
Published as a conference paper at ICLR 2024

REWARD-FREE CURRICULA FOR
TRAINING ROBUST WORLD MODELS

Marc Rigter
University of Oxford
marcrigter@gmail.com

Minqi Jiang
University College London

Ingmar Posner
University of Oxford

ABSTRACT

There has been a recent surge of interest in developing generally-capable agents
that can adapt to new tasks without additional training in the environment. Learn-
ing world models from reward-free exploration is a promising approach, and en-
ables policies to be trained using imagined experience for new tasks. However,
achieving a general agent requires robustness across different environments. In
this work, we address the novel problem of generating curricula in the reward-free
setting to train robust world models. We consider robustness in terms of mini-
max regret over all environment instantiations and show that the minimax regret
can be connected to minimising the maximum error in the world model across
environment instances. This result informs our algorithm, WAKER: Weighted Ac-
quisition of Knowledge across Environments for Robustness. WAKER selects en-
vironments for data collection based on the estimated error of the world model
for each environment. Our experiments demonstrate that WAKER outperforms
several baselines, resulting in improved robustness, efficiency, and generalisation.

1 INTRODUCTION

Deep reinforcement learning (RL) has been successful on a number of challenging domains, such as
Go (Silver et al., 2016), and Starcraft (Vinyals et al., 2019). While these domains are difficult, they
are narrow in the sense that they require solving a single pre-specified task. More recently, there
has been a surge of interest in developing generally-capable agents that can master many tasks and
quickly adapt to new tasks without any additional training in the environment (Brohan et al., 2022;
Mendonca et al., 2021; Reed et al., 2022; Sekar et al., 2020; Stooke et al., 2021; Jiang et al., 2022b).

Motivated by the goal of developing generalist agents that are not specialised for a single task, we
consider the reward-free setting. In this setting, the agent first accumulates useful information about
the environment in an initial, reward-free exploration phase. Afterwards, the agent is presented
with specific tasks corresponding to arbitrary reward functions, and must quickly adapt to these
tasks by utilising the information previously acquired during the reward-free exploration phase.
By separating the learning of useful environment representations into an initial pre-training phase,
reward-free learning provides a powerful strategy for data-efficient RL.

A promising line of work in the reward-free setting involves learning world models (Ha & Schmid-
huber, 2018), a form of model-based RL (Sutton, 1991), where the agent learns a predictive model
of the environment. In the reward-free setting, the world model is trained without access to a reward
function, and instead, is trained using data collected by a suitable exploration policy (Sekar et al.,
2020). Once a world model has been trained for an environment, it is possible to train policies en-
tirely within the world model (i.e. “in imagination”) for new tasks corresponding to specific reward
functions within that environment (Sekar et al., 2020; Xu et al., 2022; Rajeswar et al., 2023).

However, to realise the vision of a general agent, it is not only necessary for the agent to be able
to learn multiple tasks in a single environment: the agent must also be robust to different environ-
ments. To enable this, one approach is to apply domain randomisation (DR) (Tobin et al., 2017) to
sample different environments uniformly at random to gather a more diverse dataset. However, the
amount of data required to learn a suitable world model might vary by environment. Unsupervised
Environment Design (UED) (Dennis et al., 2020) aims to generate curricula that present the optimal
environments to the agent at each point of training, with the goal of maximising the robustness of

1

Published as a conference paper at ICLR 2024

the final agent across a wide range of environments. However, existing UED approaches require a
task-specific reward function during exploration (Eimer et al., 2021; Matiisen et al., 2019; Portelas
et al., 2020; Dennis et al., 2020; Jiang et al., 2021a; Mehta et al., 2020; Parker-Holder et al., 2022;
Wang et al., 2019), and therefore cannot be applied in the reward-free setting that we consider. In
this work we address the novel problem of generating curricula for training robust agents without
access to a reward function during exploration. To distil the knowledge obtained during reward-free
exploration, we aim to learn a world model that is robust to downstream tasks and environments.

We first analyse the problem of learning a robust world model in the reward-free setting. We then
operationalise these insights in the form of novel algorithms for robust, reward-free world model
learning. Inspired by past works on UED with known reward functions (Dennis et al., 2020; Jiang
et al., 2021a; Parker-Holder et al., 2022), we consider robustness in terms of minimax regret (Sav-
age, 1951). To our knowledge, WAKER is the first work to address automatic curriculum learning
for environment selection without access to a reward function. We make the following contributions:
a) We formally define the problem of learning a robust world model in the reward-free setting, in
terms of minimax regret optimality, b) We extend existing theoretical results for MDPs to prove that
this problem is equivalent to minimising the maximum expected error of the world model across
all environments under a suitable exploration policy, and finally c) We introduce WAKER, an algo-
rithm for actively sampling environments for exploration during reward-free training based on the
estimated error of the world model in each environment. We introduce pixel-based continuous con-
trol domains for benchmarking generalisation in the reward-free setting. We evaluate WAKER on
these domains, by pairing it with both an instrinsically-motivated exploration policy and a random
exploration policy. Our results show that WAKER outperforms several baselines, producing more
performant and robust policies that generalise better to out-of-distribution (OOD) environments.

2 PRELIMINARIES

A reward-free Markov Decision Process (MDP) is defined byM = {S,A, T}, where S is the set of
states and A is the set of actions. T : S×A→ ∆(S) is the transition function, where ∆(S) denotes
the set of possible distributions over S. For some reward function, R : S×A→ [0, 1], we writeMR

to denote the corresponding (standard) MDP (Puterman, 2014) with reward function R and discount
factor γ. A reward-free Partially Observable Markov Decision Process (POMDP) (Kaelbling et al.,
1998) is defined by P = {S,A,O, T, I}, where O is the set of observations, and I : S → ∆(O) is
the observation function. A history is a sequence of observations and actions, h = o0, a0, . . . , ot, at,
where oi ∈ O and ai ∈ A. We use H to denote the set of all possible histories. Analogous to the
MDP case, PR denotes a POMDP with reward function R and discount factor γ.

We assume that there are many possible instantiations of the environment. To model an un-
derspecified environment, we consider a reward-free Underspecified POMDP (UPOMDP): U =
{S,A,O, TΘ, I,Θ} (Dennis et al., 2020). In contrast to a POMDP, the UPOMDP additionally in-
cludes a set of free parameters of the environment, Θ. Furthermore, the transition function depends
on the setting of the environment parameters, i.e. TΘ : S×A×Θ→ ∆(S). For each episode, the en-
vironment parameters are set to a specific value θ ∈ Θ. Therefore, for each episode the environment
can be represented by a standard POMDP Pθ = {S,A,O, Tθ, I, γ}, where Tθ(s, a) = TΘ(s, a, θ).

World Models Model-based RL algorithms use experience gathered by an agent to learn a model
of the environment (Sutton, 1991; Janner et al., 2019). When the observations are high-dimensional,
it is beneficial to learn a compact latent representation of the state, and predict the environment
dynamics in this latent space. Furthermore, in partially observable environments where the optimal
action depends on the history of observations and actions, recurrent neural networks can be used
to encode the history into a Markovian representation (Schmidhuber, 1990; Karl et al., 2017). In
this work, we consider a world model to be a model that utilises a recurrent module to predict
environment dynamics in a Markovian latent space (Ha & Schmidhuber, 2018; Hafner et al., 2021).

Let the environment be some reward-free POMDP, P . A world model, W , can be thought of as
consisting of two parts: W = {q, T̂}. The first part is the representation model q : H → Z, which
encodes the history into a compact Markovian latent representation z ∈ Z. The second part is the
latent transition dynamics model, T̂ : Z ×A→ ∆(Z), which predicts the dynamics in latent space.
Because the latent dynamics are Markovian, we can think of the world model is approximating the

2

Published as a conference paper at ICLR 2024

original reward-free POMDP P with a reward-free MDP in latent space: M̂ = (Z,A, T̂). In this
work, we consider policies of the form: π : Z → ∆(A). This corresponds to policies that are
Markovian in latent space, and history-dependent in the original environment.

Minimax Regret In robust optimisation, there is a set of possible scenarios, each defined by pa-
rameters θ ∈ Θ. The goal is to find a solution that achieves strong performance across all scenarios.
In the context of reinforcement learning, we can think of each scenario as a possible instantiation
of the environment, Pθ. For some reward function, R, the expected value of a policy in PR

θ is
V (π,PR

θ) := E[
∑∞

t=0 γ
trt | π,PR

θ], where rt are the rewards received by executing π in PR
θ .

Minimax regret (Savage, 1951) is a commonly used objective for robust policy optimisation in
RL (Chen et al., 2022; Dennis et al., 2020; Jiang et al., 2021a; Parker-Holder et al., 2022; Rigter
et al., 2021). To define the minimax regret objective, we begin by defining the optimal policy for
a given environment and reward function, π∗

θ,R = argmaxπ V (π,PR
θ). We refer to each PR

θ as
a “task” or, when clear from context, an “environment.” The regret for some arbitrary policy π in
environment PR

θ is
REGRET(π,PR

θ) := V (π∗
θ,R,PR

θ)− V (π,PR
θ). (1)

The minimax regret objective finds the policy with the lowest regret across all environments:

π∗
regret = argmin

π
max
θ∈Θ

REGRET(π,PR
θ). (2)

Minimax regret aims to find a policy that is near-optimal in all environments, and is therefore robust.

(a) WAKER overview.

(b) Illustration of world model latent space for a
UPOMDP.

Figure 1: a) WAKER uses error estimates for each
environment to choose the next environment to
sample data from, Pθ . A trajectory τθ is collected
by rolling out exploration policy πexpl in the se-
lected environment. τθ is added to the data buffer
D which is used to train the world model, W .
Imagined trajectories in W are used to update the
error estimates. b) In the world model, each envi-
ronment is encoded to a subset, Zθ , of the latent
space Z by representation model q.

3 APPROACH

The minimax regret objective defines how to op-
timise a policy to be robust to different environ-
ments when the task is known. However, our aim
in this work is to train a world model such that poli-
cies derived from the world model for future tasks
are robust to different environments. In this section,
we present our approach for gathering data to train a
robust world model to achieve this aim.

In Section 3.1, we outline how we learn a single
world model for many possible environments. In
Section 3.2 we define the Reward-Free Minimax Re-
gret objective, which connects minimax regret to
world model training by assuming that when a re-
ward function is provided, the optimal policy in
the world model for that reward function can be
found. We then show that we can optimise an up-
per bound on this objective by minimising the max-
imum expected latent dynamics error in the world
model across all environments, under a suitable ex-
ploration policy. This informs our algorithm for se-
lecting environments to sample data from to train
the world model, WAKER: Weighted Acquisition
of Knowledge across Environments for Robustness
(Section 3.4). WAKER biases sampling towards en-
vironments where the world model is predicted to
have the greatest errors (Figure 1a).

3.1 WORLD MODELS FOR UNDERSPECIFIED POMDPS

We utilise a single world model, W = {q, T̂}, to model the reward-free UPOMDP. Consider any
parameter setting of the UPOMDP, θ ∈ Θ, and the corresponding reward-free POMDP, Pθ. For
any history in Pθ, h ∈ Hθ, the representation model encodes this into a subset of the latent space,
i.e. q : Hθ → Zθ, where Zθ ⊂ Z. We can then use the latent dynamics model T̂ to predict the

3

Published as a conference paper at ICLR 2024

latent dynamics in Zθ, corresponding to the dynamics of Pθ for any θ ∈ Θ. Thus, we think of the
world model as representing the set of reward-free POMDPs in the UPOMDP by a set of reward-free
MDPs, each with their own latent state space: M̂θ = {Zθ, A, T̂ , γ}. This is illustrated in Figure 1b.

Using a single world model across all environment parameter settings is a natural approach as it a)
utilises the recurrent module to infer the parameter setting (which may be partially observable), and
b) enables generalisation between similar parameter settings. Furthermore, it is sufficient to train
a single generalist policy over the entire latent space Z to obtain a policy for all environments.

3.2 REWARD-FREE MINIMAX REGRET: PROBLEM DEFINITION

As discussed in Section 2, we can define robust policy optimisation via the minimax regret objective.
However, this definition cannot be directly applied to our setting where we do not know the reward
function during exploration, and our goal is to train a world model. In this section, we present the
first contribution of this work, the Reward-Free Minimax Regret problem, which adapts the minimax
regret objective to the setting of reward-free world model training that we address.

