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A Preliminaries1

Markov Decision Process (MDP). A standard MDP can be represented as a tuple: (S,A,P,R, γ, T ),2

where S denotes the state set, A denotes an action set, P is the transition function: S×A×S → [0, 1]3

and R is the reward function: S × A → R. γ ∈ [0, 1) is a discount factor and T is the decision4

horizon. The target of the agent is to optimize its policy to maximize the expected discounted5

cumulative reward.6

Frameskip. Frame-skipping may be viewed as an instance of (partial) open-loop control, under which7

a predetermined sequence of (possibly different) actions is executed without heed to intermediate8

states. Aiming to minimize sensing, ? proposes a framework for incorporating variable-length9

open-loop action sequences in regular (closed-loop) control. The primary challenge in general10

open-loop control is that the number of action sequences of some given length d is exponential in d.11

Consequently, the main focus in the area is on policies to prune corresponding data structures (?).12

Since action repetition restricts itself to a set of actions with size linear in d, it allows for d itself to be13

set much higher in practice. With frame-skipping, the agent is only allowed to sense every d state: that14

is, if the agent has sensed a state st at time step t >= 0, it is oblivious to statesst+1, st+2, ..., st+d−1,15

and next only observes st+d.16

Variational Auto-encoder. The variational auto-encoder (VAE) is a directed graphical model with17

certain types of latent variables, such as Gaussian latent variables. A generative process of the18

VAE is as follows: a set of latent variable z is generated from the prior distribution pθ(z) and19

the data x is generated by the generative distribution pθ(x|z) conditioned on z : z ∼ pθ(z), x ∼20

pθ(x|z). In general, parameter estimation of directed graphical models is often challenging due to21

intractable posterior inference. However, the parameters of the VAE can be estimated efficiently in22

the stochastic gradient variational Bayes (SGVB) framework, where the variational lower bound of23

the log-likelihood is used as a surrogate objective function. In this framework, a proposal distribution24

qθ(x|z), which is also known as a “recognition” model, is introduced to approximate the true posterior25

pθ(x|z). The multilayer perceptrons (MLPs) are used to model the recognition and the generation26

models. Assuming Gaussian latent variables, the first term of Equation A can be marginalized,27

while the second term is not. Instead, the second term can be approximated by drawing samples28

z(l)(l = 1, ..., L) by the recognition distribution qθ(x|z), and the empirical objective of the VAE with29

Gaussian latent variables is written as follows:30

LV AE(ϕ, ψ) =
1

L

∑
θ

(x|z(l))−KL
(
qϕ(z|x)||N(0, I)

)
(1)
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Layer Actor Network Critic Network

Fully Connected (state dim, 256) (statedim + υ dim + latent space dim, 128)
Activation ReLU ReLU

Fully Connected (256, 128) (256, 128)
Activation ReLU ReLU

Fully Connected (128,latent space dim) and υ dim (128, 1)
Activation Tanh None

Table 1: Network Structures for DRL Methods

B Experimental Details32

B.1 NETWORK STRUCTURE33

Our codes are implemented with Python 3.7.9 and Torch 1.7.1. All experiments were run on a single34

NVIDIA GeForce GTX 2080Ti GPU. Each single training trial ranges from 4 hours to 17 hours,35

depending on the algorithms and environments. We will open source code in the near future.36

Our TD3 is implemented with reference to github.com/sfujim/TD3 (TD3 source-code).37

DDPG and PPO are implemented with reference to https://github.com/sweetice/38

Deep-reinforcement-learning-with-pytorch. For a fair comparison, all the baseline meth-39

ods have the same network structure (except for the specific components of each algorithm) as our40

MARS-TD3 implementation. As shown in Tab.1, we use a two-layer feed-forward neural network of

Model Component layer dimension

Conditional Encoder Network

Fully Connected (encoding) (Rx, 256)
Fully Connected (condition) (stae dim + υ dim, 256)

Element-wise Product ReLU (encoding), ReLU(condition)
Fully Connected (256, 256)

Activation ReLU
Fully Connected (mean) (256, latent space dim)

Activation None
Fully Connected (log std) (256, latent space dim)

Activation None

Conditional Decoder, Prediction Network

Fully Connected (latent) (latent space dim, 256)
Fully Connected (condition) (stae dim +υ dim, 256)

Element-wise Product ReLU (encoding), ReLU(condition)
Fully Connected (256, 256)

Activation ReLU
Fully Connected (υ) (256, action dynamic transition)

Activation None
Fully Connected (reconstruction) (256, multi-step action dim)

Activation None
Fully Connected (256, 256)

Activation ReLU
Fully Connected (prediction) (256, state dim)

Activation None
Table 2: Network structures for the Multi-step action representation (MARS).

