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Abstract

Eligibility criteria (EC) are critical compo-
nents of clinical trial design, defining the pa-
rameters for participant inclusion and exclu-
sion. However, designing EC remains a com-
plex, expertise-intensive process. Traditional
approaches to EC generation often rely on
user-prompted predefined categories, which
limit adaptability and may fail to produce
comprehensive, contextually appropriate crite-
ria. To address these challenges, we introduce
EC-RAFT, a method that utilizes Retrieval-
Augmented Fine-Tuning (RAFT) to generate
structured and cohesive EC directly from clini-
cal trial titles and descriptions. EC-RAFT inte-
grates contextual retrieval, synthesized interme-
diate reasoning, and fine-tuned language mod-
els to produce comprehensive EC sets. To en-
hance clinical alignment evaluation with refer-
enced criteria, we also propose an LLM-guided
evaluation pipeline. Our results demonstrate
that our solution, which uses Llama-3.1-8B-
Instruct as a base model, achieves a BERTScore
of 86.23 and an EC-matched LLM-as-a-Judge
score of 1.66 out of 3, outperforming zero-shot
Llama-3.1 and Gemini-1.5 by 0.41 and 0.11
points, respectively. EC-RAFT was trained in
a low-cost setup and, therefore, can be used as
a practical solution for EC generation while en-
suring quality and relevance in clinical trial
design. We release our code on GitHub at
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1 Introduction

Eligibility Criteria (EC) are essential components
of clinical trial design, specifying the parameters
for participant inclusion and exclusion (Su et al.,
2023). These criteria ensure trials are scientifically
valid, ethically sound, and capable of meeting their
objectives. However, designing EC remains a labor-
intensive and expertise-driven process (Su et al.,
2023). Tools that can suggest or generate relevant
EC have the potential to significantly facilitate re-
searchers’ work in trial design (Kim et al., 2024).

Generating these criteria is inherently complex be-
cause consistency and clinical validity are needed
throughout the criteria set. Despite advances in
using large language models (LLMs) for summa-
rization or specialized tasks in the biomedical do-
main, several barriers remain to creating a fully
automated, contextually accurate system that can
generate comprehensive sets of EC directly from
trial descriptions. Recent developments in instruc-
tion fine-tuning for LLMs have shown promise
in generating logical reasoning outputs through
techniques like chain-of-thought prompting and
rationale generation (Wei et al., 2022). Retrieval-
augmented generation (RAG) has also emerged
as an effective mechanism for grounding model
outputs with external domain knowledge, thereby
improving factual correctness (Ram et al., 2023).
Retrieval-augmented fine-tuning (RAFT) extends
RAG by incorporating instruction fine-tuning to
improve both domain adaptation and retrieval ro-
bustness (Zhang et al., 2024). These developments
allow the development of an end-to-end system to
generate a complete set of EC while preserving
essential clinical context and domain relevance. To
address these gaps, we propose EC-RAFT, a novel
approach that leverages Retrieval-Augmented Fine-
Tuning (RAFT) (Zhang et al., 2024) for automated
EC generation. EC-RAFT aims to produce com-
plete EC sets directly from trial titles and descrip-
tions without requiring user-input EC categories
or a recommendation system. Our key features
include:

1. RAFT (Zhang et al., 2024) incorporates rel-
evant external clinical trial information (ex-
isting trial details and eligibility criteria) and
generates intermediate reasoning steps to fine-
tune LLM.

2. Generating a complete set of eligibility crite-
ria results in a fully structured set of inclusion
and exclusion criteria. We demonstrate that



synthesized intermediate reasoning steps pro-
duced by LLM, enhance the performance of
the base models during fine-tuning for EC
generation. Our results show that EC-RAFT
exceeds zero-shot baseline approaches across
multiple evaluation metrics, including seman-
tic similarity and LLM-as-a-judge scoring.

Our training setup was also optimized for cost ef-
ficiency using the Parameter-Efficient Fine-Tuning
technique (PEFT) (Xu et al., 2023; Hu et al., 2021).
Specifically, training our best model required 380
GPU hours on NVIDIA A100 costing approxi-
mately 452.20 USD while achieving superior per-
formance compared to the baseline.

