
Maps from Motion (MfM):
Generating 2D Semantic Maps from Sparse Multi-view Images - Supplementary

Material

Matteo Toso1 Stefano Fiorini1 Stuart James1,2 Alessio Del Bue1

1Istituto Italiano di Tecnologia (IIT) {name.surname}@iit.it
2Durham University stuart.a.james@durham.ac.uk

1. Derivation of the 2D Alignment Algorithm
In Section 3.3 of the main paper, we introduce a Self-
Consistency Loss that requires finding the optimal transfor-
mation aligning two maps, i.e. two sets of 2D points, in the
same reference frame. To train the model, we need this loss
to be differentiable, with stable gradients and efficient to
compute.

To satisfy these requirements, we introduce a novel
alignment algorithm constrained to a 2D surface and in-
spired by the Procrustes algorithm. Consider two 2D points
ci and cj where ci, cj ∈ RN×2, with the same number of
elements and sorted such that the n-th element of ci and cj
represent the same object but in different reference frames.
These 2D point arrangements can be aligned by finding the
rigid transformation defined by a rotation angle θ, a scaling
factor λ, and a translation τ that solves the problem:

Θ(ci, cj) = argmin
θ,τ,λ

∥ci − (λR(θ) · cj + τ)∥. (1)

To find this transformation, we first center and normalize
the two point clouds, to reduce the alignment problem to
estimating a rotation around the cloud’s centers:

τi =
1

N

∑
ci τj =

1

N

∑
cj (2)

λi =∥ci − µi∥ λj = ∥cj − µj∥ (3)

c′i =
ci − τi
λi

c′j =
cj − τj
λj

. (4)

We can then compare the angular distribution of points in
c′i and c′j , to estimate the rotation angle θji that best aligns
them. The orientation of point l in the point cloud c′i, θ

i
l ,

can be obtained as γi
l = ∥cli∥−1cli = [cos(θil), sin(θ

i
l)],

i.e. by normalizing the vector connecting the point to the
center of the cloud µk. The two angular distributions
are found as γi =

{
[cos(θil), sin(θ

i
l)]

}
l∈c′i

and γj ={
[cos(θjl ), sin(θ

j
l )]

}
l∈c′j

.

Due to the possible presence of noise in the input 2D
point clouds, we compute the average angular distance be-
tween pairs of matched points to find the rotation angle θji
mapping the two distributions. This is performed using the
Prosthaphaeresis formulas, which can be computed as fol-
lows:

sin θji =
1

N

∑
l

(sin θlj cos θ
l
i − cos θlj sin θ

l
i) (5)

cos θji =
1

N

∑
l

(cos θlj cos θ
l
i − sin θlj sin θ

l
i) (6)

R(θji) =

[
cos θji sin θji
− sin θji cos θji

]
. (7)

The rotation R(θji), the scaling factor λi and the trans-
lation τi then define the optimal transformation mapping cj
onto ci, i.e. ci ≈ λiR(θji) · cj + τi.

2. Graph Formulation for the MfM Problem
To provide more insight in the process of encoding multiple
local semantic maps into a graph structure, we highlight in
Figure 1 the structure of the connectivity matrix, detailing
how the objects are turned into nodes (1.a); how to draw
same-map (1.b) and same-class (1.c) connections; and how
to initialize the embeddings (1.d). The process is also sum-
marized as pseudocode in Algorithm 1.

3. Ablation on Loss Components
In Section 3.3 of the main paper, we propose applying a
combination of three loss functions (Euclidean Camera-
Object Pose, Cross-Map Consistency, and Self-Similarity)
to train the GNN-based Alignment Module. In this section,
we highlight the effect of varying the combinations of loss
functions, as our goal is to explore the advantages of uti-
lizing these three losses simultaneously. Using MfM with

1



a) Nodes from Detections

c) Same-Class Connections

b) Same-Map Connections

1 0 01

0 0 01

d) Embeddings Initialisation

Figure 1. Graph Formulation for the MfM problem. Given a set of local maps, we a) assign to each map annotation a node in the graph and
b) draw intra-map edges to generate a complete subgraph for each map. We then c) draw inter-map edges connecting detections matched to
the same object. Finally, we d) assign to each node of the graph an embedding defined by concatenating the detection’s coordinates in the
corresponding local map, the one-hot encoding of its semantic class, and the location of a bounding box fitted to the segmentation mask.

Data: Images Ii, Objects Oi, Cameras Ci, Objects’
Classes Li

Result: Graph G̃
// Subgraph Definition
for each image Ii do

Vi = Oi ∪ Ci

Ei = {(u, v) | ∀u, v ∈ Vi}
Gi = {Vi, Ei}

end
// Large Graph Definition
Li = {lij}j∈[1,...,|Oi|]

Õ = ∪Gi
Oi

Ṽ = ∪Gi
Vi

for all objects os ∈ Oi do
for all object ot ∈ Om do

Est = (vs, vt) if lis = lmt, where
vs, vt ∈ Ṽ

end
end
El = {Est}s∈[1,...,|Õ|],t∈[1,...,|Õ|]

Ẽ = (∪GiEi) ∪ El

G̃ = {Ṽ , Ẽ}
Algorithm 1: Graph Formulation for the MfM problem.

a TransformerGCN network, we show results on both the
MfM Dataset Small and Large scenes in the two opposite

configurations: i) graph with no known matches between
the detections in different views and noisy local maps as
input (Depth Local Maps + Class-based Correspondences),
and ii) graph with ground-truth detection matches and the
ground truth local maps (GT Local Maps + GT Detection
Matches).