41
256 and 256 hidden units with ReLU activation (except for the output layer) for the actor network42

for all algorithms. For DDPG the critic denotes the Q-network. For PPO, the critic denotes the43

V-network. All algorithms (TD3, DDPG, PPO) output two heads at the last layer of the actor network,44

one for latent action and another for dynamic transition potential.45

The structure of MARS is shown in Tab.2. We use element-wise product operation (?) and cascaded46

head structure (?) to our model.47

B.2 Hyperparameter48

For all experiments, we use the raw state and reward from the environment, and no normalization or49

scaling is used. No regularization is used for the actor and the critic in all algorithms. An exploration50

noise sampled from N(0, 0.1) (?) is added to all baseline methods when selecting an action. The51

discounted factor is 0.99 and we use Adam Optimizer (?) for all algorithms. Tab.3 shows the common52

hyperparameters of algorithms used in all our experiments.53
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Hyperparameter Frameskip-TD3 Multistep-TD3 MARS-PPO MARS-TD3 MARS-DDPG

Actor Learning Rate 1e−4 1e−4 1e−4 1e−4 1e−4 1e−4

Critic Learning Rate 1e−3 1e−3 1e−3 3e−4 3e−4 1e−3

Representation Model Learning Rate None None None 1e−4 5e−3 5e−3

Discount Factor 0.99 0.99 0.99 0.99 0.99 0.99
Batch Size 128 128 128 128 128 128
Buffer Size 1e5 1e5 1e5 1e5 1e5 1e5

Table 3: A comparison of common hyperparameter choices of algorithms. We use ‘None’ to denote the ‘not
applicable’ situation.

B.3 Additional Implementation Details54

For PPO, the actor network and the critic network are updated every 2 and 10 episode respectively55

for all environments. The clip range of the PPO algorithm is set to 0.2 and we use GAE (?) for a56

stable policy gradient. For DDPG, the actor network and the critic network is updated at every 157

environment step. For TD3, the critic network is updated every 1 environment step and the actor58

network is updated every 2 environment steps.59

The default latent action dim is 8, we set the KL weight in representation loss LMARS as 0.5.60

Environment dynamic prediction loss weight β is 5 (default).61

C Additional experiment62

C.1 Performance of model-based reinforcement learning algorithms on Intermittent-MDP63

tasks.64

Methods Ant (fixed-Intermittent) Hopper (fixed-Intermittent) Ant (random-Intermittent) Hopper (random-Intermittent)

TD-MPC 1795.4± 375.6 1795.4± 214.8 1447.2± 694.8 1073.6± 157.1
Dreamer-v2 1648.2± 417.5 788.1± 116.4 1064.7± 694.8 974.7± 201.8

TD3-multistep 2673.6± 316.8 1359.7± 258.3 2795.4± 264.1 1211.6± 169.5
MARS-TD3 2572.9± 248.1 3762.7± 371.4 3105.7± 412.6 2647.9± 204.8

Table 4: Comparison between MBRL and MFRL in intermittent control tasks, average of 3 runs.

The results in Table 4 show that the model-based reinforcement learning approach is significantly65

lower than our approach in all four scenarios, and even slightly worse than using TD3 for direct66

multi-step decision making. We analyze that this is because the errors caused by the mismatch67

(sub-optimal) of the dynamic model will accumulate due to multi-step decision-making, resulting in68

sub-optimal policy. Unfortunately, the training of dynamic models is data hungry (high cost), that69

is, a large amount of high-quality expert data is required to ensure the accuracy of the model shop,70

which is difficult to obtain, especially in real-world scenarios.71

C.2 Validation of the combination of MARS and online methods72

Figure 1: The performance of the methods on four simulated tasks. The curve and shade denote the mean and a
standard deviation over 5 runs.