Consider some world model, W , which as discussed in Section 3.1 represents the possible environ-
ments by a set of reward-free MDPs in latent space, {M̂θ}θ∈Θ. Assume that after training W we
are given some reward function, R. We define π̂∗

θ,R to be the optimal world model policy for that
reward function R and parameter setting θ, i.e.

π̂∗
θ,R = argmax

π
V (π,M̂R

θ). (3)

This is the optimal policy according to the MDP defined in the latent space of the world model
for parameter setting θ and reward function R, and does not necessarily correspond to the optimal
policy in the real environment. From here onwards, we will make the following assumption.

Assumption 1 Consider some world model W that defines a set of MDPs in latent space {M̂θ}θ∈Θ.
Assume that given any reward function R, and parameter setting θ ∈ Θ, we can find π̂∗

θ,R.

Assumption 1 is reasonable because we can generate unlimited synthetic training data in the world
model for any parameter setting, and we can use this data to find a policy that is near-optimal in
the world model using RL. In practice, we cannot expect to find the exact optimal policy within the
world model, however Assumption 1 enables an analysis of our problem setting. We now define the
Reward-Free Minimax Regret problem.

Problem 1 (Reward-Free Minimax Regret) Consider some UPOMDP, U , with parameter set Θ.
For world model W , and θ ∈ Θ, let M̂R

θ be the latent-space MDP defined by W , that repre-
sents real environment Pθ with reward function R. Define the optimal world model policy as
π̂∗
θ,R = argmaxπ V (π,M̂R

θ). Find the world model, W ∗, that minimises the maximum regret of
the optimal world model policy across all parameter settings and reward functions:

W ∗ = argmin
W

max
θ,R

REGRET(π̂∗
θ,R,PR

θ) (4)

Problem 1 differs from the standard minimax regret objective in Equation 2 in two ways. First,
Problem 1 optimises a world model (not a policy) under the assumption that the optimal world
model policy can later be recovered (i.e. Assumption 1). Second, the maximum is over all possible
reward functions in addition to parameter settings. This makes Problem 1 suitable for the reward-
free setting: we do not need access to a specific reward function when training the world model.

3.3 THEORETICAL MOTIVATION

Before presenting our algorithm for Problem 1, we first provide the motivation for our approach. We
make the assumption that the world model learns a suitable representation model, q, which encodes
any sequence of observations and actions in the UPOMDP into a Markovian latent state.

Assumption 2 Consider the representation model learnt by the world model, q : Hθ → Zθ, for all
θ ∈ Θ. Assume that given the representation model q, there exists a latent transition dynamics func-
tion, T , for which the expected reward is the same as the real environment: V (π,PR

θ) = V (π,MR
θ),

whereMR
θ = (Zθ, A,R, T, γ), for any policy π, reward function R, and parameter setting θ.

4

Published as a conference paper at ICLR 2024

Assumption 2 states that the representation model successfully encodes any sequence of observa-
tions and actions into a Markovian latent state. Therefore, there exists a dynamics function T defined
over the latent space that exactly models the real environment. Assumption 2 allows us to reason
about the inaccuracy of the world model solely in terms of the difference between the learnt latent
dynamics function, T̂ , and the (unknown) exact latent dynamics, T . For this reason, from here on-
wards we will solely refer to the latent dynamics function T̂ when discussing the world model, under
the implicit assumption that a suitable representation model q is learnt according to Assumption 2.

Using Assumption 2 we can bound the sub-optimality of the optimal world model policy for any
parameter setting θ according the difference between the learnt latent dynamics function, T̂ , and the
true latent dynamics, T , in latent MDP M̂θ. This is stated formally in Proposition 1.

Proposition 1 Let T̂ be the learnt latent dynamics in the world model. Assume the existence of a
representation model q that adheres to Assumption 2, and let T be the true latent dynamics according
to Assumption 2. Then, for any parameter setting θ and reward function R, the regret of the optimal
world model policy is bounded according to:

REGRET(π̂∗
θ,R,PR

θ) ≤ 2γ

(1− γ)2

[
E
z,a∼d(π∗

θ,R,M̂θ)

[
TV

(
T̂ (·|z, a), T (·|z, a)

)]
+ E

z,a∼d(π̂∗
θ,R,M̂θ)

[
TV

(
T̂ (·|z, a), T (·|z, a)

)]]
where d(π,M) denotes the state-action distribution of π in MDP M, and TV(P,Q) is the total
variation distance between distributions P and Q.

Proof Sketch: This can be proven by applying a version of the Simulation Lemma (Kearns & Singh,
2002) twice. The full proof is provided in Appendix B.

Proposition 1 tells us that the optimal world model policy will have low regret if T̂ is accurate under
the latent state-action distribution of both π∗

θ,R and π̂∗
θ,R in M̂θ. However, during data collection we

do not have access to the reward function. Therefore, we do not know these distributions as the state-
action distribution induced by both π∗

θ,R, and π̂∗
θ,R depends upon the reward function. To alleviate

this issue, we define an exploration policy, πexpl
θ , that maximises the expected error (in terms of total

variation distance) of the latent dynamics model:

πexpl
θ = argmax

π
E
z,a∼d(π,M̂θ)

[
TV

(
T̂ (·|z, a), T (·|z, a)

)]
. (5)

This allows us to write an upper bound on the regret that has no dependence on the reward function:

REGRET(π̂∗
θ,R,PR

θ) ≤ 4γ

(1− γ)2
E
z,a∼d(πexpl

θ ,M̂θ)

[
TV

(
T̂ (·|z, a), T (·|z, a)

)]
for all R. (6)

Therefore, we can upper bound the objective of Problem 1 by the maximum expected TV error in
the latent dynamics function over all parameter settings:

max
θ,R

REGRET(π̂∗
θ,R,PR

θ) ≤ max
θ

4γ

(1− γ)2
E
z,a∼d(πexpl

θ ,M̂θ)

[
TV

(
T̂ (·|z, a), T (·|z, a)

)]
. (7)

We now formally state the Minimax World Model Error problem, which proposes to optimise this
upper bound as an approximation to the Reward-Free Minimax Regret objective in Problem 1.

Problem 2 (Minimax World Model Error) Consider some UPOMDP, U , with parameter set Θ,
and world model latent dynamics function T̂ . Let T be the true latent dynamics function according
to Assumption 2. Define the world model error for some parameter setting θ as:

WORLDMODELERROR(T̂ , θ) = E
z,a∼d(πexpl

θ ,M̂θ)

[
TV

(
T̂ (·|z, a), T (·|z, a)

)]
(8)

Find the world model that minimises the maximum world model error across all parameter settings:

T ∗ = argmin
T̂

max
θ∈Θ

WORLDMODELERROR(T̂ , θ) (9)

Problem 2 optimises an upper bound on our original objective in Problem 1 (see Equation 7). Prob-
lem 2 finds a world model that has low prediction error across all environments under an exploration

5

Published as a conference paper at ICLR 2024

policy that seeks out the maximum error. This ensures that for any future reward function, the op-
timal world model policy will be near-optimal for all environments. In the next section, we present
our algorithm for selecting environments to gather data for world model training, with the aim of
minimising the maximum world model error across all environments, per Problem 2.

3.4 WEIGHTED ACQUISITION OF KNOWLEDGE ACROSS ENVIRONMENTS FOR ROBUSTNESS

Overview In this section, we address how to select environments to collect data for world model
training, so that the world model approximately solves Problem 2. We cannot directly evaluate
the world model error in Equation 8, as it requires knowing the true latent dynamics function, T .
Therefore, following works on offline RL (Lu et al., 2022; Yu et al., 2020; Kidambi et al., 2020), we
use the disagreement between an ensemble of neural networks as an estimate of the total variation
distance between the learnt and true latent transition dynamics functions in Equation 8. This enables
us to generate an estimate of the world model error for each environment. Then, when sampling
environments, our algorithm (WAKER) biases sampling towards the environments that are estimated
to have the highest error. By gathering more data for the environments with the highest estimated
error, WAKER improves the world model on those environments, and therefore WAKER reduces
the maximum world model error across environments as required by Problem 2.

Algorithm 1 Weighted Acquisition of Knowledge
across Environments for Robustness (WAKER)
1: Inputs: UPOMDP with free parameters Θ; Boltzmann

temperature η; Imagination horizon h;
2: Initialise: data buffer D; error buffer Derror; world model

W = {q, T̂}; exploration policy πexpl

3: while training world model do
4: if p ∼ U[0,1] < pDR or D.is empty() then
5: θ ∼ DomainRandomisation(Θ)
6: else
7: θ ∼ Boltzmann(Normalize(Derror), η)

8: τθ ← rollout of πexpl in Pθ Collect real traj. for θ
9: Add τθ to D

10: Train W on D
11: πexpl, Derror ← Imagine(D, Derror, W , πexpl)

12: function Imagine(D, Derror, W , πexpl)
13: for i = 1, . . . ,K do
14: τθ ← D.sample() Sample real trajectory
15: Zτθ = {zt}|τθ|t=0 ← q(τθ) Encode latent states
16: τ̂θ ← rollout πexpl for h steps from z ∈ Zτθ in W
17: δθ ← Error estimate for θ via Eq. 10 on τ̂θ
18: Update Derror with δθ for θ
19: Train πexpl on τ̂θ
20: return πexpl, Derror

WAKER is presented in Algorithm 1, and illus-
trated in Figure 1a. We train a single exploration
policy over the entire latent space to approximately
optimise the exploration objective in Equation 5
across all environments. Therefore, we refer to the
exploration policy simply as πexpl, dropping the
dependence on θ. We maintain a buffer Derror of
the error estimate for each parameter setting θ that
we have collected data for. To choose the envi-
ronment for the next episode of exploration, with
probability pDR we sample θ using domain ran-
domisation (Line 5). This ensures that we will
eventually sample all environments. With prob-
ability 1 − pDR, we sample θ from a Boltzmann
distribution, where the input to the Boltzmann dis-
tribution is the error estimate for each environment
in Derror (Line 7). Once the environment has been
selected we sample a trajectory, τθ, by rolling out
πexpl in the environment (Line 8). We add τθ to the
data buffer D, and perform supervised learning on
D (Line 10) to update the world model.

Imagine updates πexpl and Derror using imagined rollouts (Line 11). For each imagined rollout, we
first sample real trajectory τθ ∈ D (Line 14). We encode τθ into latent states Zτθ (Line 15). We then
generate an imagined trajectory, τ̂θ, by rolling out πexpl using T̂ starting from an initial latent state
z ∈ Zτθ (Line 16). Thus, τ̂θ corresponds to an imagined trajectory in the environment with parame-
ter setting θ, as illustrated in Figure 1b. We wish to estimate the world model error for environment
parameter setting θ from this imagined rollout. Following previous works (Mendonca et al., 2021;
Rigter et al., 2023; Sekar et al., 2020), we learn an ensemble of N latent dynamics models: {T̂i}Ni=1.
Like (Yu et al., 2020; Kidambi et al., 2020; Lu et al., 2022), we use the disagreement between the
ensemble means as an approximation to the world model TV error for parameters θ:

WORLDMODELERROR(T̂ , θ) ≈ E
z,a∼d(πexpl

θ ,M̂θ)

[
Var

{
E[T̂i(·|z, a)]

}N

i=1

]
(10)

We compute the error estimate using the latent states and actions in τ̂θ in Line 17. We use this to
update our estimate of the world model error for environment θ in Derror (Line 18). Optionally, we
may also use the imagined rollout to update the exploration policy in Line 19. For the world model
architecture, we use DreamerV2 (Hafner et al., 2021). Implementation details are in Appendix E.

Error Estimate Update Function We consider two possibilities for updating the error estimate for
each θ in Derror on Line 18: 1) in WAKER-M, Derror maintains a smoothed average of the magnitude
of the error estimate for each θ; 2) In WAKER-R, we update Derror to maintain a smoothed average

6

Published as a conference paper at ICLR 2024

of the rate of reduction in the error estimate for each θ. Thus, WAKER-M biases sampling towards
environments that have highest error, while WAKER-R biases sampling towards environments that
have the highest rate of reduction in error. More details are in Appendix E.

Exploration Policy We must learn an exploration policy πexpl that approximately maximises the
world model error according to Equation 5. By default, we use Plan2Explore (Sekar et al., 2020),
and train the exploration policy to maximise the approximation in Equation 10. To test whether our
approach is agnostic to the exploration policy used, we also consider a random exploration policy.