2 Related Work

2.1 Eligibility Criteria Generation and
Recommendation.

Over the past decade, various methods have been
proposed to facilitate EC design. Trial2Vec (Wang
and Sun, 2022) introduced a trial-level representa-
tion using contrastive learning to recommend rele-
vant clinical trials to researchers, providing a foun-
dation for trial similarity assessment. Based on
trial representation approaches, CReSE (Kim et al.,
2024) applied contrastive learning and rephrasing
strategies to recommend relevant EC for a given
trial context, focusing on high semantic similarity.
AutoTrial (Wang et al., 2023) generates EC us-
ing LLM, offering interpretability through explicit
reasoning chains. However, it uses predefined cate-
gories, which can restrict adaptability in complex
clinical trials and potentially omit key criteria. Au-
tocriteria (Datta et al., 2024) uses prompting on
GPT4 to extract granular EC from clinical trial
documents.

2.2 LoRA and Supervised Fine-Tuning (SFT).

Adapting LLMs to specialized tasks such as clin-
ical trial EC generation often requires fine-tuning
on domain-specific datasets. Low-rank adaptation
(LoRA) (XTuner Contributors, 2023; Hu et al.,
2021) has been applied in similar biomedical tasks
by efficiently integrating domain knowledge into
pre-trained models (Liao et al., 2024). Similarly,
supervised fine-tuning (SFT) has been employed in
applications such as automated medical report gen-
eration (Guo et al., 2024). However, while LoORA
and SFT have demonstrated significant efficacy in
these specialized tasks, they typically lack retrieval

strategies and do not generate domain-specific out-
puts, such as a complete set of EC.

2.3 Retrieval-Augmented Fine-Tuning
(RAFT).

RAFT (Zhang et al., 2024) techniques have shown
promise across various domains, including biomed-
ical tasks, by simulating an "open-book" scenario
in which a model can consult relevant external doc-
uments during both training and inference. Tradi-
tionally, RAFT involves providing the model with a
mixture of "golden" and "distractor" retrieved texts,
enabling it to learn when and how to utilize exter-
nal information. However, RAFT methods often
focus on short-form QA tasks rather than producing
outputs such as fully articulated sets of EC.

2.4 Contributions of EC-RAFT.

While approaches such as AutoTrial (Wang et al.,
2023), CReSE (Kim et al., 2024), or RAG-based
pipelines have advanced the field, they each ex-
hibit drawbacks. AutoTrial’s category-based sys-
tem may miss nuanced criteria critical for complex
or adaptive trial designs. CReSE’s strong clus-
tering and recommendation focus lacks a mecha-
nism for generating complete sets of EC. Standard
RAFT-based pipelines (Zhang et al., 2024) often
emphasize classification or short-form QA tasks,
leaving the generation and evaluation of elaborate
clinical EC largely unexplored. EC-RAFT inte-
grates retrieval-augmented fine-tuning with synthe-
sized chain-of-thought reasoning to generate a sin-
gle structured set of inclusion and exclusion criteria
to address these limitations. EC-RAFT provides a
flexible and comprehensive solution for automated
EC generation in complex trial contexts by bypass-
ing the need for category-dependent generation and
leveraging domain-specific retrieval as a backbone.

3 Methods

In this section, we introduce our approach, which
leverages clinical trial data from ClinicalTrials.gov
and integrates state-of-the-art techniques in em-
bedding, retrieval, and fine-tuning to automate the
generation of EC (Figure 1). We then describe the
experiments designed to evaluate our system.

3.1 ClinicalTrials.gov Dataset

We collected 267,347 clinical trials from Clinical-
Trials.gov, covering 2000 to 2024. To facilitate
analysis, we split these trials into three datasets:
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Figure 1: Overview of the EC-RAFT pipeline. A. Retrieve relevant trials and their EC (D) for the trial of interest
(X) using SciNCL embeddings, then combine them with the desired EC (y) to generate intermediate reasoning
steps (R). B. Fine-tune the model to generate a single response that includes both reasoning and final eligibility. C.
Evaluate using two approaches: (1) BERTScore (Zhang et al., 2020) for semantic similarity, and (2) LLM-Guided

Evaluation for clinical relevance of matched EC pairs.