We use the mainstream online reinforcement learning algorithm TD3 in combination with MARS and73

compare it with the baseline mentioned in Sec.?? in four tasks. We set the interval to 10 time steps,74

requiring the policy to generate an effective action sequence at:t+9 based on the received state st.75
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For all tasks, we set the dimension of zt to 12 and the scaling parameter β to 4. We set the warm-up76

(stage 1) step to 300000 and 100000 for the Mujoco tasks and the navigation task respectively. The77

results in Figure 1 show that MARS-TD3 outperforms the other baselines in all fixed Intermittent-78

MDP tasks and achieve comparable performance with perfect-TD3 in most tasks. This further79

proves that MARS can effectively improve the effectiveness of Online DRL on fixed Intermi80

tasks.81

C.3 Generalization of MARS82

We test MARS with popular RL methods on three tasks: Hopper, Walker, and hardMaze. To make83

the experiment fair, we used the same parameters for all methods and implemented them based on84

public code. We use each RL algorithm to train on three tasks under the ideal setting and compare85

them with their corresponding improvement methods. To show the optimal score after the algorithm86

convergence, we train all the algorithm’s 2000000 time steps. The results in Tab.5 show that all87

methods can learn effective policies with the help of MARS and perform similarly to their ideal88

settings. The differences in scores are mainly due to the variation in performance of the RL algorithms.89

In summary, MARS can be combined with different methods to provide a reliable action space for90

solving Intermittent-MDP as normal MDP with RL.

Benchmarks MARS-PPO MARS-DDPG MARS-TD3

Maze hard 256 | 0.7 ↑ 243 | 2.5 ↑ 311 | 16.3 ↑
Hopper 2851.4 | 13.5 ↓ 1815.6 | 184.3 ↑ 3384 | 53.1 ↑
Walker 3831.2 | 285.1 ↓ 1032.7 | 201.9 ↓ 4821.6 | 427.6 ↑

Table 5: The parameters of all methods are optimized by grid search. The results of applying MARS to popular
RL algorithms on three random interaction interval tasks. The maximum interaction interval is set to 8. Each
data in the table is in the following format: MARS-RL score | the score difference compared to the perfect dense
interaction baseline. ↓ denotes the score of MARS lower than the dense interaction baseline. ↑ denotes the score
of MARS is higher. All scores are averaged over 5 runs.

91

C.4 Details of Ablation study92

（a)  Constant FIMDP （b)  Random FIMDP

MARS_action_transition_scale

Vanilla_VAE 
MARS_state_dynamic_prediction
MARS_with_all_module

MARS_action_transition_scale

Vanilla_VAE 
MARS_state_dynamic_prediction
MARS_with_all_module

(a) Fix Intermittent-MDP Walker            (b) Random Intermittent-MDP Walker 

Figure 2: Details of ablation study. The curve and shade denote the mean and
a standard deviation over 5 runs.

We conducted two exper-93

iments to show how well94

the two mechanisms of95

MARS work together. Al-96

though the results of ran-97

domized Intermittent-MDP98

and fixed Intermittent-MDP99

are slightly different, the100

same conclusion can be de-101

rived: The green curves in102

Figure 2 demonstrate that103

the representation model104

with increased action transition scale is much better than the original VAE. This means that dy-105

namic transition potential can create an latent action space by explicitly modeling the dependence106

between multi-step actions. The blue curves also show that VAE with state dynamic prediction is107

better than the original VAE because it can represent action sequences that have similar environmental108

effects at close locations. Finally, the red curves show that the two mechanisms work well together in109

MARS, and combining them improves representation ability.110

C.5 Validity verification of multi-style interaction intervals111

To further demonstrate the effectiveness of MARS in diverse intermittent control scenarios. For112

fixed interaction control tasks, we uniformly set the forbidden interaction duration and conducted113

four experiments on Hopper. The results in Figure 3(a) show that MARS can solve most tasks114

effectively and still guarantee good scores at long intervals, but the effectiveness of MARS decreases115

significantly when the interval is too long (which is not common in real-world scenarios). We believe116
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Interaction interval : 4 time step Interaction interval : 10 time step

Interaction interval :  16 time step Interaction interval :  22 time step

MARS-TD3

MARS-TD3 MARS-TD3

MARS-TD3

(a) Fixed Intermittent-MDP scenarios

Interaction interval : 4 time step Interaction interval : 10 time step

Interaction interval :  16 time step Interaction interval :  22 time step

MARS-TD3

MARS-TD3 MARS-TD3

MARS-TD3

(b) Random Intermittent-MDP scenarios

Figure 3: The curve and shade denote the mean and a standard deviation over 5 runs.