Zero-Shot Task Adaptation Once the world model has been trained, we use it to derive a task-
specific policy without any further data collection. For reward function R, we find a single task
policy π̂∗

R that is defined over the entire latent space Z, and therefore all environments. We use the
same approach as Sekar et al. (2020): we label the data in D with the associated rewards and use
this data to train a reward predictor. Then, we train the task policy in the world model to optimise
the expected reward according to the reward predictor. All task policies are trained in this manner.

4 EXPERIMENTS

Figure 2: Example training
environments. Rows: Ter-
rain Walker, Terrain Hopper,
Clean Up, Car Clean Up.

We seek to answer the following questions: a) Does WAKER enable
more robust policies to be trained in the world model? b) Does the per-
formance of WAKER depend on the exploration policy used? c) Does
WAKER lead to stronger generalisation to out-of-distribution environ-
ments? The code for our experiments is available at github.com/marc-
rigter/waker.

Methods Compared To answer question a), we compare WAKER-
M and WAKER-R with the following baselines: Domain Randomi-
sation (DR), samples uniformly from the default environment distri-
bution; Gradual Expansion (GE) gradually increases the range of en-
vironments sampled from the default distribution; Hardest Environ-
ment Oracle (HE-Oracle) samples only the single most complex envi-
ronment; Re-weighting Oracle (RW-Oracle) re-weights the environ-
ment distribution to focus predominantly on the most complex envi-
ronments. Note that the HE-Oracle and RW-Oracle baselines require
expert domain knowledge. Detailed descriptions of the baselines can
be found in Appendix G.

For both WAKER variants, we set pDR = 0.2 and perform limited tuning of the Boltzmann temper-
ature η. More details are in Appendix F.3. To investigate question b), we pair WAKER and DR with
two different exploration policies: Plan2Explore (P2E) (Sekar et al., 2020) or a random exploration
policy. For the other baselines we always use the P2E exploration policy.

Domains and Tasks All domains use image observations. For Terrain Walker and Terrain Hopper
we simulate the Walker and Hopper robots from the DMControl Suite (Tassa et al., 2018) on pro-
cedurally generated terrain. For each environment, there are two parameters (amplitude and length
scale) that control the terrain generation. For each domain, we evaluate a number of downstream
tasks (walk, run, stand, flip, walk-back. / hop, hop-back., stand). The Clean Up and Car Clean Up
domains are based on SafetyGym (Ray et al., 2019) and consist of blocks that can be pushed and ei-
ther a point mass (Clean Up) or car robot (Car Clean Up). There are three environment parameters:
the environment size, the number of blocks, and the block colours. The downstream tasks (sort,
push, sort-reverse) each correspond to different goal locations for each colour of block. Examples
of training environments are shown in Figure 2, and more details are in Appendix F.1. We also
perform experiments where we train a single world model for both the Clean Up and Terrain Walker
domains. Due to space constraints we defer these results to Appendix C.1.

Evaluation Our aim is to train the world model such that the policies obtained are robust, as mea-
sured by minimax regret. However, we cannot directly evaluate regret as it requires knowing the
true optimal performance. Therefore, following (Jiang et al., 2021a; Rigter et al., 2023) we evaluate
conditional value at risk (CVaR) (Rockafellar et al., 2000) to measure robustness. For confidence
level α, CVaRα is the average performance on the worst α-fraction of runs. We evaluate CVaR0.1 by
evaluating each policy on 100 environments sampled uniformly at random, and reporting the aver-

7

https://github.com/marc-rigter/waker
https://github.com/marc-rigter/waker

Published as a conference paper at ICLR 2024

Exploration Policy Plan2Explore Random Exploration
Environment Sampling WAKER-M WAKER-R DR GE HE-Oracle RW-Oracle WAKER-M WAKER-R DR

Clean
Up

Sort 0.711 ± 0.09 0.643 ± 0.07 0.397 ± 0.12 0.426 ± 0.09 0.240 ± 0.13 0.482 ± 0.14 0.007 ± 0.01 0.010 ± 0.01 0.000 ± 0.0
Sort-Rev. 0.741 ± 0.06 0.586 ± 0.06 0.395 ± 0.10 0.490 ± 0.07 0.230 ± 0.11 0.537 ± 0.10 0.000 ± 0.0 0.000 ± 0.0 0.000 ± 0.0
Push 0.716 ± 0.11 0. 702 ± 0.08 0.590 ± 0.093 0.628 ± 0.12 0.262 ± 0.16 0.596 ± 0.14 0.124 ± 0.09 0.058 ± 0.06 0.023 ± 0.03

Car Clean
Up

Sort 0.894 ± 0.04 0.815 ± 0.11 0.665 ± 0.14 0.641 ± 0.09 0.041 ± 0.07 0.624 ± 0.15 0.433 ± 0.11 0.378 ± 0.09 0.337 ± 0.07
Sort-Rev. 0.914 ± 0.079 0.880 ± 0.080 0.659 ± 0.16 0.646 ± 0.13 0.043 ± 0.06 0.567 ± 0.16 0.408 ± 0.10 0.408 ± 0.09 0.269 ± 0.11
Push 0.906 ± 0.05 0.888 ± 0.04 0.796 ± 0.10 0.807 ± 0.12 0.046 ± 0.06 0.777 ± 0.11 0.584 ± 0.12 0.526 ± 0.15 0.373 ± 0.12

Terrain
Walker

Walk 818.0 ± 15.3 805.3 ± 42.0 748.9 ± 39.5 741.2 ± 43.6 543.2 ± 85.3 791.6 ± 32.3 243.9 ± 26.7 224.8 ± 41.9 224.3 ± 25.3
Run 312.6 ± 19.9 303.0 ± 16.1 279.9 ± 18.1 300.1 ± 17.4 223.3 ± 18.6 305.5 ± 15.2 120.4 ± 14.7 104.2 ± 9.7 114.1 ± 12.2
Flip 955.0 ± 11.9 937.7 ± 10.5 936.1 ± 10.2 946.0 ± 9.5 962.9 ± 5.7 952.4 ± 11.6 878.9 ± 18.4 850.7 ± 40.5 849.9 ± 27.4
Stand 941.2 ± 12.3 945.4 ± 16.6 936.5 ± 17.5 938.6 ± 16.3 829.3 ± 66.5 923.4 ± 22.0 585.1 ± 31.8 581.5 ± 68.8 591.3 ± 65.5
Walk-Back. 752.5 ± 24.8 722.1 ± 33.5 729.6 ± 39.2 700.4 ± 23.7 418.5 ± 94.3 712.2 ± 18.7 369.9 ± 13.1 311.5 ± 49.8 311.2 ± 48.4

Terrain
Hopper

Hop 342.0 ± 35.2 301.3 ± 42.1 278.7 ± 43.0 267.6 ± 48.6 222.8 ± 23.1 345.5 ± 29.2 8.6 ± 7.4 9.1 ± 6.9 10.2 ± 7.4
Hop-Back. 330.7 ± 24.9 284.3 ± 27.6 299.1 ± 26.6 285.6 ± 36.6 204.1 ± 27.3 324.0 ± 41.7 2.9 ± 5.6 2.7 ± 3.1 12.0 ± 13.3
Stand 639.8 ± 68.3 699.0 ± 76.4 661.9 ± 51.5 625.0 ± 81.0 507.2 ± 89.7 656.6 ± 82.1 9.0 ± 7.2 25.7 ± 27.3 18.0 ± 10.2

Table 1: Robustness evaluation: CVaR0.1 of policies evaluated on 100 randomly sam-
pled environments.

Figure 3: Robustness
evaluation aggregated
CIs.

Exploration Policy Plan2Explore Random Exploration
Environment Sampling WAKER-M WAKER-R DR GE HE-Oracle RW-Oracle WAKER-M WAKER-R DR
Clean Up Extra Block 0.530 ± 0.04 0.479 ± 0.03 0.329 ± 0.04 0.348 ± 0.04 0.475 ± 0.03 0.515 ± 0.02 0.169 ± 0.02 0.132 ± 0.04 0.093 ± 0.02
Car Clean Up Extra Block 0.767 ± 0.03 0.713 ± 0.02 0.598 ± 0.02 0.582 ± 0.05 0.676 ± 0.04 0.695 ± 0.05 0.539 ± 0.02 0.510 ± 0.04 0.418 ± 0.04
Terrain Walker Steep 660.2 ± 13.6 647.7 ± 23.6 602.8 ± 12.8 605.2 ± 13.9 665.2 ± 16.1 673.6 ±14.7 448.4 ± 25.4 387.4 ± 40.0 400.9 ± 17.7
Terrain Walker Stairs 665.7 ± 9.9 672.6 ± 17.4 622.9 ± 21.9 637.2 ± 18.2 641.6 ± 16.2 684.1 ± 23.9 451.1 ± 22.6 419.1 ± 29.3 414.5 ± 13.5
Terrain Hopper Steep 322.1 ± 18.4 299.0 ± 14.8 259.6 ± 27.3 232.9 ± 31.1 296.5 ± 22.6 299.9 ± 19.8 21.7 ± 8.4 19.4 ± 6.0 19.6 ± 5.3
Terrain Hopper Stairs 398.2 ± 16.4 416.6 ± 27.5 403.8 ± 11.4 385.7 ± 22.7 334.3 ± 15.8 395.8 ± 12.3 34.2 ± 13.5 31.4 ± 8.6 35.0 ± 10.7

Table 2: Out-of-distribution evaluation: average performance on OOD environments.
Here, we present the average performance across tasks for each domain. Full results
for each task are in Table 4 in Appendix C.2.

Figure 4: OOD evalu-
ation aggregated CIs.

age of the worst 10 runs. We also report the average performance over all 100 runs in Appendix C.4.
To answer question c), we additionally evaluate the policies on out-of-distribution (OOD) environ-
ments. For the terrain domains, the OOD environments are terrain with a length scale 25% shorter
than seen in training (Steep), and terrain containing stairs (Stairs). For the clean up domains, the
OOD environments contain one more block than was ever seen in training (Extra Block).

Results Presentation In Tables 1-2 we present results for task policies obtained from the final world
model at the end of six days of training. For each exploration policy, we highlight results within 2%
of the best score (provided that non-trivial performance is obtained), and± indicates the S.D. over 5
seeds. Learning curves for the performance of policies obtained from snapshots of the world model
are in Appendix D.2. To assess statistical significance, we present 95% confidence intervals of the
probability that algorithm X obtains improved performance over algorithm Y, computed using the
aggregated results across all tasks with the rliable (Agarwal et al., 2021) framework (Figures 3-4).

Results Table 1 presents the robustness evaluation results. For both exploration policies, WAKER-
M outperforms DR across almost all tasks. For the Plan2Explore exploration policy, WAKER-R
also outperforms DR. Figure 3 shows that these improvements over DR are statistically significant,
as the lower bound on the probability of improvement is greater than 0.5. Both WAKER variants
result in significant improvements over DR when using Plan2Explore, suggesting that WAKER is
more effective when combined with a sophisticated exploration policy. Between WAKER-M and
WAKER-R, WAKER-M (which prioritises the most uncertain environments) obtains stronger per-
formance. This is expected from our analysis in Section 3.3, which shows that minimising the
maximum world model error across environments improves robustness. Figure 5 illustrates that
WAKER focuses sampling on more complex environments: larger environments with more blocks
in the clean up domains, and steeper terrain with shorter length scale and greater amplitude in the
terrain domains. Plots of how the sampling evolves during training are in Appendix C.3. Regard-
less of the environment selection method, Plan2Explore leads to stronger performance than random
exploration, verifying previous findings (Sekar et al., 2020). The results for average performance in
Appendix C.4 show that WAKER achieves improved or similar average performance compared to
DR. This demonstrates that WAKER improves robustness at no cost to average performance. The
results for training a single world model for both the Clean Up and Terrain Walker environments
in Appendix C.1 demonstrate that even when training across highly diverse environments, WAKER
also achieves more robust performance in comparison to DR.