213,877 trials for training, 26,735 trials for valida-
tion, and 26,735 trials for testing (Table 1). The
training, validation, and test set contains around
168.4k, 20.9k, 21.1k interventional and 45.4k, 5.8k,
5.6k observational trials respectively. The training
data contain 1.25M interventional trials with an
average of 4.98 + 5.11 inclusions and 7.46 = 7.05
exclusions per trial and 137k observational trials
with an average of 3.02 £ 2.85 inclusions and 3.44
+ 3.68 exclusions per trial.

Our dataset consists of three primary sections:
title, description, and EC. The description sec-
tion includes a brief summary, a detailed descrip-
tion of the trial, and intervention details, includ-
ing the type, name, description, and alternative
names of the interventions involved. The EC
section, which extracts from eligibilityModule
within the protocolSection, contains key partic-
ipant criteria, including both structured fields and
free-text criteria. eligibilityCriteria within
eligibilityModule section provides key eligibil-
ity details, including inclusion and exclusion cri-
teria. While most trials specify age and gender re-
quirements within the eligibilityCriteria sec-
tion, some studies omit explicit references to these
factors. Instead, these details are provided in dedi-
cated fields within the same module: sex for gen-
der information, minimumAge and maximumAge for
age ranges, and healthyVolunteers for whether
healthy volunteers are accepted. We extracted and
processed these fields from both structured meta-
data and free-text EC to ensure that all EC are
included.

3.2 Data Embedding and Retrieval

The first step involves obtaining comprehensive
clinical trial data, including titles, descriptions, and
eligibility criteria, from ClinicalTrials.gov (Figure
1A). We employ the SciNCL embedding model
(Ostendorff et al., 2022) to embed clinical trials,
which are subsequently retrieved to generate in-
termediate steps (R). The rationale for selecting
SciNCL is its ability to embed semantics in domain-
specific text. After embedding, we retrieve relevant
trials and their EC (D) and Trial Information (X)
using Euclidean distance. Importantly, only the
training split was embedded. During testing and
evaluation, we retrieved trials exclusively from the
embedded training split. Our experiments vary the
relevant trials (top-V) from N =1 to 5 for generat-
ing the intermediate step (R) (Section 5.3).

3.3 Intermediate Steps Generation

In EC-RAFT, the generation of intermediate rea-
soning steps (R) plays a pivotal role in creating
a structured pathway for training models. This
process begins by integrating the retrieved trial in-
formation (D) which includes the title, description
and ECs, the trial-of-interest information (X), con-
sisting of its title and description, and the desired
eligibility criteria (y) for the target study (Figure
1A). The D is retrieved from the vector database
using X's title and description while filtering out
X out of retrieved documents, with different top-/V
values applied based on the experimental config-
uration. The desired eligibility criteria (y) serve
as a hint that guides the LLM in breaking down



Statistic Train (N = 213,877)

Validation (N = 26,735) Test (N = 26,735)

Interventional Observational Interventional Observational Interventional Observational
Number of Clinical Trials 168,429 45,448 20,928 5,807 21,129 5,606
Total Inclusion Criteria 838,948 137,234 103,910 17,531 103,982 16,990
Total Exclusion Criteria 1,256,242 156,298 154,896 20,470 156,212 19,000
Mean Inclusion Criteria per Trial (+ SD) 498 +£5.11 3.02 £2.85 4.97 £5.04 3.02+2.77 492 +5.01 3.03£2.99
Mean Exclusion Criteria per Trial (+ SD) 7.46 £7.05 3.44 £3.68 7.40 £7.00 3.53 £3.64 7.39 £7.05 3.39+3.61

Table 1: Statistics of clinical trials and EC. We calculate an average and a standard deviation of the number of EC
of interventional and observational trials as these study types differ in their structure, particularly in the number of

exclusion criteria.

each criterion, connecting them to evidence derived
from retrieved studies (D) and the study informa-
tion (X).

The primary objective is to generate intermediate
reasoning steps (R) that justify how each eligibility
criterion (y) is logically constructed and justified
based on the retrieved trials (D) and the target trial
information (X). The process can be written as:

D+ X+ [Hint:y] = R (1)

These intermediate steps will later be used in
the fine-tuning steps formulated in (2). (see 3.4
for more details). These intermediate steps allow
the model to learn how to derive eligibility criteria
(y) from trial information (X) and retrieved studies
information (D).