Latent_dim : 1 Latent_dim : 8

Latent_dim : 16

MARS-TD3

MARS-TD3

MARS-TD3

(a) Results on Hopper

Latent_dim : 2 Latent_dim : 8

Latent_dim : 16

MARS-TD3

MARS-TD3 MARS-TD3

(b) Results on MAZE

Figure 4: The curve and shade denote the mean and a standard deviation over 5 runs.

that this is because VAE is unable to effectively characterize excessively long sequences, leading to117

the failure of multi-step action space modeling.118

In addition, to observe the sensitivity of MARS to interaction intervals on random Intermittent-MDP119

tasks, we uniformly set the forbidden interaction duration and conducted four experiments on Hopper.120

The results in Figure 3(b) show that in random Intermittent-MDP scenarios, MARS performs well121

in both short and medium-interval scenarios. However, convergence changes slowly in the very122

long interval scenario, and the score is only half that of the medium interval task. Because MARS’s123

representational capabilities are not perfect for modeling long action sequences for extremely long-124

spaced tasks (even if this setting rarely occurs in real-world scenarios). Therefore, in the future, we125

hope to find more suitable representation models to overcome this problem.126

C.6 The influence of Latent action space dimension on algorithm effect127

The representation space dimension of VAE is an important hyperparameter. If the latent space128

dimension is too low, a large amount of original data information will be lost, resulting in invalid129

representation space. On the contrary, when the latent space dimension is too large, the calculation130

amount of the model will be increased. To verify the sensitivity of MARS to latent space dimensions,131

we test it on two tasks with different original action dimensions. We set up four sets of latent132

space dimensions for fixed Intermittent-MDP Hopper (interaction interval time step: 8, original133

action dimension: 3, so the action sequence dimension to be modeled is 24). The learning curve in134

Figure 4(a) shows that for raw data of such high dimensions, when the latent space dimension is set135
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too low, the latent space information will be lost, resulting in the convergence failure of reinforcement136

learning policies. On the contrary, too high a latent space dimension increases the complexity of137

reinforcement learning policy exploration.138

In addition, we set up four comparison experiments on the 2dmaze task with a lower dimension of139

the original action sequence (interaction interval time step: 4, original action dimension: 2, so the140

action sequence dimension to be modeled is 8). The experimental results in Figure 4(b) show that the141

suboptimal policy can be learned when the latent space dimension is low, because the original data142

dimension is low. So the low-dimensional latent space loses less information. The score increases as143

the latent space dimension increases. However, when the latent space dimension is too high, the score144

will drop significantly, which is because of the exploration difficulties brought by high-dimensional145

latent space.146

C.7 The influence of environment steps of warmup stage147

In this section, we conduct some additional experimental results for a further study of MARS from148

different perspectives: We provide the exact number of samples used in the warm-up stage (i.e.,149

stage 1 in Algorithm ?? in each environment in Tab.6. The number of warm-up environment steps150

is about 5% ∼ 10% of the total environment steps in our original experiments. Moreover, we also151

conducted some experiments to further reduce the number of samples used in the warm-up stage (at152

most 80% off). See the colored results in Tab.6. MARS can achieve comparable performance with153

< 3% samples of the total environment steps.154

Conclusion: The number of warm-up environment steps is about 5% ∼ 10% of the total environment155

steps in our original experiments. The number of warmup environment steps can be further reduced156

by at most 80% off (thus leading to < 3% of the total environment steps) while the comparable157

performance of our algorithm remains.

Environment Warm-up steps (original) Warm-up steps (new) Total Env. Steps

Hopper 400000(0.08|3219.1) 100000(0.02|3086.4) 5000000
Ant 400000(0.08|4305.7) 100000(0.02|4025.6) 5000000

Walker 400000(0.08|4961.3) 100000(0.02|4792.6) 5000000
HalfCheetah 400000(0.08|6593.2) 100000(0.02|6071.2) 5000000

2dmaze-medium 100000(0.083|127.8) 30000(0.025|118.5) 1200000
2dmaze-hard 100000(0.083|327.6) 35000(0.0292|296.1) 1200000

Table 6: The exact number of samples used in warm-up stage training in different environments. The
column of ‘original’ denotes what is done in our experiments; the column of ‘new’ denotes additional
experiments we conduct with fewer warm-up samples (and proportionally fewer warm-up training). For
each entry x(y|z), x is the number of samples (environment steps), y denotes the percentage number of

warm−up environment steps
number of total environment steps during the training process

, and z denotes the corresponding performance of
MARS-TD3.
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