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Figure 2: Convolutional filter saliency over 150 epochs of SGD on CIFAR-10.
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Figure 3: Function samples drawn from the exponential kernel.

A DETAILS OF MOGP

A.1 ON THE CHOICE OF THE “EXPONENTIAL KERNEL”

We justify our choice of the exponential kernel as a modeling mechanism by presenting visualizations

of saliency measurements collected during training, and comparing these to samples drawn from the
exponential kernel kq(t,t") = %, as shown in Figs. 2-3. Both the saliency and the function
samples exhibit exponentially decaying behavior, which makes the exponential kernel a strong fit for
modeling saliency evolution over time.

Furthermore we note that the exponential kernel was used to great effect in Swersky et al. (2014)
with respect to modeling loss curves as a function of epochs. Loss curves also exhibit asymptotic
behavior, similar to saliency measurement curves, thus providing evidence for the exponential kernel
being an apt fit for our task.

A.2 PREDICTIVE DISTRIBUTION OF THE SALIENCY

Given a vector of observed saliency s;.;, the MOGP regression model can provide a Gaussian
predictive distribution p(s,|S1.1) = N (pee/|1:¢, Kyr|1.¢) for any future saliency s, with the following

posterior mean vector and covariance matrix: (1.4 = per + Ko Kif B — ), Koy =
-1 A Masa’=1,...,M

Ky — KypgKy, K[I,t] where Ky = [cov[sfi, s7 ]]7:5, ;7" . Then, the a-th element pf)

of /)1, is the predictive mean of the saliency sg,. And the [a, a']-th element of K[/, denoted as

4 . . s . . ’
041, 1s the predictive (co)variance between the saliency s7, and s7; .

B SUBMODULARITY OF E[p7]

In (7), the problem of choosing m from {0, 1}M can be considered as selecting a subset A of
indexes from {1,..., M} such that m{ = 1 for a € A, and m{ = 0 otherwise. Therefore,

P(m) £ Ep(sy5,.) o7 (m, Bs)] can be considered as a set function which we will show to be
submodular. To keep notation consistency, we will remain using P(m) instead of representing it as a
function of the index subset A.

Lemma 2 (Submodularity). Let m/, m” € {0,1}M, and e'®) be arbitrary M-dimensional one
hot vector with 1 < a < M. We have P(m/ V () — P(m/) > P(m" V () — P(m") for any
m' <m/”, m Ae® =0, andm” Ael® = 0.

12



Under review as a conference paper at ICLR 2021

Proof. According to (4),
Ep(sriaiolor(m, B)] = Ep(srjar.) {HT}LE%TX [mr - 51, st|lmrllo < By, mr < m]

Let a(m) £ argmaxy,, [mr - 87, s.t.||mr||o < By, mpr<m] return the optimized mask m

given any m, A,,, = min(a(m) ® s7) be the minimal saliency of the network elements selected at
iteration T for P(m). Then, we have

P(m v el®) = Byayis, [prim v e, By
= EP(ST|§1:7~,) [ﬁT(ma BS) —Am + InaX(S%U Am)}

The second equality is due to the fact that the network element v$. would only replace the lowest
included element in m in order to maximize the objective. Then,

P(m Ve ) — P(m)

= Ep(spl51.0) [p7(m, Bs) — A + max(sT, Am)] — Ep(srs,.,) [or(m, B)]

= Ep(sr(s1.) [~ Am + max(s7, Am)]

= Ep(sr(ar.) [max(s7 — Am, 0)] )

Given m’ < m”, we have A,,,y < A, since mr < m in a(m’) is a tighter constraint than that in
a(m'). Consequently, we can get s¢ — A, > s¢ — Ay, and thus

[P(m/ Vv el®@) — P(m')] > [P(m" v e®) — P(m")] .

C PROOF OF LEMMA 1

We restate Lemma 1 for clarity.

Lemma 1. Let e\ be an M-dimensional one-hot vectors with the i-th element be 1. ¥ 1 <

a,b < M; m € {0,1}M s.t. m A (e v e®)) = 0. Given a vector of observed saliency 81 .; , if
B 2 Mg“\l:t and pigy,y 2 0, then Ep(s s, [pr(m v e(b))] — Ep(srfar) [pr(m Vv e@)] <

b _,a b _,,a
ulj’qllzt@(%) + ng(%) where ® and ¢ are standard normal CDF and PDF

respectively, and 0 = \/U%let + UbTb|1;t — 20%’1:t . In particular, if % > 1, then
Ep(arfsi) [pr(m Vv e®)] —Eparis,.) [or(mVve®)] <e

To prove this Lemma, we prove the following first:

Lemma 3. E,5.5,.) [pr(mVe®)] —Eysrp5..) [pr(mVe®)] < Emax(s) — s¢,0)].