The robustness results in Table 1 show that GE obtains very similar performance to DR. This is
unsurprising, as GE does not bias sampling towards more difficult environments, and only modifies
the DR distribution by gradually increasing the range of environments sampled. HE-Oracle obtains
poor performance, demonstrating that focussing on the most challenging environment alone is insuf-
ficient to obtain a robust world model. This is expected from the analysis in Section 3.3 which shows
that to obtain robustness we need the world model to have low error across all environments (not
just the most complex one). For Terrain Walker and Terrain Hopper, RW-Oracle is a strong baseline,
and obtains similar performance to WAKER. However, for Clean Up and Car Clean Up RW-Oracle

8

Published as a conference paper at ICLR 2024

obtains significantly worse performance than WAKER. This is likely because by focussing sampling
environments with four blocks of any colour, RW-Oracle does not sample diversely enough to ob-
tain good robustness. This demonstrates that even with domain knowledge, handcrafting a suitable
curriculum is challenging.

To assess the quality of the world models, we evaluate the error between the transitions predicted
by the world model and real transitions. To evaluate robustness, we compute the error on the worst
10% of trajectories generated by a performant task-policy on randomly sampled environments. In
Figure 6, we observe that WAKER leads to lower prediction errors on the worst 10% of trajectories
compared to DR. This verifies that by biasing sampling towards environments with higher error
estimates, WAKER reduces the worst-case errors in the world model. This suggests that improved
world model training leads to the improved policy robustness that we observe in Table 1, as expected
from the upper bound in Equation 7.

(a) Clean Up (b) Terrain Walker

Figure 5: Heatmaps of environment
parameters sampled by WAKER-M +
P2E.

(a) Car Clean Up (b) Terrain Hopper

Figure 6: Evaluation of CVaR0.1 of the
world model image prediction error.

Table 2 and Figure 4 present the evaluation on OOD environ-
ments, averaged across tasks. Full results for each task are in
Appendix C.2. WAKER-M results in a considerable perfor-
mance improvement over DR for both exploration policies,
and WAKER-R significantly improves performance when the
exploration policy is Plan2Explore. Thus, WAKER-M again
obtains better performance than WAKER-R, but both vari-
ants of our algorithm outperform DR. GE obtains similar or
slightly worse performance than DR for the OOD environ-
ments. For the steep terrain OOD environments, HE-Oracle
performs quite well as it focuses on sampling the steepest pos-
sible in-distribution terrain. However, HE-Oracle does not
perform well on the stairs OOD environments, demonstrating
that sampling a range of environments is necessary for strong
OOD generalisation. RW-Oracle performs well on the OOD
environments across all domains. However, RW-Oracle has
the significant drawback that expert domain knowledge is re-
quired. These results demonstrate that by actively sampling
more uncertain environments for exploration, WAKER leads
to world models that are able to generalise more broadly to
environments never seen during training, without requiring
any expert domain knowledge.

5 CONCLUSION

In this work, we have proposed the first method for automatic curriculum learning for environment
selection in the reward-free setting. Due to space constraints, a discussion of related work can be
found in Appendix A. We formalised this problem in the context of learning a robust world model.
Building on prior works in robust RL, we considered robustness in terms of minimax regret, and
we derived a connection between the maximum regret and the maximum error of the world model
dynamics across environments. We operationalised this insight in the form of WAKER, which
trains a world model in the reward-free setting by selectively sampling the environment settings
that induce the highest latent dynamics error. In several pixel-based continuous control domains,
we demonstrated that compared to other baselines that do not require expert domain knowledge,
WAKER drastically improves the zero-shot task adaptation capabilities of the world model in terms
of robustness. Policies trained for downstream tasks inside the learned world model exhibit sig-
nificantly improved generalisation to out-of-distribution environments that were never encountered
during training. WAKER therefore represents a meaningful step towards developing more generally-
capable agents. In future work, we are excited to scale our approach to even more complex domains
with many variable parameters. One limitation of our approach is that it relies upon an intrinsi-
cally motivated policy to adequately explore the state-action space across a range of environments.
This may pose a challenge for scalability to more complex environments. To scale WAKER further,
we plan to make use of function approximation to estimate uncertainty throughout large parame-
ter spaces, as opposed to the discrete buffer used in this work. We also plan to investigate using
WAKER for reward-free pretraining, followed by task-specific finetuning to overcome the challenge
of relying upon intrinsically motivated exploration.

9

Published as a conference paper at ICLR 2024

Acknowledgements This work was supported by a Programme Grant from the Engineering and
Physical Sciences Research Council (EP/V000748/1) and a gift from Amazon Web Services. Ad-
ditionally, this project made use of the Tier 2 HPC facility JADE2, funded by the Engineering and
Physical Sciences Research Council (EP/T022205/1).

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in Neural Informa-
tion Process Systems, 34:29304–29320, 2021.

Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron,
Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik’s cube with a
robot hand. arXiv preprint arXiv:1910.07113, 2019.

Minoru Asada, Shoichi Noda, Sukoya Tawaratsumida, and Koh Hosoda. Purposive behavior acqui-
sition for a real robot by vision-based reinforcement learning. Machine learning, 23:279–303,
1996.

Philip Ball, Jack Parker-Holder, Aldo Pacchiano, Krzysztof Choromanski, and Stephen Roberts.
Ready policy one: World building through active learning. In International Conference on Ma-
chine Learning, pp. 591–601. PMLR, 2020.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. Advances in Neural Information Pro-
cess Systems, 29, 2016.

Homanga Bharadhwaj, Mohammad Babaeizadeh, Dumitru Erhan, and Sergey Levine. Informa-
tion prioritization through empowerment in visual model-based RL. International Conference on
Learning Representations, 2022.

Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol Hausman, Alexander Herzog, Daniel Ho,
Julian Ibarz, Alex Irpan, Eric Jang, Ryan Julian, et al. Do as I can, not as I say: Grounding
language in robotic affordances. In Conference on Robot Learning, pp. 287–318. PMLR, 2022.

Xiaoyu Chen, Jiachen Hu, Chi Jin, Lihong Li, and Liwei Wang. Understanding domain randomiza-
tion for sim-to-real transfer. International Conference on Learning Representations, 2022.

David A Cohn, Zoubin Ghahramani, and Michael I Jordan. Active learning with statistical models.
Journal of artificial intelligence research, 4:129–145, 1996.

Edward L Deci and Richard M Ryan. Intrinsic motivation and self-determination in human behav-
ior. Springer Science & Business Media, 1985.

Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch,
and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised environment
design. Advances in Neural Information Process Systems, 33:13049–13061, 2020.

Theresa Eimer, André Biedenkapp, Frank Hutter, and Marius Lindauer. Self-paced context evalu-
ation for contextual reinforcement learning. In International Conference on Machine Learning,
pp. 2948–2958. PMLR, 2021.

Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel. Reverse cur-
riculum generation for reinforcement learning. In Conference on Robot Learning, pp. 482–495.
PMLR, 2017.

Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation for
reinforcement learning agents. In International Conference on Machine Learning, pp. 1515–
1528. PMLR, 2018.

Alex Graves, Marc G Bellemare, Jacob Menick, Remi Munos, and Koray Kavukcuoglu. Automated
curriculum learning for neural networks. In international conference on machine learning, pp.
1311–1320. PMLR, 2017.

10

Published as a conference paper at ICLR 2024

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. Advances
in Neural Information Process Systems, 31, 2018.

Nick Haber, Damian Mrowca, Stephanie Wang, Li F Fei-Fei, and Daniel L Yamins. Learning to play
with intrinsically-motivated, self-aware agents. Advances in Neural Information Process Systems,
31, 2018.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International Conference on
Machine Learning, pp. 2555–2565. PMLR, 2019.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. International Conference on Learning Representations, 2020.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering Atari with
discrete world models. International Conference on Learning Representations, 2021.

Nick Jakobi. Evolutionary robotics and the radical envelope-of-noise hypothesis. Adaptive behavior,
6(2):325–368, 1997.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. Advances in Neural Information Process Systems, 32, 2019.

Minqi Jiang, Michael Dennis, Jack Parker-Holder, Jakob Foerster, Edward Grefenstette, and Tim
Rocktäschel. Replay-guided adversarial environment design. Advances in Neural Information
Processing Systems, 34:1884–1897, 2021a.

Minqi Jiang, Edward Grefenstette, and Tim Rocktäschel. Prioritized level replay. In International
Conference on Machine Learning, pp. 4940–4950. PMLR, 2021b.

Minqi Jiang, Michael D Dennis, Jack Parker-Holder, Andrei Lupu, Heinrich Kuttler, Edward
Grefenstette, Tim Rocktäschel, and Jakob Nicolaus Foerster. Grounding aleatoric uncertainty
for unsupervised environment design. In Advances in Neural Information Processing Systems,
2022a.

Minqi Jiang, Tim Rocktäschel, and Edward Grefenstette. General intelligence requires rethinking
exploration. arXiv preprint arXiv:2211.07819, 2022b.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in
partially observable stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.

Maximilian Karl, Maximilian Soelch, Justin Bayer, and Patrick Van der Smagt. Deep variational
bayes filters: Unsupervised learning of state space models from raw data. International Confer-
ence on Learning Representations, 2017.

Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time. Ma-
chine learning, 49:209–232, 2002.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. MOREL: Model-
based offline reinforcement learning. Advances in Neural Information Process Systems, 33:
21810–21823, 2020.

Alexander S Klyubin, Daniel Polani, and Chrystopher L Nehaniv. Empowerment: A universal
agent-centric measure of control. In IEEE Congress on Evolutionary Computation, volume 1, pp.
128–135. IEEE, 2005.

Michael Laskin, Denis Yarats, Hao Liu, Kimin Lee, Albert Zhan, Kevin Lu, Catherine Cang, Ler-
rel Pinto, and Pieter Abbeel. URLB: Unsupervised reinforcement learning benchmark. arXiv
preprint arXiv:2110.15191, 2021.

Cong Lu, Philip J Ball, Jack Parker-Holder, Michael A Osborne, and Stephen J Roberts. Revisit-
ing design choices in offline model-based reinforcement learning. International Conference on
Learning Representations, 2022.

11

Published as a conference paper at ICLR 2024

Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. Teacher–student curriculum learn-
ing. IEEE Transactions on Neural Networks and Learning Systems, 31(9):3732–3740, 2019.

Bhairav Mehta, Manfred Diaz, Florian Golemo, Christopher J Pal, and Liam Paull. Active domain
randomization. In Conference on Robot Learning, pp. 1162–1176. PMLR, 2020.

Russell Mendonca, Oleh Rybkin, Kostas Daniilidis, Danijar Hafner, and Deepak Pathak. Discover-
ing and achieving goals via world models. Advances in Neural Information Processing Systems,
34:24379–24391, 2021.

Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E Taylor, and Peter Stone.
Curriculum learning for reinforcement learning domains: A framework and survey. The Journal
of Machine Learning Research, 21(1):7382–7431, 2020.

Georg Ostrovski, Marc G Bellemare, Aäron Oord, and Rémi Munos. Count-based exploration with
neural density models. In International Conference on Machine Learning, pp. 2721–2730. PMLR,
2017.

Jack Parker-Holder, Minqi Jiang, Michael Dennis, Mikayel Samvelyan, Jakob Foerster, Edward
Grefenstette, and Tim Rocktäschel. Evolving curricula with regret-based environment design. In
International Conference on Machine Learning, pp. 17473–17498. PMLR, 2022.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International Conference on Machine Learning, pp. 2778–2787.
PMLR, 2017.

Ken Perlin. Improving noise. In Proceedings of the Annual Conference on Computer Graphics and
Interactive Techniques, pp. 681–682, 2002.

Rémy Portelas, Cédric Colas, Katja Hofmann, and Pierre-Yves Oudeyer. Teacher algorithms for
curriculum learning of deep RL in continuously parameterized environments. In Conference on
Robot Learning, pp. 835–853. PMLR, 2020.

Rémy Portelas, Cédric Colas, Lilian Weng, Katja Hofmann, and Pierre-yves Oudeyer. Automatic
curriculum learning for deep rl: A short survey. In IJCAI 2020-International Joint Conference on
Artificial Intelligence, 2021.

Martin L Puterman. Markov decision processes: Discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Sai Rajeswar, Pietro Mazzaglia, Tim Verbelen, Alexandre Piché, Bart Dhoedt, Aaron Courville, and
Alexandre Lacoste. Mastering the unsupervised reinforcement learning benchmark from pixels.
International Conference on Machine Learning, 2023.

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep reinforcement
learning. arXiv preprint arXiv:1910.01708, 7(1):2, 2019.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
A generalist agent. Transactions on Machine Learning Research, 2022.

Marc Rigter, Bruno Lacerda, and Nick Hawes. Minimax regret optimisation for robust planning
in uncertain Markov decision processes. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 11930–11938, 2021.

