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ABSTRACT

While large language models (LLMs) excel on generation tasks, their decoder-only
architecture often limits their potential as embedding models if no further repre-
sentation finetuning is applied. Does this contradict their claim of generalists? To
answer the question, we take a closer look at Mixture-of-Experts (MoE) LLMs.
Our study shows that the expert routers in MoE LLMs can serve as an off-the-shelf
embedding model with promising performance on a diverse class of embedding-
focused tasks, without requiring any finetuning. Moreover, our extensive analysis
shows that the MoE routing weights (RW) is complementary to the hidden state
(HS) of LLMs, a widely-used embedding. Compared to HS, we find that RW is
more robust to the choice of prompts and focuses on high-level semantics. Moti-
vated by the analysis, we propose MOEE combining RW and HS, which achieves
better performance than using either separately. Our exploration of their combi-
nation and prompting strategy shed several novel insights, e.g., a weighted sum
of RW and HS similarities outperforms the similarity on their concatenation. Our
experiments are conducted on 6 embedding tasks with 20 datasets from the Massive
Text Embedding Benchmark (MTEB). The results demonstrate the significant im-
provement brought by MOEE to LLM-based embedding without further finetuning.

1 INTRODUCTION
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Figure 1: Comparison of hidden state (HS) and MOEE (ours) on six types of tasks from the Massive
Text Embedding Benchmark (MTEB), where MOEE consistently outperforms HS on all tasks. Both
HS and MOEE are extracted from DeepSeekMoE-16B (Dai et al., 2024) without further finetuning.

Mixture-of-Experts (MoE) (Jacobs et al., 1991; Jordan & Jacobs, 1994), as a versatile architecture
originally developed in the 1990s, can improve model generalization and reduce inference cost by
distributing tasks to specialized experts (Shazeer et al., 2017). Over time, MoE is gaining prominence
in fields such as natural language processing (Shen et al., 2023) and computer vision (Li et al., 2023;
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Zong et al., 2024; Lin et al., 2024; Shi et al., 2024), especially attracting growing attention in the
development of large language models (LLMs) (Muennighoff et al., 2024a; Dai et al., 2024; Jiang
et al., 2024). A key component of MoE is the dynamic routers, which intelligently assign each input
to the most relevant expert. This allows MoE to tailor its computations to the unique characteristics
of each input, optimizing both efficiency and accuracy.

However, most recent LLMs and MoE LLMs are built upon the decoder-only architecture trained for
autoregressive next-token prediction. While excelling on generative tasks, their final or intermediate
hidden state (HS) is not designed to capture the key features of input tokens and cover all their
information. Instead, HS can be biased towards the information of the next output token. Although
it is a common empirical practice to extract the last token’s hidden state (HS) as embedding (Wang
et al., 2024), it may even perform much poorer than smaller encoder models specifically trained
for embedding tasks (Lei et al., 2024; Muennighoff et al., 2024b). Take classification as an example,
inputs with subtly different semantics may be associated with the same label, so the last HS aiming
to predict the label may ignore the input difference. Although extra finetuning specifically for
representation learning (Lee et al., 2024; Muennighoff et al., 2024b) can greatly strengthen LLM’s
capability as an embedding model, it raises the question of whether pre-trained LLMs can be claimed
as generalists, given the broad application of embedding tasks.
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Figure 2: Complementarity of DeepSeekMoE-
16B’s routing weights (RW) and hidden state
(HS) as embedding in the task of similarity
ranking on STS12 datasets. In the error analysis
of instances where at least one embedding fails1,
we report the proportion of (1) HS succeeds
✓and RW fails ✗; (2) HS fails and RW succeeds,
and (3) both RW and HS fail. In most cases, the
proportion of (1)+(2) exceeds (3), indicating the
complementarity of RW and HS.