As shown in Table 1, defining the loss function to in-
corporate all three losses proves to be advantageous for the
overall predictive performance. Across both datasets and
their various configurations, the MfM baseline, utilizing all
three losses, consistently attains good results. Conversely,
when the self-similarity loss is omitted, there is a noticeable
decline in performance. The exclusion of either Euclidean
Camera-Object Pose Loss or Cross-Map Consistency Loss
leads to increased fluctuations in the results.

4. Ablation on Synthetic Dataset
In the main paper, we report results on synthetic scenes us-
ing 8 cameras observing a scene with 7 object of 5 pos-
sible classes. These parameters were decided on empiri-
cal bases, after testing different combination of object and
classes sizes. In this section, we summarize the results of
such hyperparameter tuning. We set the visibility parame-
ter to 1.0 (ϕ = 1.0) and the noise level on the objects’ loca-
tions in the local maps to 0 (∆xy = 0). We report the results
based on the average Euclidean error on the reconstructed
object locations (µo).

2



Depth Local Maps + Class-based Correspondences

Method Small Scenes Large Scenes
Fail (%) µc ± σc µo ± σo Fail (%) µc ± σc µo ± σo

MfM Baseline 37 3.7 ± 2.2 3.5 ± 1.6 10 3.8 ± 1.8 2.7 ± 1.6
MfM w/o Euclidean Cam-Obj Pose 36 3.7 ± 2.1 3.5 ±1.5 10 3.9 ± 1.7 2.6 ± 1.4
MfM w/o Cross-Map Consistency 37 3.5 ± 2.2 3.5 ±1.5 10 3.7 ± 1.7 3.0 ± 1.6
MfM w/o Self-Similarity 40 3.8 ± 2.2 4.2 ±1.5 10 3.8 ± 1.7 3.1 ± 1.5

GT Local Maps + GT Detection Matches

Method Small Scenes Large Scenes
Fail (%) µc(m) ± σc(m) µo(m) ± σo(m) Fail (%) µc(m) ± σc(m) µo(m) ± σo(m)

MfM Baseline 31 3.9 ± 2.2 3.6 ± 1.4 5 3.7 ± 1.7 2.6 ± 1.2
MfM w/o Euclidean Cam-Obj Pose 35 3.7 ± 2.2 3.5 ±1.6 5 3.8 ± 1.8 2.4 ± 1.1
MfM w/o Cross-Map Consistency 31 3.9 ± 2.2 3.6 ±1.5 5 3.7 ± 1.9 3.1 ± 1.4
MfM w/o Self-Similarity 31.9 3.7 ± 2.1 4.1 ± 1.4 5 4.2 ± 2.0 3.1 ± 1.7

Table 1. Given a set of local 2D semantic maps from the Small and Large sequences of the MfM Dataset, we report the performance of
MfM using i) noisy inputs (Depth Local Maps + Class-based Correspondences) and ii) perfect inputs (GT Local Maps + GT Detection
Matches). Results include the average Euclidean error on the reconstructed object locations (µo), and its standard deviation (σ0). We report
the fraction of scenes for which the reconstruction failed (Fail).

Figure 2. Average Euclidean error on the reconstructed object lo-
cations (µo).

The results, as illustrated in Figure 2, reveal the trend
where when the number of objects increases, the recon-
structed object location error decreases. This observation
underscores the correlation between the number of objects
and the increased accuracy in the process of object localiza-
tion.

5. Experiment Details
Hardware. The experiments were conducted on a ma-
chine with an NVIDIA RTX 4090 GPU, 64 GB RAM, and
12th Gen Intel(R) Core(TM) i9-12900KF CPU @ 3.20GHz.

Model Setting. We train MfM in combination with differ-
ent models using Adagrad as the optimization algorithm [1].
During our training process, we set a maximum of 1000
epochs, but we stopped the training earlier to prevent un-
necessary iterations when the validation error no longer de-
creases. We optimized the weight decay using the Bayesian
optimization technique and obtained two different results
based on the dataset:
• MfM Real Dataset. We set the weight decay to 0.007.
• MfM Synthetic Dataset. We set the weight decay to

0.046.

References
[1] Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient

methods for online learning and stochastic optimiza-
tion. Journal of machine learning research 12(7) (2011)
3

3


	. Derivation of the 2D Alignment Algorithm
	. Graph Formulation for the MfM Problem
	. Ablation on Loss Components
	. Ablation on Synthetic Dataset
	. Experiment Details