Including retrieved trials as part of the input pro-
vides the LLM with domain-specific examples, of-
fering insights into established clinical practices.
These examples enable the model to identify pat-
terns and infer appropriate criteria for the target
study. However, discrepancies may arise when the
desired EC conflict with information from the re-
trieved trials. For instance, a retrieved trial might
exclude patients with mild hypertension, whereas
the target study explicitly includes them. In such
cases, the LLM is tasked with identifying and artic-
ulating these conflicts, justifying deviations from
established norms.

This conflict-resolution mechanism aims to en-
sure that the generated eligibility criteria (¥) are
likely to be both contextually relevant and aligned
with the specific goals of the target study, even
when they may diverge from traditional practices.
Our experiments explore the use of models includ-
ing Gemini-1.5-flash-002 (Gemini Team, 2024)
and Llama-3.1-8b-instruct (Grattafiori et al.,
2024) to synthesize intermediate steps (R).

3.4 RAFT for Generating EC

RAFT in EC-RAFT enhances the model’s ability
to generate eligibility criteria (y) by leveraging rel-
evant context retrieved from clinical trial data (D).
Unlike traditional RAFT methods (Zhang et al.,
2024) that classify documents as golden or distrac-
tors, EC-RAFT utilizes all retrieved trials holis-
tically to account for varying levels of relevance.
This ensures that the model is informed by diverse
clinical contexts during fine-tuning. In this step, we
utilized L1ama-3.1-8b-instruct as a base model
for supervised fine-tuning. We utilize Low-Rank
Adaptation (LoRA) training techniques for cost ef-
ficiency. This fine-tuning process is structured as
follows:

D+X >Rty )

This approach aligns the model’s training pro-
cess with real-world scenarios, allowing it to learn
directly from domain-specific documents in an
open-book setting (Zhang et al., 2024). By integrat-
ing reasoning steps (R), the model is encouraged
to generate both eligibility criteria (y) and output
logical intermediate steps generated in the section
above.

3.5 Generation of Eligibility Criteria

During inference, the fine-tuned model inputs the
target trial’s title and description (Figure 1B). It
retrieves relevant trials from the vector database
and uses the combined information to generate a
complete set of EC. The output includes how eli-
gibility criteria are derived (R) and the whole set
of predicted eligibility criteria (§). Similar to the
fine-tuning process, we can write this as:

D+X—>R+7¥ (3)

We generate both the reasoning path and the
predicted criteria. This allows the model to produce
a reasoning process before predicting EC, which



may improve results compared to direct inference
(Wu et al., 2024).

To evaluate the effectiveness of our approach, we
compare the performance of EC-RAFT with zero-
shot inference from L1ama-3.1-8b-instruct and
Gemini-1.5-flash. We also vary the number of
top-NN during the generation of R to evaluate its
performance across different numbers of retrieved
documents (D).

4 Evaluation

Due to the challenging nature of semi-structured El-
igibility Criteria, we employ three metrics to com-
pare our predicted output () with the ground truth
(y) to measure: 1) BERTScore for overall semantic
similarity, and 2) LLM-Guided evaluation which
only evaluate the matched pair, Pair-BERTScore,
identified by LLMs and utilize LLM-as-a-Judge
to judge capability to assess clinical relevance for
each matched pair.

4.1 BERTScore

We utilize BERTScore (Zhang et al., 2020) with the
DistilBERT (uncased) (Sanh et al., 2020) model
to assess the semantic similarity between the de-
sired and predicted EC. BERTScore evaluates align-
ment based on token-level matches between the
reference and predicted criteria, weighting these
matches by their contextual embeddings to pro-
duce a similarity score. However, BERTScore may
overestimate similarity due to the semi-structured
nature of EC and may fail to distinguish logical in-
versions between inclusion and exclusion criteria.

4.2 LLM-Guided Evaluation

We propose an LLM-guided evaluation pipeline to
assess how well-generated EC aligns with their cor-
responding reference criteria. This pipeline com-
bines (1) Pairing-and-scoring step matching EC
and calculating Pair-BERTScore (Section 4.2.1)
and (2) An additional match score using an LLM-
as-a-Judge (Section 4.2.2). Below, we provide a
general overview of the pipeline, followed by the
unique details of each metric.