Can we extract high-quality embedding directly
from LLMs without additional training? In this
paper, we find a Yes-answer to the question when
studying MoE LLMs. Our main discovery is that
the routers in MoE can serve as an off-the-shelf
embedding model and the produced routing
weights (RW) provide complementary infor-
mation to the widely used HS as embedding.
Compared to HS focusing on the final prediction
results from the input, RW reflects the interme-
diate reasoning choices of MoE on the input
for each layer of LLMs. Hence, as a byproduct
of the routing mechanism, RW completes the
input information missing in HS. As evidence,
our comparative analysis of RW and HS shows
that they reveal different clustering structures
and topics of inputs, while RW captures the
input’s underlying themes and semantic structures.
Moreover, we conducted an error analysis of the
embedding task instances on which either HS or
RW failed. As shown in Fig. 2, the proportion
of cases where one embedding succeeds and the
other fails exceeds 50%, indicating a large room
for improvement if combining RW and HS.

Motivated by the analysis, we propose the first attempt to combine RW and the widely-used HS
of MoE LLMs, resulting in a training-free, contextual-rich, and holistic embedding called “MoE
Embedding (MOEE)” that excels in embedding tasks. Specifically, we experiment with various
combination strategies and find that while simple concatenation of RW and HS (denoted by MOEE
(concat)) improves either of them, a weighted sum of the two similarities computed on RW and
HS separately (denoted by MOEE (sum)) often achieves the best results. The weighted sum of
similarities avoids the fusion and alignment between the two different types of embedding while
allowing us to balance output-dependent information with input-sensitive features, optimizing
performance across diverse tasks.

We conduct extension evaluations of MOEE and compare it with baselines on the Massive Text Embed-
ding Benchmark (MTEB) (Muennighoff et al., 2022), which covers a wide range of tasks designed to
test embedding quality. MOEE consistently outperforms embedding derived solely from HS or MoE’s

1Success/Failure is determined by how closely the ranking based on the embedding matches the ground truth,
with deviations beyond a threshold marked as failures.
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RW, as shown in Figure 1. Notably, MOEE (sum) achieves significant gains in tasks requiring an
in-depth understanding of the input, such as semantic textual similarity, classification, and clustering.

The rest of the paper is organized as follows: §2 reviews related work on existing embedding methods
and MoE. §3 outlines our methodology for integrating RW of MoE with the widely-used HS embed-
ding. §4 reports experimental results on MTEB, highlighting MOEE’s advantages on performance
and interpretability. Finally, §5 discusses the implications and future research directions. Results
in the paper except §4 are conducted on DeepSeekMoE-16B (Dai et al., 2024) unless specified.

2 RELATED WORK

Training-Based Embedding (pre-LLM) Early work on sentence embedding, such as
SkipThought (Kiros et al., 2015), leveraged the distributional hypothesis by predicting surrounding
sentences from a given input. These methods typically employed sequence-to-sequence architectures,
following the success of Word2Vec (Mikolov, 2013). Recent advancements have shifted toward con-
trastive learning, which has gained prominence for its effectiveness in self-supervised representation
learning. Contrastive methods, such as SimCSE (Gao et al., 2021), exploit different views of the same
sentence through data augmentation or dropout, treating different outputs as positive pairs and negative
pairs as unrelated sentences. This approach helps models better capture semantic similarities by max-
imizing the similarity between positive pairs while minimizing it between negative ones. Contrastive
learning has been widely applied in sentence embedding due to its simplicity and competitive per-
formance (Wu et al., 2020; Wang et al., 2021; Meng et al., 2021). Other methods like InfoNCE (Oord
et al., 2018) and MoCo (He et al., 2020) have also contributed to the development of contrastive frame-
works, further enhancing embedding quality. While effective, these approaches rely on static architec-
tures that may overlook input variability. In contrast, MoE models dynamically route inputs through
specialized experts, producing more nuanced, context-aware embedding without additional training.

Training-Based Embedding with LLMs Recent advances in language modeling have demonstrated
the potential of LLMs to generate high-quality sentence embedding (Muennighoff et al., 2024b; Meng
et al., 2024). For instance, some methods, such as Sentence-T5 (Ni et al., 2021), employ contrastive
learning and are capable of generating embedding that rivals fine-tuned models, even with billions of
parameters. However, these methods often depend on complex pretraining and large-scale contrastive
objectives, limiting their flexibility for new tasks without retraining.