Marc Rigter, Bruno Lacerda, and Nick Hawes. RAMBO-RL: Robust adversarial model-based offline
reinforcement learning. Advances in Neural Information Processing Systems, 2022.

Marc Rigter, Bruno Lacerda, and Nick Hawes. One risk to rule them all: Addressing distributional
shift in offline reinforcement learning via risk-aversion. arXiv preprint arXiv:2212.00124, 2023.

R Tyrrell Rockafellar, Stanislav Uryasev, et al. Optimization of conditional value-at-risk. Journal
of risk, 2:21–42, 2000.

12

Published as a conference paper at ICLR 2024

Leonard J Savage. The theory of statistical decision. Journal of the American Statistical Association,
46(253):55–67, 1951.

Jürgen Schmidhuber. Reinforcement learning in Markovian and non-Markovian environments. Ad-
vances in Neural Information Process Systems, 3, 1990.

Jürgen Schmidhuber. A possibility for implementing curiosity and boredom in model-building neu-
ral controllers. In Proceedings of the International Conference on Simulation of Adaptive Behav-
ior, pp. 222–227, 1991.

Jürgen Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990–2010). IEEE
Transactions on Autonomous Mental Development, 2(3):230–247, 2010.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering Atari,
Go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak.
Planning to explore via self-supervised world models. In International Conference on Machine
Learning, pp. 8583–8592. PMLR, 2020.

Pranav Shyam, Wojciech Jaśkowski, and Faustino Gomez. Model-based active exploration. In
International Conference on Machine Learning, pp. 5779–5788. PMLR, 2019.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

Adam Stooke, Anuj Mahajan, Catarina Barros, Charlie Deck, Jakob Bauer, Jakub Sygnowski, Maja
Trebacz, Max Jaderberg, Michael Mathieu, et al. Open-ended learning leads to generally capable
agents. arXiv preprint arXiv:2107.12808, 2021.

Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM Sigart
Bulletin, 2(4):160–163, 1991.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv
preprint arXiv:1801.00690, 2018.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Do-
main randomization for transferring deep neural networks from simulation to the real world. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 23–30. IEEE, 2017.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft II using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O Stanley. Paired open-ended trailblazer (POET):
Endlessly generating increasingly complex and diverse learning environments and their solutions.
arXiv preprint arXiv:1901.01753, 2019.

Yingchen Xu, Jack Parker-Holder, Aldo Pacchiano, Philip Ball, Oleh Rybkin, S Roberts, Tim
Rocktäschel, and Edward Grefenstette. Learning general world models in a handful of reward-free
deployments. Advances in Neural Information Processing Systems, 35:26820–26838, 2022.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. MOPO: Model-based offline policy optimization. Advances in Neural
Information Processing Systems, 33:14129–14142, 2020.

13

Published as a conference paper at ICLR 2024

A RELATED WORK

Our work focuses on training more robust world-models (Ha & Schmidhuber, 2018; Hafner et al.,
2020; 2019; 2021; Janner et al., 2019; Rigter et al., 2022; Schrittwieser et al., 2020) in the reward-
free setting. Past works improve data collection by training an exploration policy within the world
model (i.e. in imagination) (Sekar et al., 2020; Ball et al., 2020; Mendonca et al., 2021; Xu et al.,
2022). Unlike prior methods, WAKER augments action-based exploration by directly exploring
over the space of environments via an autocurriculum. To our knowledge, this is the first work to
address curricula for reward-free training of a world model.

WAKER can thus be viewed as an automatic curriculum learning (ACL) (Graves et al., 2017; Porte-
las et al., 2021; Narvekar et al., 2020) method for training a world model. ACL methods optimise
the order in which tasks or environments are presented during training, to improve the agent’s final
performance (Asada et al., 1996; Florensa et al., 2017; 2018; Mendonca et al., 2021). Existing ACL
approaches for environment selection require task-specific evaluation metrics to assess the perfor-
mance or learning potential of the agent in each environment, and select appropriate environments
to sample from (Portelas et al., 2020; Eimer et al., 2021; Dennis et al., 2020; Jiang et al., 2021a;
Matiisen et al., 2019; Mehta et al., 2020; Parker-Holder et al., 2022; Wang et al., 2019). Therefore,
existing ACL approaches are not applicable to the reward-free setting that we address.

Domain randomisation (DR) (Jakobi, 1997; Tobin et al., 2017) samples environments uniformly, and
can be viewed as the simplest approach to ACL. Active DR (Mehta et al., 2020; Akkaya et al., 2019)
extends DR by upweighting environments that induce divergent behaviors relative to a reference
behaviour. However, Active DR requires access to a task-specific reward function to generate the
reference behaviour and therefore is also not applicable to our reward-free setting.

Unsupervised environment design (UED) (Dennis et al., 2020) refers to a class of methods that
generate curricula to produce more robust policies. UED typically frames curriculum learning as a
zero-sum game between a teacher and a student, where the teacher actively selects environments to
optimise an adversarial objective. When this objective is the student’s regret in each environment,
the student provably follows a minimax regret policy at the Nash equilibria of the resulting game,
making minimax regret UED methods a principled approach for learning robust policies (Dennis
et al., 2020; Jiang et al., 2021a). A simple and effective form of UED is Prioritised Level Replay
(PLR) (Jiang et al., 2021b;a), which selectively revisits environments that have higher estimated
“learning potential”, as measured by the temporal difference (TD) error. Extensions of PLR improve
on its random search (Parker-Holder et al., 2022) and address issues with UED in stochastic settings
(Jiang et al., 2022a). However, all existing UED methods require a known reward function during
curriculum learning. To our knowledge, ours is the first work to address reward-free UED.

WAKER uses ideas from intrinsic motivation (Deci & Ryan, 1985; Schmidhuber, 2010) as a bridge
between UED and the reward-free setting. By providing agents with intrinsic rewards, such meth-
ods enable agents to efficiently explore complex environments in the absence of extrinsic rewards.
Intrinsic motivation generalises active learning (Cohn et al., 1996) to sequential decision-making,
by rewarding agents for visiting states that: a) have high uncertainty (Haber et al., 2018; Pathak
et al., 2017; Schmidhuber, 1991; Sekar et al., 2020; Shyam et al., 2019), b) can be maximally influ-
enced (Bharadhwaj et al., 2022; Klyubin et al., 2005), or c) have rarely been visited (Bellemare et al.,
2016; Ostrovski et al., 2017). Our work extends uncertainty-based intrinsic motivation beyond states
within a single environment to the space of environment configurations, allowing novelty-related
metrics to be used in place of typical UED objectives that require a task-specific reward function.
WAKER thus highlights the fundamental connection between autocurricula and exploration.

B PROOF OF PROPOSITION 1

We begin by stating and proving a version of the classic Simulation Lemma from (Kearns & Singh,
2002).

Lemma 1 (Simulation Lemma (Kearns & Singh, 2002)) Consider two infinite horizon MDPs,
MR = {S,A,R, T, γ} and M̂R = {S,A,R, T̂ , γ}, with reward function R : S × A → [0, 1].

14

Published as a conference paper at ICLR 2024

Consider any stochastic policy π : S → ∆(A). Then:∣∣∣V (π,M̂R)− V (π,MR)
∣∣∣ ≤ 2γ

(1− γ)2
E
s,a∼d(π,M̂R)

[
TV

(
T̂ (·|s, a), T (·|s, a)

)]
(11)

where d(π,M̂R) is the state-action distribution of π in M̂R, and TV(P,Q) is the total variation
distance between two distributions P and Q.

Proof : To simplify the notation of the proof, we will use the notation V π = V (π,MR) and V̂ π =

V (π,M̂R).

Using the Bellman equation for V̂ π and V π , we have:

V̂ π(s0)− V π(s0) = Ea0∼π(s0)

[
R(s0, a0) + γEs′∼T̂ (s0,a0)

V̂ π(s′)
]

− Ea0∼π(s0)

[
R(s0, a0) + γEs′∼T (s0,a0)V

π(s′)
]

= γEa0∼π(s0)

[
Es′∼T̂ (s0,a0)

V̂ π(s′)− Es′∼T (s0,a0)V
π(s′)

]
= γEa0∼π(s0)

[
Es′∼T̂ (s0,a0)

V̂ π(s′)− Es′∼T̂ (s0,a0)
V π(s′)

+ Es′∼T̂ (s0,a0)
V π(s′)− Es′∼T (s0,a0)V

π(s′)
]

= γEa0∼π(s0)

[
Es′∼T̂ (s0,a0)

V̂ π(s′)− Es′∼T̂ (s0,a0)
V π(s′)

]
+ γEa0∼π(s0)

[
Es′∼T̂ (s0,a0)

V π(s′)− Es′∼T (s0,a0)V
π(s′)

]
(12)

We define P̂π
1 (s1|s0) =

∫
a∈A

π(a|s0)T̂ (s1|s0, a)da. This allows us to rewrite the first term from
the last line as:

γEa0∼π(s0)

[
Es′∼T̂ (s0,a0)

V̂ π(s′)− Es′∼T̂ (s0,a0)
V π(s′)

]
= γEs1∼P̂π

1 (·|s0)

[
V̂ π(s1)− V π(s1)

]
We define P̂π

1 (s1, a1|s0) = π(a1|s1)P̂π
1 (s1|s0), and P̂π

2 (s2|s0) =
∫
s∈S

∫
a∈A

P̂π
1 (s, a|s0)T̂ (s2|s, a)dads.

We again apply the Bellman equation:

γEs1∼P̂π
1 (·|s0)

[
V̂ π(s1)− V π(s1)

]
=

γEs1∼P̂π
1 (·|s0)

[
γEa1∼π(·|s1)

[
Es′∼T̂ (s1,a1)

V̂ π(s′)− Es′∼T (s1,a1)V
π(s′)

]]
= γEs1∼P̂π

1 (·|s0)

[
γEa1∼π(·|s1)

[
Es′∼T̂ (s1,a1)

V̂ π(s′)− Es′∼T̂ (s1,a1)
V π(s′)

]]
+

γEs1∼P̂π
1 (·|s0)

[
γEa1∼π(·|s1)

[
Es′∼T̂ (s1,a1)

V π(s′)− Es′∼T (s1,a1)V
π(s′)

]]
= γ2Es2∼P̂π

2 (·|s0)

[
V̂ π(s2)−V π(s2)

]
+γEs1,a1∼P̂π

1 (·,·|s0)

[
Es′∼T̂ (s1,a1)

V π(s′)−Es′∼T (s1,a1)V
π(s′)

]
.

(13)

Combining Equations 12 and 13 we have

V̂ π(s0)− V π(s0) = γEa0∼π(s0)

[
Es′∼T̂ (s0,a0)

V π(s′)− Es′∼T (s0,a0)V
π(s′)

]
+

γEs1,a1∼P̂π
1 (·,·|s0)

[
Es′∼T̂ (s1,a1)

V π(s′)− Es′∼T (s1,a1)V
π(s′)

]
+

γ2Es2∼P̂π
2 (·|s0)

[
V̂ π(s2)− V π(s2)

]
(14)

15

Published as a conference paper at ICLR 2024

Repeatedly applying the reasoning in Equations 12-14 we have

V̂ π(s0)− V π(s0) =

∞∑
t=0

γt+1Es,a∼P̂π
t (·,·|s0)

[
Es′∼T̂ (s,a)V

π(st)− Es′∼T (s,a)V
π(st)

]
=

γ

1− γ
E
s,a∼d(π,M̂R)

[
Es′∼T̂ (s,a)V

π(st)− Es′∼T (s,a)V
π(st)

] (15)

where d(π,M̂R) is the state-action distribution of π in M̂R. By the definition of the reward
function (R(s, a) ∈ [0, 1]), we have that V π(s) ∈ [0, 1/(1 − γ)]. We utilise the inequality that:
|Ex∼P f(x) − Ex∼Qf(x)| ≤ 2maxx |f(x)|TV(P,Q). Then, taking the absolute value of Equa-
tion 15 and applying the inequality we have:∣∣∣V̂ π(s0)− V π(s0)

∣∣∣ ≤ γ

1− γ
E
s,a∼d(π,M̂R)

∣∣∣Es′∼T̂ (s,a)V
π(st)− Es′∼T (s,a)V

π(st)
∣∣∣

≤ 2γ

(1− γ)2
E
s,a∼d(π,M̂R)

[
TV

(
T̂ (·|s, a), T (·|s, a)

)]
□

(16)

Now that we have proven Lemma 1, we return to our original purpose of proving Proposition 1. We
begin by restating Proposition 1:

Proposition 1 Let T̂ be the learnt latent dynamics in the world model. Assume the existence of a
representation model q that adheres to Assumption 2, and let T be the true latent dynamics according
to Assumption 2. Then, for any parameter setting θ and reward function R, the regret of the optimal
world model policy is bounded according to:

REGRET(π̂∗
θ,R,PR

θ) ≤ 2γ

(1− γ)2

[
E
z,a∼d(π∗

θ,R,M̂θ)

[
TV

(
T̂ (·|z, a), T (·|z, a)

)]
+ E

z,a∼d(π̂∗
θ,R,M̂θ)

[
TV

(
T̂ (·|z, a), T (·|z, a)

)]]
where d(π,M) denotes the state-action distribution of π in MDP M, and TV(P,Q) is the total
variation distance between distributions P and Q.