1. Initial Evaluation We use
Gemini-1.5-flash-002 to identify the
most semantically and clinically relevant
predicted criterion for each reference criterion.
The model matches each reference criterion
with the most pertinent predicted criterion,
regardless of order, ensuring that all potential

matches are considered. This process captures
nuanced relationships between reference
and predicted EC by explicitly accounting
for inclusion-exclusion inversions, clinical
parameters, and eligibility thresholds. The
evaluation is generated in free-text format,
prioritizing matching accuracy and judgment
without enforcing a structured response,
which could hinder accuracy (Tam et al.,
2024). The evaluation prompt is provided in
Figure A.

2. Structured Output We use watt-tool-8B’s
(watt-ai, 2023) structured response function-
ality to convert free-text evaluations into a
JSON schema, ensuring consistency for ac-
curacy calculations (Figure B). We utilized
watt-tool-8B due to its state-of-the-art per-
formance in tool-calling despite its size (Yan
et al., 2024).

4.2.1 Pair-BERTScore

After getting the structured pairs of inclusion and
exclusion, we calculate semantic similarity using
BERTScore (Fig 2). This process enhances evalua-
tion accuracy by removing any inflated scores that
may arise from structural similarities. Note that
Pair-BERTScore only accounts for the paired EC
but not the excess generation of predicted criteria.

4.2.2 LLMe-as-a-Judge

While Pair-BERTScore measures semantic similar-
ity, it may fail to capture clinically significant dis-
tinctions between desired and predicted eligibility
criteria (y,¥). To address this, we introduce LLM-
as-a-Judge, which evaluates the clinical and logical
alignment between predicted and reference EC. For
each matched EC pair, Gemini-1.5-flash also as-
signs a clinical relevance score (0-3) based on the
degree of alignment, where higher scores indicate
more substantial clinical similarity (Figure A). We
calculate the mean of the judge’s score to measure
how well the generated EC (§) align with the de-
sired EC (y).

4.2.3 Precision-Recall

Similar to Pair-BERTScore, the judge’s score does
not account for the excess EC generated. Thus,
we also computed precision and recall to quanti-
tatively measure the agreement between predicted
and reference EC as follows
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where Nj;s represents the number of matched
reference criteria with a positive match score
(match_score > 0), Ng denotes the total number
of reference criteria, and Np is the total number of
predicted criteria after de-duplication and filtering.
De-duplication removes the exact predicted EC or
a part of the same EC.

5 Results

5.1 Comparison with zero-shot baselines

Using the ClinicalTrials.gov test split, we com-
pare EC-RAFT performance against two zero-
shot baselines: Llama-3.1-8B-Instruct and
Gemini-1.5-flash. As shown in Table 2,
EC-RAFT achieves a BERTScore of 86.35, 4.93
higher than base model L1ama-3.1-8B-Instruct
and 4.17 higher than Gemini-1.5-flash which
is a larger model (Table 2). This indicates im-
proved overall semantic similarity between the gen-
erated and reference eligibility criteria. Regarding
clinical relevance, EC-RAFT with Gemini’s R ob-
tains the highest precision and mean judge score,
along with a superior mean Pair-BERTScore. This
means that EC-RAFT can generate precise EC to
the referenced EC. Although Gemini-1.5-flash
registers a slightly higher recall, this advantage
comes at the expense of precision—Ilikely due
to its tendency to generate excess criteria. On
top of that, our model was self-improved by

using base model Llama-3.1-8B-Instruct to
generate R that could match the performance
of Gemini-1.5-flash in some areas. Our re-
sults underscore the effectiveness of incorporating
retrieval-augmented fine-tuning with intermediate
reasoning steps, as it enables the model to generate
eligibility criteria that are both semantically and
clinically relevant.

5.2 Effect of Larger model Intermediate steps

Here, we want to see if reasoning steps
can affect the fine-tuned performance of EC-
RAFT. We compare two variations differing
in the model used to generate intermediate
reasoning steps (R): Llama-3.1-8B-Instruct
and Gemini-1.5-flash. As shown in Ta-
ble 2, both approaches significantly improve
BERTScore over the baselines, with EC-RAFT us-
ing Llama-3.1-8B-Instruct achieving a slightly
higher BERTScore than the Gemini-based variant.
However, EC-RAFT with Gemini-1.5-flash ex-
hibits superior overall performance across LLM-
guided evaluations, achieving the highest precision,
recall, mean Pair-BERTScore, and mean judge
score, suggesting that its generated criteria are
more clinically aligned. These results highlight the
impact of selecting a strong LLM for generating in-
termediate reasoning steps, reinforcing that larger
models like Gemini-1.5-flash can improve the
accuracy and clinical relevance of EC generation.

