0.22

TPE 0.87 0.78 0.06
AdamW [25] Random 0.81 0.74 0.20

TPE 0.79 0.76 0.05
RAdam [24] Random 0.83 0.75 0.16

TPE 0.71 0.69 0.06
SGD[30] Random 0.93 0.81 0.29

TPE 0.92 0.76 0.76

Table 3: Evaluation of sampling bias of configuration selection strategy between TPE [4] and Random.
TPE allocates significantly more budget to SGD (0.76 of the trials) and as a result of under-sampling
other methods, the mean and best performance appears lower compared to random. Statistical
tests such as ANOVA are not applicable with TPE.
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Source Recommendation

Sampling Strategy†

Survival Bias†

Resources Utilization‡

Budget Allocation‡

Method Discrepancies∗

Versioning Errors∗

The strategy used to select the parameters should be taken into
consideration during analysis. The use of an HPO strategy can lead

to misleading results.
Correlation of the type of errors with the evaluated method can
identify non-random errors that can be introduced in the analysis.

Use of a heuristic to allocate resources such that there are no
unitilized resources and there are sufficient resources for a trial can

prevent memory errors and experiment speed. Analysis of the
memory utilization with the method hyper-parameters can help

identify a heuristic.
Statistical power of a study decreases with respect to the number of

ablating components but increases with the number of trials.
Selecting a budget should correspond to the number of ablating

components.
Use minimal differences between ablating components as to avoid
user and numerical errors from implementation differences [36]

Create a self-contained module with all experiment artifacts. Version
control of a module can help track the results corresponding to their

implementation and configuration.

Table 4: We categorize the types of errors as Analysis †, Execution ‡ and Implemention∗ errors.
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C.2 RQ3

(a) Housing (‘CA’) (b) Microsoft (‘MI’)

(c) Year (‘YE’)

Figure 5: We compare the effect of different mask-types on the root-mean-squared error (RMSE) of
Tablator for dataset that the task is regression, where lower values are better. ‘Full’ mask performs
consistently better. There is no clear benefit of other mask types where the results are mixed. Global
Attention performs well for some dataset ‘CA’ but poor for other ‘YE’. The result can have us conclude
that the inter-feature correlation for the specific dataset introduce noise for ‘CA’ but is necessary for
‘YE’.
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(a) Housing (‘CA’) (b) Microsoft (‘MI’) (c) Year (‘YE’)

Figure 6: We evaluate the effect of a larger model on the root mean squared error (RMSE) of Tablator
for the dataset that the task is regression, where lower values are better. The larger dataset (‘MI’)
benefit from the added capacity where the slope is steeper when compared to the smaller dataset
(‘CA’).
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(a) Adult (‘AD’) (b) Aloi (‘AL’)

(c) CovType (‘CO’) (d) Helena (‘HE’)

(e) Higgs (‘HI’) (f) Jannis (‘JA’)

Figure 7: We compare the effect of different mask-types on the accuracy score of Tablator for the dataset
that the task is classification, where higher values are better. Our results are similar to fig. 5 where
‘Full’ mask performs consistently better and without a clear benefit of other mask types. The improved
performance of ‘Global’ on ‘HI’, ’CO’ can lead us to conclude that there can be noise introduced from
inter-feature attention but it is necessary for ‘HE’ and ‘AL’.
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(a) Adult (‘AD’) (b) Aloi (‘AL’) (c) CovType (‘CO’)

(d) Helena (‘HE’) (e) Higgs (‘HI’) (f) Jannis (‘JA’)

Figure 8: We evaluate the effect of a larger model on the accuracy score of Tablator for the dataset
that the task is classifcation, where higher values are better. Our results are similar to fig. 6 where the
larger dataset i.e. (‘CO’), benefit more from the added capacity where the slope is steeper compared to
the smaller dataset i.e. (‘JA’).
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