Now, let us consider the latent MDP learnt by our world model M̂θ = (Zθ, A, T̂ , γ) for some pa-
rameters θ ∈ Θ, as well as the latent space MDP that exactly models the true environment dynamics
according to Assumption 2, Mθ = (Zθ, A, T, γ). Recall that for some reward function, R, the
optimal world model policy is defined to be

π̂∗
θ,R = argmax

π
V (π,M̂R

θ)

The regret of the optimal world model policy for parameter setting θ and reward function R is
REGRET(π̂∗

θ,R,PR
θ) = V (π∗

θ,R,PR
θ)− V (π̂∗

θ,R,PR
θ) (17)

By Assumption 2 we have that V (π,PR
θ) = V (π,MR

θ) for all π. This allows us to write the regret
as the performance difference inMR

θ rather than PR
θ :

REGRET(π̂∗
θ,R,PR

θ) = V (π∗
θ,R,MR

θ)− V (π̂∗
θ,R,MR

θ) (18)

By the definition of the optimal world model policy, we have that

V (π̂∗
θ,R,M̂R

θ)− V (π∗
θ,R,M̂R

θ) ≥ 0 (19)

Adding together Equations 18 and 19 we have

REGRET(π̂∗
θ,R,PR

θ) ≤ V (π∗
θ,R,MR

θ)− V (π∗
θ,R,M̂R

θ) + V (π̂∗
θ,R,M̂R

θ)− V (π̂∗
θ,R,MR

θ)

≤
∣∣∣V (π∗

θ,R,MR
θ)− V (π∗

θ,R,M̂R
θ)

∣∣∣+ ∣∣∣V (π̂∗
θ,R,M̂R

θ)− V (π̂∗
θ,R,MR

θ)
∣∣∣

Then, applying the Lemma 1 to both terms on the right-hand side we have

REGRET(π̂∗
θ,R,PR

θ) ≤ 2γ

(1− γ)2

[
E
z,a∼d(π∗

θ,R,M̂θ)

[
TV

(
T̂ (·|z, a), T (·|z, a)

)]
+ E

z,a∼d(π̂∗
θ,R,M̂θ)

[
TV

(
T̂ (·|z, a), T (·|z, a)

)]]
□

16

Published as a conference paper at ICLR 2024

C KEY ADDITIONAL RESULTS

In this section, we present the most important additional results that were omitted from the main
paper due to space constraints.

C.1 TRAINING A SINGLE WORLD MODEL FOR TWO DOMAINS

In this subsection, we present results for training a single world model on both the Terrain Walker
and Clean Up domains. WAKER must choose which domain to sample from (either Terrain Walker
or Clean Up) as well as sample the environment parameters for that domain. The domain randomi-
sation (DR) baseline chooses either domain with 50% probability, and then randomly samples the
parameters for that domain.

To handle the varying dimensionality of the action spaces between the two domains, we pad the
action space of the Clean Up domain with additional actions that are unused in that domain. To
ensure that WAKER receives well-calibrated ensemble-based uncertainty estimates between these
two significantly different domains, we use the following approach. We first normalise the uncer-
tainty estimates for Terrain Walker and Clean Up separately, and then concatenate the uncertainty
estimates to create the buffer of uncertainty estimates. We found that this was necessary because the
scale of the ensemble-based uncertainty estimates can differ between the two significantly differ-
ent domains. Obtaining well-calibrated uncertainty estimates without requiring this normalisation
process is an orthogonal area of research that is outside the scope of this paper.

The results in Table 3 show that WAKER outperforms DR on both the robustness evaluation and the
out-of-distribution evaluation when training a single world model on both domains. This highlights
the potential for WAKER to be used to train very general world models, to enable agents capable of
solving a wide range of tasks in a wide range of domains.

Table 3: Results for training a single world model for two domains (Clean Up + Terrain Walker) over five seeds.
Evaluated after 8M total steps of reward-free training. For each episode, WAKER chooses the domain as well
as the environment parameters for that domain. Domain randomisation (DR) randomly samples the domain
and the parameters. Due to resource constraints, we evaluate a subset of the tasks.

(a) Robustness Evaluation (CVaR0.1).

Exploration Policy: Plan2Explore
Env. Sampling: WAKER-M DR

Clean Up Sort 0.348 ± 0.080 0.089 ± 0.07
Push 0.436 ± 0.141 0.262 ± 0.08

Terrain
Walker

Walk 538.5 ± 42.1 499.1± 43.6
Run 195.4 ± 8.2 192.9 ± 16.6

(b) Out-of-distribution average performance.

Exploration Policy: Plan2Explore
Env. Sampling: WAKER-M DR

Clean Up:
Extra Block

Sort 0.333 ± 0.03 0.180 ± 0.05
Push 0.440 ± 0.03 0.294 ± 0.04

Terrain Walker:
Steep

Walk 420.5 ± 33.4 382.6 ± 34.3
Run 154.9 ± 9.8 149.6 ± 13.9

Terrain Walker:
Stairs

Walk 417.1 ± 55.1 412.8 ± 33.9
Run 161.8 ± 17.6 160.9 ± 10.2

C.2 OUT OF DISTRIBUTION EVALUATION: FULL TASK RESULTS

In Table 2 in the main paper, we presented the out-of-distribution results in terms of averages across
the tasks for each domain. In Table 4 we present the full results for each task.

17

Published as a conference paper at ICLR 2024

Exploration Policy Plan2Explore Random Exploration
Environment Sampling WAKER-M WAKER-R DR GE HE-Oracle RW-Oracle WAKER-M WAKER-R DR

Clean Up
Extra Block

Sort 0.499 ± 0.04 0.486 ± 0.02 0.289 ± 0.05 0.310 ± 0.03 0.437 ± 0.03 0.501 ± 0.03 0.143 ± 0.03 0.107 ± 0.03 0.071 ± 0.03
Sort-Rev. 0.524 ± 0.05 0.437 ± 0.05 0.295 ± 0.06 0.314 ± 0.04 0.458 ± 0.03 0.506 ± 0.03 0.140 ± 0.04 0.110 ± 0.04 0.066 ± 0.05
Push 0.567 ± 0.02 0.515 ± 0.01 0.402 ± 0.05 0.419 ± 0.04 0.529 ± 0.04 0.537 ± 0.02 0.220 ± 0.05 0.180 ± 0.03 0.141 ± 0.04

Car Clean
Up Extra
Block

Sort 0.749 ± 0.05 0.660 ± 0.04 0.549 ± 0.04 0.545 ± 0.05 0.638 ± 0.05 0.671 ± 0.06 0.480 ± 0.05 0.482 ± 0.04 0.415 ± 0.06
Sort-Rev. 0.775 ± 0.04 0.724 ± 0.06 0.572 ± 0.04 0.542 ± 0.04 0.647 ± 0.03 0.674 ± 0.04 0.503 ± 0.05 0.465 ± 0.05 0.374 ± 0.05
Push 0.778 ± 0.04 0.754 ± 0.05 0.674 ± 0.05 0.659 ± 0.04 0.742 ± 0.05 0.740 ± 0.04 0.633 ± 0.03 0.582 ± 0.07 0.466 ± 0.12

Terrain
Walker
Steep

Walk 631.4 ± 20.8 583.8 ± 51.9 512.7 ± 31.2 539.8 ± 29.5 633.0 ± 14.9 644.4 ± 21.8 212.3 ± 20.2 190.3 ± 36.1 185.1 ± 26.5
Run 228.6 ± 12.8 213.2 ± 17.2 186.8 ± 9.1 197.8 ± 7.6 222.6 ± 10.5 232.3 ± 5.6 119.3 ± 9.9 103.4 ± 10.0 105.2 ± 15.4
Flip 946.3 ± 15.1 950.3 ± 8.0 929.1 ± 23.8 902.0 ± 18.4 978.5 ± 2.4 953.2 ± 15.8 891.5 ± 14.8 817.0 ± 59.0 885.4 ± 29.6
Stand 940.8 ± 15.2 934.9 ± 21.2 919.4 ± 23.1 915.7 ± 21.2 956.3 ± 8.4 951.5 ± 8.5 690.6 ± 29.6 612.5 ± 57.5 625.5 ± 81.4
Walk-Back. 554.0 ± 21.5 547.5 ± 39.4 465.9 ± 18.9 470.8 ± 33.4 535.5 ± 28.7 586.7 ± 21.9 328.3 ± 18.0 213.7 ± 72.7 203.3 ± 33.5

Terrain
Walker
Stairs

Walk 686.6 ± 38.4 668.4 ± 45.7 611.7 ± 75.2 625.7 ± 30.8 622.6 ± 57.2 691.2 ± 27.2 224.2 ± 27.3 217.3 ± 23.7 219.9 ± 17.0
Run 241.2 ± 16.4 235.6 ± 14.1 216.1 ± 24.3 225.9 ± 9.3 225.0 ± 9.4 244.6 ± 8.5 128.2 ± 6.0 114.5 ± 11.0 119.5 ± 9.7
Flip 935.9 ± 15.9 939.3 ± 8.8 927.6 ± 8.4 929.8 ± 7.1 957.1 ± 8.4 953.6 ± 6.7 892.0 ± 15.1 840.6 ± 39.7 822.5 ± 101.6
Stand 972.8 ± 6.8 971.8 ± 7.6 970.2 ± 7.6 971.2 ± 6.9 960.7 ± 7.0 969.2 ± 10.2 697.7 ± 41.8 665.8 ± 72.2 668.1 ± 72.1
Walk-Back. 492.1 ± 55.1 548.1 ± 51.3 388.7 ± 34.6 433.2 ± 16.6 442.6 ± 32.6 561.9 ± 19.6 313.6 ± 5.4 257.1 ± 21.3 242.6 ± 24.8

Terrain
Hopper
Steep

Hop 137.2 ± 21.5 112.9 ± 23.5 93.7 ± 14.6 85.7 ± 8.4 143.0 ± 16.6 116.9 ± 17.9 5.1 ± 2.6 9.4 ± 3.9 13.3 ± 5.7
Hop-Back. 133.6 ± 13.5 104.7 ± 13.1 92.5 ± 13.9 77.5 ± 12.3 138.3 ± 12.6 110.7 ± 25.1 30.1 ± 14.9 19.7 ± 12.3 21.6 ± 10.5
Stand 695.4 ± 29.4 679.7 ± 36.5 592.6 ± 74.6 535.5 ± 102.6 608.2 ± 64.0 672.0 ± 57.1 29.8 ± 10.2 29.1 ± 20.6 24.0 ± 12.6

Terrain
Hopper
Stairs

Hop 292.1 ± 16.6 258.1 ± 29.3 250.7 ± 24.9 220.0 ± 33.6 229.5 ± 14.4 263.3 ± 23.7 17.4 ± 13.3 25.6 ± 10.2 31.7 ± 14.7
Hop-Back. 181.6 ± 21.8 209.1 ± 23.5 188.5 ± 25.7 164.3 ± 20.4 117.5 ± 18.8 177.5 ± 47.2 33.6 ± 9.6 19.5 ± 12.2 34.3 ± 18.5
Stand 720.8 ± 47.6 782.5 ± 59.7 772.2 ± 42.9 772.8 ± 30.8 655.8 ± 54.3 746.7 ± 47.5 51.5 ± 32.6 49.1 ± 29.4 39.2 ± 17.1

Table 4: Out-of-distribution evaluation: average performance on OOD environments for each domain and task.
For Terrain Hopper with a random exploration policy, all sampling methods fail to learn a meaningful policy
so none are highlighted.