5.3 Effect of LoORA hyper-parameters

LoRA (Low-Rank Adaptation) enables efficient
fine-tuning by introducing trainable low-rank up-



Model BERTScore 1

LLM-guided Evaluations

Precision T Recall T Mean Pair-BERTScore T Mean Judge Score 1

Llama-3.1-8B-Instruct 81.42
Gemini-1.5-flash 82.18
EC-RAFT (R from Llama-3.1-8B-Instruct) 86.35
EC-RAFT (R from Gemini-1.5-flash) 86.23

77.16
72.47
72.55
78.84

67.63 51.95 1.3097
78.34 63.66 1.6004
66.92 61.20 1.5932
75.89 67.76 1.7150

Table 2: Comparison between EC-RAFT and baselines (Zero-shot)

dates. We evaluate the impact of Rank () and
Scaling Factor (o) on Eligibility Criteria genera-
tion using BERTScore and LLM-guided evalua-
tions. Results in Table 3 show slightly better in
BERTScore, precision, and judge score when in-
creasing r from 64 to 128 and « from 16 to 64,
while recall remains stable, indicating that increas-
ing LoRA’s rank does not significantly enhance EC
generation ¥.

5.4 Effect of top-N retrieval

We evaluate EC-RAFT with different top-/V set-
tings to examine the impact of retrieved documents
on eligibility criteria generation. We generate R
using Llama-3.1-8B-Instruct by varying NV re-
trieved documents. Table 4 shows that increasing
N initially improves performance. BERTScore
peaks at top-N of 4 before stabilizing, and pre-
cision follows a similar trend, suggesting excess
documents may introduce noise. Recall remains
stable with minor fluctuations, while Mean Pair-
BERTScore and Mean Judge Score show slight
variations. Overall, retrieving around four relevant
documents provides modest benefits, but the over-
all impact remains limited.

5.5 Qualitative and Error Analysis

We sample a clinical trial on stroke and generate EC
using EC-RAFT and Gemini-1.5-flash (Table 5).
We found that EC from EC-RAFT are closely
matches the reference in age and thrombectomy
eligibility but omits intracranial vertebral artery in-
volvement. Meanwhile, Gemini-1.5-flash are more
restrictive, requiring prior endovascular therapy
and a strict 90-day follow-up. It also excludes
patients with a history of stroke/TTA and severe
co-morbidities, further reducing eligibility.

Overall, EC-RAFT tracks the reference more
closely, while Gemini-1.5-Flash generates a more
lengthy EC, having higher recall but lower preci-
sion. This highlights the trade-off between preci-
sion and recall in automated EC generation.

6 Conclusion

In this work, we introduced EC-RAFT, a frame-
work that leverages retrieval-augmented fine-tuning
and synthesized intermediate reasoning to auto-
mate the generation of clinical trial eligibility cri-
teria. EC-RAFT generates structured, robust, and
clinically relevant eligibility criteria directly from
trial descriptions. Our experiments on a large-
scale ClinicalTrials.gov dataset demonstrate that
EC-RAFT outperforms zero-shot baselines despite
being much smaller in model size, achieving higher
BERTScores and clinical alignment as evidenced
by LLM-guided evaluations. Notably, incorporat-
ing intermediate reasoning—proves instrumental
in enhancing both the precision and overall quality
of the output. While challenges remain, EC-RAFT
represents a significant step towards automating
the complex process of clinical trial design. Future
work will refine the intermediate steps generation
process and scale up model size and compute for
better performance.