Proof. Due to (9), we have

E p(sT|81:¢) |:pT(m Vel )} - Ep(sT|s1 +) {pT(m V e(a))}
— P{m v e®) - Pm) - (P(m v ) - P(m))

=Ep(sr|si.) [Inax(st A, )] — Ep(sr|ar.,) (Max(sT — A, 0)]

= Ep(srlsr.) M [ x(sg« A, 0) — max(sf — Am,O)] (10)
= Ep(srisr.0) [max(sl’T $7y Ay — 87) — max(0, Ay, — s‘:’p)} (11)
< Ep(srsr) [max(sy — s7,0)] (12)

The equality (11) is achieved by adding A,,, — s in each term of the two max functions in (10). The
inequality (12) can be proved by considering the following two cases:
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Table 4: Comparing log likelihood of test data for Independent GPs (GP) vs. MOGP with n latent
functions (n-MOGP) on collected saliency measurements from CIFAR-10 training.

Small dataset Medium dataset Large dataset
Lyr1 Lyr2 Lyr 3 Lyr1 Lyr2 Lyr3 Lyr1 Lyr2 Lyr3

GP -1.19 -1.08 —1.07¢5 —-0.96 —-0.93 —247 —-049 —-048 —-1.33
4-MOGP -1.15 —-0.89 —-2.44 -091 —-0.80 —2.20 —-0.38 —-0.39 —1.25
8-MOGP —-1.09 —-0.86 —2.38 —-0.84 -0.78 —-2.16 —-0.32 —0.35 —1.20
18-MOGP -0.97 -0.80 —-2.33 —-0.89 —-0.76 —-2.13 -031 —-0.35 —1.20
32-MOGP -096 —-0.81 —-232 -0.79 -0.74 —-2.13 -0.31 —-0.34 —-1.20

If Ay, — 5% > 0, then
max(sh — 5%, Ay — %) — max(0, Ay, — 5%)
= max(sy — 5%, A — %) — (A — 5%)
= max(s) — 5% — (A — 5%),0)
< max(sh — 5%,0) .
If Ay, — 5% <0, then

max(sh — 5%, Ay — 5%) — max(0, Ay, — %)

= max(sh — 5%, Ay, — 5%)

< max(s) — s%,0) .
O

Next we utilize a well known bound regarding the maximum of two Gaussian random variables
(Nadarajah & Kotz, 2008), which we restate:

Lemma 4. Let s°, s° be Gaussian random variables with means p®,u® and standard devia-
tions 0%, o®, then E[max(s?,s?)] < /ﬂ@(“b;“a) + Mbq)(“b;“a) + 9¢(“h;"a) where 0 =
VIoP2 + [09]2 — 2cov(sP, s%) and ®, ¢ are standard normal CDF and PDF respectively.

Then,

Ep(srfsy.) [max(sy — s, 0)]
= ]EP(ST|§1;t)[ma‘X(3l77“’ 3(71“)] - Ep(sﬂél;t)[s%]

b a b a
'uT|1:t - lu’T\l:t MT|1:tlj’T\1:t
o s Qp(—— 1~

iy | gLt

b a b a b a
MT\lzt - MT|1:t IU’T\l:tMTH:t a 'U’T\l:t - luT\l:t
::ulihl:tq)( 0 ) +9¢( 0 ) +:“’T|1:t o 0 -1

b
Py — “aT|1:t)

0

a

< (lu’l%\l:t + p’%\l:t)q)( ~ M7

b
“Tu:tﬂ%u:t)

S lul’}'|1:t(1)( 0

+ 06 (
b e

The first inequaltiy follows from Lemma 4. The second inequaltiy is due to ® (w) <1

and u“T‘M > 0.