C.3 ILLUSTRATION OF CURRICULA

The plots in Figures 7 and 8 illustrate the parameters sampled throughout world model training for
the Terrain Walker and Clean Up domains.

Domain randomisation (DR) samples parameters uniformly throughout training. WAKER-R biases
sampling towards environments where the uncertainty estimate is decreasing the fastest. For Terrain
Walker, we see in Figure 7 that initially (0 - 2M steps), WAKER-R samples all parameters equally in
a similar fashion to DR. This indicates that during this period, the uncertainty estimate for all envi-
ronment parameters is decreasing approximately equally. From 2M - 5M steps, WAKER-R selects
terrain with a higher amplitude, and shorter length scale (more complex and undulating terrain).
This indicates that during this period, the uncertainty for the complex terrain is decreasing more
quickly and therefore is sampled more often. Thus, we observe that for Terrain Walker WAKER-R
initially focuses equally on all environments, before switching to sampling more complex terrain
when simple domains have converged and therefore no longer exhibit a gradient in uncertainty.

WAKER-M biases sampling towards the domains with the highest magnitude of uncertainty. We do
not expect WAKER-M to initially focus on the simplest environments, as it is always biased towards
sampling complex environments where uncertainty is high. In Figure 7, we see that for Terrain
Walker WAKER-M initially (0 - 0.3M steps) samples the parameters similar to DR. From 0.3M
steps onwards, WAKER-M more frequently samples complex terrain with high amplitude and short
length scale. Thus, WAKER-M consistently samples complex environments with higher uncertainty.
Likewise, in Figure 8 we observe that for Clean Up WAKER-M more frequently samples environ-
ments with a larger arena size and more blocks. Thus, in Clean Up WAKER-M also consistently
samples complex environments with higher uncertainty.

For WAKER-R in Clean Up, we observe that in the early stages (0-1M steps) sampling is heavily
focused on the most complex environments with larger arenas and more blocks. This indicates that
uncertainty is being reduced more quickly on the more complex environments during this stage of
training. As training progresses, WAKER-R gradually places less emphasis on the most complex
environments, and samples the environments more evenly.

18

Published as a conference paper at ICLR 2024

(a) Terrain Amplitude (b) Terrain Length Scale

Figure 7: Plots of the parameters sampled for Terrain Walker domain.

(a) Arena Size (b) Blue Blocks (c) Green Blocks

Figure 8: Plots of the parameters sampled for Clean Up domain.

C.4 AVERAGE PERFORMANCE RESULTS

In Table 1 in the main results in Section 4, we presented the results for the robustness evaluation,
where we averaged performance over the 10 worst runs on 100 randomly sampled environments. In
Table 5 and Figure 9 we present the results from averaging over all 100 episodes. Note that we do
not necessarily expect WAKER to improve over DR for this evaluation, as the DR baseline directly
optimises for this exact training distribution.

Figure 9 shows that WAKER-M achieves a statistically significant improvement in average perfor-
mance over DR when using either exploration policy. For WAKER-R, the average performance is
not significantly different when compared to DR for either exploration policy.
Exploration Policy Plan2Explore Random Exploration
Environment Sampling WAKER-M WAKER-R DR GE HE-Oracle RW-Oracle WAKER-M WAKER-R DR

Clean Up
Sort 0.973 ± 0.01 0.966 ± 0.01 0.929 ± 0.02 0.932 ± 0.01 0.884 ± 0.04 0.942 ± 0.02 0.779 ± 0.04 0.766 ± 0.03 0.743 ± 0.03
Sort-Rev. 0.976 ± 0.01 0.957 ± 0.01 0.934 ± 0.01 0.949 ± 0.01 0.881 ± 0.03 0.960 ± 0.02 0.891 ± 0.03 0.958 ± 0.02 0.739 ± 0.04
Push 0.972 ± 0.01 0.969 ± 0.01 0.957 ± 0.01 0.960 ± 0.02 0.891 ± 0.03 0.958 ± 0.02 0.839 ± 0.03 0.819 ± 0.03 0.786 ± 0.04

Car Clean
Up

Sort 0.988 ± 0.01 0.980 ± 0.01 0.967 ± 0.01 0.964 ± 0.01 0.816 ± 0.05 0.964 ± 0.01 0.936 ± 0.02 0.922 ± 0.02 0.909 ± 0.01
Sort-Rev. 0.991 ± 0.01 0.988 ± 0.01 0.963 ± 0.02 0.965 ± 0.01 0.828 ± 0.04 0.959 ± 0.02 0.918 ± 0.02 0.918 ± 0.02 0.896 ± 0.02
Push 0.990 ± 0.01 0.989 ± 0.01 0.975 ± 0.01 0.981 ± 0.01 0.812 ± 0.04 0.981 ± 0.01 0.953 ± 0.01 0.939 ± 0.02 0.909 ± 0.03

Terrain
Walker

Walk 909.1 ± 12.1 915.4 ± 10.3 900.4 ± 22.7 905.8 ± 13.9 652.9 ± 73.5 873.7 ± 26.6 385.8 ± 34.3 360.5 ± 42.0 386.7 ± 24.6
Run 393.3 ± 8.5 388.7 ± 14.7 397.5 ± 13.1 403.2 ± 13.0 261.9 ± 21.4 365.4 ± 18.4 149.4 ± 10.7 138.4 ± 9.6 149.6 ± 15.2
Flip 973.2 ± 9.8 965.3 ± 8.5 967.1 ± 5.1 973.9 ± 7.1 982.3 ± 0.9 973.7 ± 7.4 935.6 ± 8.0 924.3 ± 13.7 924.8 ± 9.4
Stand 970.4 ± 4.9 973.3 ± 6.8 970.3 ± 8.2 968.0 ± 9.0 927.2 ± 25.4 962.4 ± 12.8 673.1 ± 22.5 669.6 ± 66.7 689.7 ± 84.7
Walk-Back. 861.2 ± 10.0 845.0 ± 25.1 871.6 ± 13.6 848.0 ± 14.8 573.2 ± 36.1 808.1 ± 18.2 474.1 ± 9.6 450.9 ± 19.2 446.7 ± 32.1

Terrain
Hopper

Hop 483.8 ± 15.9 483.9 ± 14.8 491.8 ± 12.7 490.8 ± 10.5 300.2 ± 21.1 456.5 ± 15.2 35.6 ± 11.0 27.1 ± 12.7 45.5 ± 20.7
Hop-Back. 472.2 ± 4.4 470.4 ± 16.8 477.9 ± 17.7 480.8 ± 8.9 290.3 ± 21.7 456.0 ± 10.2 29.4 ± 13.2 19.0 ± 13.3 38.7 ± 25.2
Stand 729.0 ± 73.6 811.0 ± 31.6 794.4 ± 16.0 790.3 ± 41.6 680.5 ± 64.1 771.5 ± 37.0 48.1 ± 22.1 53.3 ± 30.5 49.6 ± 14.9

Table 5: Average performance evaluation: Average performance on 100 randomly sampled environments.
For each exploration policy, we highlight results within 2% of the best score, and± indicates the S.D. over
5 seeds. For Terrain Hopper with a Random Exploration policy, all methods fail to learn a meaningful
policy so none are highlighted.

Figure 9: Average performance aggregated CIs.

19

Published as a conference paper at ICLR 2024

D FURTHER RESULTS

Here, we present additional results that expand upon the results already presented in the main paper.

D.1 ADDITIONAL WORLD MODEL IMAGE PREDICTION ERRORS

To compare the quality of the world model predictions, we compute the errors between the im-
ages predicted by the world model, and the actual next image. For each world model, we collect
200 trajectories in each of 200 randomly sampled environments. For the results in the main paper
(Figure 6), the trajectories are collected under performant task policies (for the hop task for Terrain
Hopper, and for the sort task for Car Clean Up). For the results in Figures 10 and 11 the trajectories
are collected under a uniform random policy.

Along each trajectory, we compute the next image predicted by the world model by decoding the
mean of the next latent state prediction, using the decoder learned by DreamerV2. We compute
the mean squared error between the image prediction and the actual next image. Then, we average
the errors along the trajectory to compute the error for the trajectory. We repeat this process along
all trajectories to compute the error for each trajectory. Then, we compute CVaR0.1 of these error
evaluations by taking the average over the worst 10% of trajectories. These values are plotted for
each domain in Figures 6, 10, and 11.

We observe that the CVaR of the image prediction errors are generally lower for world models
trained with WAKER than DR. The difference in performance is especially large for the Clean
Up and Car Clean Up domains. This mirrors the large difference in policy performance between
WAKER and DR on the Car Clean Up and Clean Up domains. This verifies that WAKER is suc-
cessfully able to learn world models that are more robust to different environments than DR. For Ter-
rain Walker and Terrain Hopper, the difference in the error evaluations between methods is smaller,
but we still observe that WAKER produces smaller errors than DR when using the Plan2Explore
exploration policy.

Note that in Figures 10 and 11 the error evaluation is performed using trajectories generated by a
uniform random policy. Therefore, we observe that the world models trained using data collected
by a random policy tend to have lower errors relative to world models trained using Plan2Explore
as the exploration policy.

Figure 10: Clean Up image prediction errors for a uniform random policy. Error bars indicate standard devia-
tions across 5 seeds.

20

Published as a conference paper at ICLR 2024

Figure 11: Terrain Walker image prediction errors for a uniform random policy. Error bars indicate standard
deviations across 5 seeds.

D.2 PERFORMANCE ON SNAPSHOTS OF WORLD MODEL TRAINED WITH VARIABLE
AMOUNTS OF DATA

In the main results presented in Section 4, we report the performance of policies obtained from the
final world model at the end of six days of training. In this section, we present the performance of
policies obtained from snapshots of the world model trained with variable amounts of data. These
results are presented in Figures 12, 13 and 14. In each of the plots, the x-axis indicates the number of
steps of data collected within the environment that was used to train the world model. The values on
the y-axis indicate the performance of policies obtained from imagined training within each snapshot
of the world model.

As expected, we observe that as the amount of data used to train the world model increases, the
performance of policies trained within the world model increases. We observe that for most levels
of world model training data, and for both exploration policies, the WAKER variants improve upon
DR in the robustness and OOD evaluations in Figures 12 and 13. The magnitude of the improvement
tends to become larger as the amount of training data from the environment increases. This suggests
that WAKER might be especially effective when scaled to larger amounts of training data.

The average performance of policies trained in snapshots of the world model is presented in Fig-
ure 14. For Terrain Walker and Terrain Hopper, the average performance between WAKER and DR
for the same exploration policy is similar across all levels of environment data. For Clean Up and
Car Cleanup, we observe that both WAKER variants improve the average performance relative to
DR when using Plan2Explore as the exploration policy, for almost all levels of data. For the random
exploration policy, we observe that the average performance initially improves more slowly when
using WAKER, but eventually surpasses the performance of DR. This initially slower improvement
in average performance with WAKER is likely due to WAKER putting increased emphasis on col-
lecting data from more complex environments.

21

Published as a conference paper at ICLR 2024

Figure 12: Robustness evaluation. Plots show the CVaR0.1 metric: the mean of worst 10 runs on 100 randomly
sampled environments. The policies are trained zero-shot on snapshots of world model trained on amount of
data labelled on x-axis. Results are averaged across 5 seeds, and shaded regions are standard deviations across
seeds.

22

Published as a conference paper at ICLR 2024

Figure 13: Out-of-distribution evaluation. Plots show the average performance on out-of-distribution environ-
ments. The policies are trained zero-shot on snapshots of world model trained on amount of data labelled on
x-axis. Results are averaged across 5 seeds, and shaded regions are standard deviations across seeds.

23

Published as a conference paper at ICLR 2024

Figure 14: Average performance. Plots show the average performance on 100 evaluations on environments
sampled uniformly at random. The policies are trained zero-shot on snapshots of the world model trained
on amount of data labelled on x-axis. Results are averaged across 5 seeds, and shaded regions are standard
deviations across seeds.

24

Published as a conference paper at ICLR 2024

E WAKER IMPLEMENTATION DETAILS

Here, we provide additional details on our implementation of the WAKER algorithm that were
omitted from the main paper due to space constraints. The code for our experiments is available at
github.com/marc-rigter/waker.