Limitations

While EC-RAFT demonstrates promising results
in automated EC generation, several limitations
should be acknowledged. First, our approach relies
on LLMs, which can produce plausible but inac-
curate or inconsistent criteria that require human
expert validation. Second, training data comes pri-
marily from public clinical trial registries, which
may not fully represent the diversity of trial designs
or specialized medical domains. Third, our evalu-
ation metrics (BERTScore and LLM-as-a-Judge)
provide computational approximations of gener-
ated EC but may not fully capture clinical rele-
vance or practical applicability. Specifically, the
latter may suffer from inconsistent responses and
bias. The performance may vary between differ-
ent medical specialties and trial types, particularly
for rare diseases or novel therapeutic approaches
where training data are limited. Future work should
address these limitations through expanded train-



Model

BERTScore 1

LLM-guided Evaluations

Precision T Recall T Mean Judge Score T Mean Pair-BERTScore 1

EC-RAFT (r = 64, oo = 16)
EC-RAFT (r = 128, o = 64)

86.1712
86.2426

70.69
71.08

67.76 1
67.70 1

.6039
.6046

61.73
61.76

Table 3: Comparison between different LoRA configuration (Rank r and Alpha «)) with top-IV =2

Top-N BERTScore 1

LLM-guided Evaluations

Precision T Recall T Mean Pair-BERTScore ¥ Mean Judge Score 1

1 0.861739 70.73 67.70 61.69
2 0.861712 70.67 67.76 61.76
3 0.863107 72.05 66.82 61.10
4 0.863507 72.55 66.92 61.21
5 0.863454 72.47 67.12 61.37

1.6003
1.6039
1.5897
1.5932
1.5981

Table 4: Comparison of different top-/V configurations for EC-RAFT

Multicentre ObseRvational Study in Posterior mecHanical thrombEctomy: conscioUs Sedation vs
General aneSthesia: MORPHEUS STROKE REGISTRY (NCT05082896)

Reference Criteria

Inclusion Criteria:

- Subject aged > 18 years

- Evidence of posterior
occlusion

- Patients eligible for mechanical
thrombectomy

arterial

Exclusion Criteria:

- Patient’s refusal to participate

- Arterial recanalization prior to
endovascular thrombectomy

Sex: ALL
Ages:
- Minimum Age: 18 Years

18-64, Older Adult: 65+):
OLDER_ADULT, ADULT
Accepts Healthy Volunteers: No

- Age Group (Child: birth-17, Adult:

Inclusion Criteria:

- Age > 18 years

- Acute ischemic stroke with occlusion
of the basilar artery

or P1 segment of the posterior cerebral
artery

- Treatment with endovascular therapy
- Treatment initiation within 24 hours
after stroke onset

- Informed consent from patient or le-
gal representative

Exclusion Criteria:

- Pre-existing conditions with signifi-
cant impact on functional outcome
(pre-stroke mRS > 1)

- Intracranial hemorrhage

- Pregnancy

- Participation in other clinical trials

Sex: ALL

Ages:

- Minimum Age: 18 Years

- Age Group: OLDER_ADULT,
ADULT

Accepts Healthy Volunteers: No

Gemini-1.5-flash

Inclusion Criteria:

- Confirmed diagnosis of ischemic
stroke due to posterior circulation
large vessel occlusion (PC LVO)
demonstrated by imaging (CTA or
MRA).

- Underwent endovascular therapy
(EVT) for the PC LVO.

- Received either conscious sedation
OR general anesthesia during EVT.

- Able to complete at least 90 days of
follow-up.

- Provided informed consent to partici-
pate in the study.

Exclusion Criteria:

- Contraindications to endovascular
therapy (EVT).

- Ischemic stroke not due to PC LVO
(e.g., anterior circulation stroke).

- Hemorrhagic stroke.

- Incomplete follow-up data at 90 days
post-EVT.

- History of previous stroke or Tran-
sient Ischemic Attack (TIA).

- Severe co-morbidities that may con-
found outcome assessment.

Sex: ALL

Ages:

- Minimum Age: 18 Years

- Maximum Age: 90 Years

- Age Group: ADULT,
OLDER_ADULT

Accepts Healthy Volunteers: No

Table 5: Comparison of NCT05082896’s Eligibility Criteria: Reference, EC-RAFT, and Gemini-1.5-flash
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A Appendix

This appendix provides documentation of the
prompts used in EC-RAFT for EC generation. The
following sections detail the exact prompts, imple-
mentation notes, and practices developed during
our research.

A.1 LLM-guided Evaluation Prompt

To ensure a standardized and clinically grounded
evaluation, we adapt the scoring methodology from
the Evaluation Guideline for Assessing Clinical
Relevance between an EC Pair (Su et al., 2023).
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The adapted framework categorizes EC similarity
into four levels:

¢ Clinical relevance 3 — Clinically identical
ECs.