More Experimental Results and Experimental Details

C.1 GP vs. MOGP LOG-LIKELIHOOD ON CIFAR-10 DATASET

Table 4 presents the results of the experiment in Section 4.1 for the CIFAR-10 dataset.
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C.2 DATA PREPROCESSING

We followed the same data preprocessing procedure for both our small scale and ImageNet ex-
periments. To standardize the saliency measurements for a training dataset $;.; in our mod-
eling experiments we clip them between 0 and an upper bound computed as follows: ub =
percentile(81.t,95) x 1.3. This procedure removes outliers. We used 1.3 as a multiplier, as this
upper bound is used to transform test dataset as well, which may have higher saliency evaluations.

After clipping the training data, we perform a trend check for each element v* by fitting a Linear
Regression model to the data s{.,. For s{., with an increasing trend (i.e., the linear regression model
has positive slope) we perform the transformation ., = ub — s¢.,. The reasoning behind this is that
the exponential kernel strongly prefers decaying curves. After this preprocessing, we scale up the
saliency measurements to a [0, 10] range: §1.; = 1.+ X 10. We found that without scaling to larger
values, log-likelihood of our models demonstrated extremely high positive values due to small values
of unscaled saliency measurements.

We transform the test data in our modeling experiments S;1.7 with the same procedure using the
same ub and per-element v® regression models as computed by the training data. We measure
log-likelihood after this transformation for both the test dataset in our small scale experiments.

During the BEP Algorithm, the same steps are followed, however we inverse the trend check
transformation (8¢., = ub — s%.;) on the predicted MOGP distribution of s prior to sampling for
estimation of A(-).

C.3 EXPERIMENTAL DETAILS

To train our CIFAR-10 and CIFAR-100 models we used an Adam optimizer (Kingma & Ba, 2015)
with an initial learning rate of 0.001. The learning rate used an exponential decay of £ = 0.985, and a
batch size of 32 was used. Training was paused three times evenly spaced per epoch. During this pause,
we collected saliency measurements using 40% of the training dataset. This instrumentation subset
was randomly select from the training dataset at initialization, and remained constant throughout
the training procedure. We performed data preprocessing of saliency evaluations into a standardized
[0, 10] range.'> We used (3) to measure saliency of neurons/convolutional filters. For the convolutional
layers we used 12 latent MOGP functions. For the dense layer we used 4 latent MOGP functions.

For our ResNet-50 model we used an SGD with Momentum optimizer with an initial learning rate of
0.1. The learning rate was divided by ten at t = [30, 60, 80] epochs. We collected saliency data every
5 iterations of SGD, and averaged them into buckets corresponding to 625 iterations of SGD to form
our dataset. We used a minimum of 4 latent functions per MOGP, however this was dynamically
increased if the model couldn’t fit the data up to a maximum of 15.

We sampled 10K points from our MOGP model to estimate A(-) for CIFAR-10/CIFAR-100. For
ResNet we sampled 15K points. We repeated experiments 5 times for reporting accuracy on CIFAR-
10/CIFAR-100.

C.4 PRUNING ON RESNET

ResNet architecture is composed of a sequence of residual units: Z, £ F(P;_1) 4+ P,_1, where P,_;
is the output of the previous residual unit Z,_; and ‘4’ denotes elementwise addition. Internally, 7
is typically implemented as three stacked convolutional layers: F(P;_1) = [z, 0 27, © 2¢,] (Py_1)
where zy,, 2s,, z¢, are convolutional layers. Within this setting we consider convolutional filter
pruning. Although 2z, , z,, may be pruned using the procedure described earlier. Pruning z,, requires
a different procedure. Due to the direct addition of P,_; to F(P,_1), the output dimensions of Z,_;
and z,, must match exactly. Thus a ResNet architecture consists of sequences of residual units of
length B with matching input/output dimensions: ¢ = [Zele=1,...., s:t. dim(Pq) = dim(P3) =
... =dim(Pp). We propose group pruning of layers [zy,]¢=1,... g Where filters are removed from

.....

all 2, in a residual unit sequence in tandem. We define s([¢,c]) = Zle s([s, c]), where s(-) is
defined for convolutional layers as in (3). To prune the channel ¢ from ¢, we prune it from each layer

5Generally, saliency evaluations are relatively small (< 0.01), which leads to poor fitting models or positive
log-likelihood. Precise details of our data preprocessing is in Appendix C.2.
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in [2¢3]¢=1,... p. Typically we pruned sequence channels less aggressively than convolutional filters
as these channels feed into several convolutional layers.
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