Error Estimate Update and Smoothing In Line 17 of Algorithm 1 we compute the error estimate
δθ according to the average ensemble disagreement over an imagined trajectory. Each δθ value is
noisy, so we maintain a smoothed average δθ of the δθ values. Specifically, we use an exponential
moving average (EMA). For each parameter setting θ, when we receive a new δθ value, we update
the EMA according to: δθ ← αδθ + (1− α)δθ, where we set α = 0.9999.

For WAKER-M, the error buffer Derror contains the smoothed average of the δθ values for each
parameter setting: Derror = {δθ1 , δθ2 , δθ3 , . . .}. These values are used as input to the Boltzmann
distribution used to sample the environment parameters in Line 7 of Algorithm 1.

For WAKER-R, we compute the reduction of the δθ values for each parameter setting between each
interval of 10,000 environment steps: ∆θ = δ

old
θ − δ

new
θ . Because the error estimates change very

slowly, we perform a further smoothing of the ∆θ values using an exponential moving average:
∆θ ← α∆∆θ + (1 − α∆)∆θ, where we set α∆ = 0.95. For WAKER-R, the error estimate buffer
contains these ∆θ values: Derror = {∆θ1 ,∆θ2 ,∆θ3 , . . .}, and these values determine the environ-
ment sampling distribution in Line 7 of Algorithm 1.

Error Estimate Normalisation We normalize the error values in Line 7 of Algorithm 1 to reduce
the sensitivity of our approach to the scale of the error estimates, and reduce the need for hyperpa-
rameter tuning between domains. For WAKER-R, we divide each ∆θ value by the mean absolute
value of ∆θ across all parameter settings. The rationale for this form of normalisation is that if
the rate of reduction of error is similar across all environments, then WAKER-R will sample the
environments with approximately equal probability.

For WAKER-M, for each δθ value, we subtract the mean of δθ across all parameter settings, and
divide by the standard deviation. This means that regardless of the scale of the error estimates,
WAKER-M will always favour the environments with the highest error estimates, as motivated by
Problem 2.

World Model Training For the world model, we use the official open-source implementation of
DreamerV2 (Hafner et al., 2021) at https://github.com/danijar/dreamerv2. For the
world model training we use the default hyperparameters from DreamerV2, with the default batch
size of 16 trajectories with 50 steps each. For the ensemble of latent dynamics functions, we use 10
fully-connected neural networks, following the implementation of Plan2Explore (Sekar et al., 2020)
in the official DreamerV2 repository. We perform one update for every eight environment steps
added to the data buffer.

In our implementation of Plan2Explore, each member of the ensemble is trained to predict both the
deterministic and stochastic part of the next latent state. This is slightly different to the Plan2Explore
implementation in the official Dreamer-v2 codebase, where the ensemble only predicts part of the
latent state. We made this modification because the derivation of our algorithm indicates that we
should be concerned with the uncertainty over the prediction of the entire latent state.

Policy Training For the exploration and task policies, we use the actor-critic implementation from
the official DreamerV2 repository. During each update, we sample a batch of 16 trajectories from
the data buffer of 50 steps each. For each latent state corresponding to a data sample in the batch,
we generate an imagined trajectory starting from that latent state, with a horizon of 15 steps. We
then update both the task and exploration policies using dynamics gradients (i.e. backpropagation
through the world model) computed on these imagined trajectories. We perform one update to each
of the task and exploration policies for every eight environment steps.

25

https://github.com/marc-rigter/waker
https://github.com/danijar/dreamerv2

Published as a conference paper at ICLR 2024

F EXPERIMENT DETAILS

F.1 DOMAINS AND TASKS

Terrain Walker and Terrain Hopper We simulate the Walker and Hopper robots from the Deep-
Mind Control Suite (Tassa et al., 2018). The observations are images of shape 64 × 64 × 3. For
each episode, we generate terrain using Perlin noise (Perlin, 2002), a standard technique for proce-
dural terrain generation. The terrain generation is controlled by two parameters, the amplitude, with
values in [0, 1], and the length scale, with values in [0.2, 2]. Domain randomisation samples both
of these parameters uniformly from their respective ranges. For examples of each domain and the
terrain generated, see Figures 15 and 16.

Figure 15: Examples of training environments for the Terrain Walker domain.

Figure 16: Examples of training environments for the Terrain Hopper domain.

We evaluate 5 different downstream tasks for Terrain Walker. The tasks walk, run, stand, flip are
from the URLB benchmark (Laskin et al., 2021). We also include walk-backward, which uses the
same reward function as walk, except that the robot is rewarded for moving backwards rather than
forwards.

We evaluate 3 different downstream tasks for Terrain Hopper: hop, stand and hop-backward. Hop
and stand are from the Deepmind Control Suite Tassa et al. (2018). Hop-backward is the same as
hop, except that the robot is rewarded for moving backwards rather than forwards.

Terrain Walker and Terrain Hopper: Out-of-Distribution Environments We use two different
types of out-of-distribution environments for the terrain environments. The first is Steep, where the
length scale of the terrain is 0.15. This is 25% shorter than ever seen during training. This results
in terrain with sharper peaks than seen in training. The second is Stairs, where the terrain contains
stairs, in contrast to the undulating terrain seen in training. The out-of-distribution environments are
shown in Figure 17 for the Walker robot. The out-of-distribution environments for Terrain Hopper
are the same, except that we use the Hopper robot.

(a) Terrain Walker Steep (b) Terrain Walker Stairs

Figure 17: Examples of out-of-distribution (OOD) environments for the Terrain Walker domain. The OOD
environments for Terrain Hopper are the same, except that we use the Hopper robot.

Clean Up and Car Clean Up These domains are based on SafetyGym (Ray et al., 2019) and
consists of a robot and blocks that can be pushed. The observations are images from a top-down
view with dimension 64× 64× 3. For Clean Up, the robot is a point mass robot. For Car Clean Up
the robot is a differential drive car. In both cases, the action space is two-dimensional.

For each environment, there are three factors that vary: the size of the environment, the number of
blocks, and the colour of the blocks. For the default domain randomisation sampling distribution,
the size of the environment is first sampled uniformly from size ∈ {0, 1, 2, 3, 4}. The number of

26

Published as a conference paper at ICLR 2024

blocks is then sampled uniformly from {0, 1, . . . ,size}. The number of green vs blue blocks is
then also sampled uniformly. Examples of the training environments generated for the Clean Up
domain are in Figure 18.

There are three different tasks for both Clean Up and Car Clean Up: sort, push, and sort-reversed.
The tasks vary by the goal location for each colour of block. For sort, each block must be moved
to the goal location of the corresponding colour. For sort-reverse, each block must be moved to the
goal location of the opposite colour. For push, all blocks must be pushed to the blue goal location,
irrespective of the colour of the block.

We define the task completion to be the number of blocks in the environment that are in the correct
goal region divided by the number of blocks in the environment. If there are no blocks in the
environment, then the task completion is 1. The reward function for each task is defined as follows:
The agent receives a dense reward for moving any block closer to the desired goal region, and the
agent also receives a reward at each time step that is proportional to the task completion.

In the main results we report the task completion at the end of each episode, as it is easier to interpret.
We observe that the results for the total reward directly correlate to those for the task completion.

Figure 18: Examples of training environments for the Clean Up domain. The environments differ by their size,
the number of blocks, and the colour of each block. The shaded regions indicate the goal locations.

Figure 19: Examples of training environments for the Car Clean Up domain.

Clean Up and Car Clean Up: Out-of-Distribution Environments For the out-of-distribution
environments, we place one more block in the environment than was ever seen during training. We
set the size of the environment to size = 4, and there are 5 blocks in the environment. The task
completion and reward function is defined the same as for the training environments. Examples of
the out-of-distribution environments are in Figure 20.

Figure 20: Examples of out-of-distribution (OOD) environments for Clean Up Extra Block domain. For Car
Clean Up, the OOD environments are the same except that we use the car robot.

F.2 LENGTH OF TRAINING RUNS

Due to resource limitations, each training run is limited to six days of run time. This corresponds
to a total of 7.4 × 106 environment steps for the Terrain Walker and Terrain Hopper domains, and
a total of 8.2 × 106 environment steps for the Clean Up and Car Clean up domains. The results
reported in Section 4 are for task policies trained in imagination in the final world models at the end
of these training runs.

F.3 HYPERPARAMETER TUNING

We use the default parameters for DreamerV2 (Hafner et al., 2021) for training the world model.

For WAKER, there are two hyperparameters: the probability of sampling uniformly from the de-
fault environment distribution, pDR, and the temperature parameter for the Boltzmann environment
distribution, η. In our experiments, we set pDR = 0.2 for all experiments and did not tune this value.
We performed limited hyperparameter tuning of the Boltzmann temperature parameter, η. We ran

27

Published as a conference paper at ICLR 2024

WAKER-M + Plan2Explore and WAKER-R + Plan2Explore for each of three different values of
η ∈ {0.5, 1.0, 1.5}. For each algorithm and η value, we ran two seeds for 5e6 environment steps on
the Clean Up domain. At the end of 5e6 environment steps, we chose the value of η that obtained
the best performance for each algorithm for CVaR0.1 on the sort task. We then use this value of η
for WAKER-M and WAKER-R across all experiments, when using both the Plan2Explore and the
random exploration policies.

The hyperparameters used in our experiments for WAKER are summarised in Table 6.

Table 6: Summary of hyperparameters used by WAKER.

WAKER-M WAKER-R
pDR 0.2 0.2
η 1 0.5

F.4 CONFIDENCE INTERVAL DETAILS

Figures 3, 4 and 9 present 95% confidence intervals of the probability of improvement, computed
using the rliable framework (Agarwal et al., 2021). To compute these values, we first normalise the
results for each algorithm and task to between [0, 1] by dividing by the highest value obtained by any
algorithm. We then input the normalised scores in the rliable package to compute the confidence
intervals.

A confidence interval where the lower bound on the probability of improvement is greater than 0.5
indicates that the algorithm is a statistically significant improvement over the baseline.

F.5 COMPUTATIONAL RESOURCES

Each world model training run takes 6 days on an NVIDIA V100 GPU. In our experiments, we train
120 world models in total, resulting in our experiments using approximately 720 GPU days.

G BASELINE METHOD DETAILS

In our experiments, we compare the following methods. Note that two of the baselines (HE-Oracle
and RW-Oracle) require expert domain knowledge. The other methods (WAKER, GE, and DR) do
not require domain knowledge.

Domain Randomisation (DR) DR samples environments uniformly from the default environment
distribution (as described in Appendix F.1).

Hardest Environment Oracle (HE-Oracle) For this baseline, the most complex instance of the
environment is always sampled. For the block pushing tasks, the most complex environment is
the largest arena, containing two blocks of each colour. For the terrain tasks, the most complex
environment is the terrain with the highest possible amplitude (1) and the shortest possible length
scale (0.2).

Re-weighting Oracle (RW-Oracle) RW-Oracle re-weights the environment distribution to focus
predominantly on the most complex environments. 20% of the time RW-Oracle samples from the
default domain randomisation distribution. The remaining 80% of the time RW-Oracle samples
uniformly from the most complex environments. For the terrain environments, the most complex
environments are those where the amplitude is within [0.8, 1] and the length scale is within [0.2, 0.4].
For the block pushing environments, the most complex environments are those where the size of the
arena is four and there are four blocks of any colour.

Gradual Expansion (GE) 20% of the time, a new environment is sampled from the default do-
main randomisation distribution. The remaining 80% of the time, GE samples from the default dis-
tribution, but the default distribution is restricted to only include environments that have been seen
so far. Thus, GE utilises the default domain randomisation distribution to sample new environments
to gradually increase the range of environments seen during training.

28

	Introduction
	Preliminaries
	Approach
	World Models for Underspecified POMDPs
	Reward-Free Minimax Regret: Problem Definition
	Theoretical Motivation
	Weighted Acquisition of Knowledge across Environments for Robustness

	Experiments
	Conclusion
	Related Work
	Proof of Proposition 1
	Key Additional Results
	Training a Single World Model for Two Domains
	Out of Distribution Evaluation: Full Task Results
	Illustration of Curricula
	Average Performance Results

	Further Results
	Additional World Model Image Prediction Errors
	Performance on Snapshots of World Model Trained with Variable Amounts of Data

	WAKER Implementation Details
	Experiment Details
	Domains and Tasks
	Length of Training Runs
	Hyperparameter Tuning
	Confidence Interval Details
	Computational Resources

	Baseline Method Details