¢ Clinical relevance 2 — Strongly relevant due
to factors like disease progression or epidemi-

ology.

* Clinical relevance 1 — Loosely relevant due
to general treatment plans, disease progres-
sion, or epidemiological factors.

¢ Clinical relevance 0 — Irrelevant from a clini-
cal perspective.

The actual prompt can be found in figure A. The
matched EC pairs and their scores can be found in
figure B.

A.2 LLM-guided Evaluation JSON Schema

After the initial evaluation, we utilize
watt-tool-8B to convert the free-text evaluation
into a structured JSON format for quantitative
analysis in Section 4.2. Since each reference
criterion can match multiple predicted criteria, the
predicted values are stored as a list of strings to
accommodate the one-to-many relationship.

A.3 Implementation Details & Computational
Cost

Our default LoRA configuration includes a Rank
of 64, a of 16, and dropout of 0.1, except in section
5.3. We train on four NVIDIA A100 GPUs, requir-
ing 192 to 470 GPU-hours per model, depending on
the top-/V value, totaling around 2,200 GPU-hours
across this paper. Our best-performing model is
trained in 380 hours, costing approximately 452.20
USD at a market rate of 1.19 USD per GPU-hour.
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LLM-guided Evaluation Prompt

Please evaluate the clinical relevance of the following two
eligibility criteria on a 4-point scale (0-3). Below is an
example of a clinical situation by clinical relevance score
and the corresponding EC pair.

Clinical relevance 3: The two eligibility criteria are es-
sentially identical clinically.

Examples:

* EC1: "[exclusion] serum albumin is 2.4 g/dL or
less"
EC2: "[inclusion] serum albumin is 2.4 g/dL or
more"

e EC1: "Minimum Age : 18 Years"
EC2: "Minimum Age : 18 Years"

Clinical relevance 2: The two eligibility criteria have
strong relevance due to factors such as disease progression
or epidemiology.

Example: ...omitted for brevity...

...omitted for brevity...

Evaluation Process

For each reference criterion, compare it to the relevant
predicted criteria. If no relevant predicted criterion exists,
state this explicitly. The evaluation process is as follows:

1. Recite the reference exact criterion and state explic-
itly if it is from [inclusion] or [exclusion].

. Search the predicted criteria list to identify the
relevant matches, regardless of order (comma-
separated), and explicitly state which part of the
predicted criteria each match comes from ([inclu-
sion], [exclusion], [age], [sex], [accepts healthy vol-
unteers]).

. Recite the reference Sex, Ages, and Accepts
Healthy Volunteers one at a time and compare
them with the relevant predicted values.

. Provide a reason explaining how the criteria match
or differ.

. Assign a match score (0-3) based on the clinical
relevance of the predicted criterion to the reference
criterion.

. If no predicted criterion matches the reference, state
that explicitly and assign a score of 0.

At the end of the evaluation, please provide:

¢ Unmatched Predicted Criteria:

— Unmatched Predicted Inclusion Criteria:
List all predicted inclusion criteria that were
not matched to any reference criteria (rel-
evance score = (). No explanation is
needed—just list them (comma-separated).

— Unmatched Predicted Exclusion Criteria:
List all predicted exclusion criteria ...Same
as before, omitted for brevity...

Figure A: LLM-guided Evaluation Prompt



LLM-guided Evaluation JSON Schema

{
"inclusion_criteria”: [
{
"reference”: "criteria”,
"predicted”: ["match”"],
"reason"”: "explanation”,
"match_score”: 3
3
]Y
"exclusion_criteria”: [
{
"reference”: "criteria”,
"predicted”: ["match"],
"reason”: "explanation”,
"match_score”: 2
3
]’
"sex": {
"reference”: "value",
"predicted”: [""],
"reason": "explanation”,
"match_score”: 0
}’
"age": {
"reference”: "value",
"predicted”: ["match”],
"reason": "explanation”,
"match_score”: 2
}’
"accept_healthy_volunteer”: {
"reference”: "value",
"predicted”: ["match"],
"reason"”: "explanation”,
"match_score”: 1
})
"unmatched_predicted_criteria”: {
"unmatched_predicted_inclusion
_criteria”: ["unmatched”"],
"unmatched_predicted_exclusion
_criteria”: ["unmatched”]
}
3
.

Figure B: JSON Schema parsed from free-text judge
response:
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