Training-Free Embedding with LLMs Training-free approaches seek to directly extract embedding
from pre-trained LLMs without the need for additional finetuning. While this process is relatively
straightforward for encoder-decoder models (Ni et al., 2021), it presents challenges for the more
common decoder-only LLMs, where deriving meaningful embedding is less intuitive. Current
approaches typically utilize the generated hidden state(s) of these models (Jiang et al., 2023). To
improve the quality of these embedding, prompt-based techniques have gained traction (Jiang
et al., 2022; Lei et al., 2024). One such method, Prompt with Explicit One Word Limitation
(PromptEOL) (Jiang et al., 2023), distills sentence meaning into a compact embedding by prompting
the model with the instruction: ‘This sentence: “[text]” means in one word: ’.

In pre-trained decoder-only LLMs, embedding is typically derived from the hidden state of the final
layer. Given an input sequence x = [x1, x2, . . . , xT ], let H(l) ∈ RT×d represent the hidden state
at the l-th layer, where T is the sequence length, d is the hidden state dimension, and l = 1, 2, . . . , L
is the layer index.

To extract a single embedding eHS that represents the entire input sequence, one approach is to use
the last token’s hidden state in the final layer, expressed as:

eHS = H
(L)
T ∈ Rd

Another approach is to apply pooling over all tokens in the last layer. For example, mean pooling
averages the hidden states as: 1

T

∑T
i=1 H

(L)
i . These methods provide flexibility based on task

requirements, with the resulting embedding capturing the context of the input sequence as modeled
by the LLM.

Mixture-of-Experts (MoE) MoE models have been predominantly used in multitask learning and
efficient large-scale training scenarios (Shazeer et al., 2017). However, their potential for generating
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instance-level embedding has been underexplored. Our method leverages the routing decisions made
by MoE models to generate embedding that are sensitive to the input’s structure and semantics. This
results in more flexible and interpretable embedding compared to static models, without the overhead
of task-specific retraining.

3 MIXTURE-OF-EXPERTS EMBEDDING (MOEE)

Our approach leverages the dynamic routing mechanisms of pre-trained, decoder-only LLMs equipped
with MoE modules to generate enriched, input-sensitive embedding. This section details the key
steps of our methodology, including embedding extraction, expert routing across layers, and the final
integration of embedding—all achieved using pre-trained models without any additional training.

3.1 MOE ROUTING WEIGHTS (RW) AS EMBEDDING

Our approach capitalizes on the dynamic routing capabilities of MoE models embedded in pre-trained,
decoder-only LLMs. These MoE modules operate across multiple layers, enabling the model to
specialize in processing different aspects of the input at varying depths.

Each MoE model at layer l consists of N (l) experts, denoted by E
(l)
i , where i = 1, 2, . . . , N (l). Each

expert is a specialized sub-network that focuses on specific input characteristics at that layer, allowing
for a more granular understanding of the input as it passes through the network. However, the true
strength of this architecture lies in the dynamic routing mechanism, governed by a gating function
g(l)(H(l)) ∈ RN(l)

, which determines which experts will be activated at each layer based on the input.

This gating function outputs a probability distribution over the available experts in each layer, dynami-
cally selecting the most relevant ones for the current input. The routing weights g(l)i (H(l)) indicate the

contribution of each expert to the final output of layer l, formulated as:
∑N(l)

i=1 g
(l)
i (H(l))E

(l)
i (H(l)),

where
∑N(l)

i=1 g
(l)
i (H(l)) = 1, ensuring a weighted combination of experts. The gating function is

typically implemented as a softmax over a set of logits z(l)(H(l)), making the routing decision both
flexible and data-driven:

g
(l)
i (H(l)) =

exp(z
(l)
i (H(l)))∑N(l)

j=1 exp(z
(l)
j (H(l)))

.

By leveraging the routing weights from all layers, our approach captures a richer representation
of the input that accounts for both shallow and deep contextual features. This enables the model
to provide nuanced information at every level of abstraction, which is critical for tasks requiring
sensitivity to both low-level and high-level input details.

By concatenating the dynamic routing weights from all layers, we form a comprehensive routing-
based embedding eRW:

eRW = [g(1)(H(1));g(2)(H(2)); . . . ;g(L)(H(L))] ∈ R
∑L

l=1 N(l)

.

This embedding captures how the input is routed through different experts across all layers, offering
a holistic view of the model’s interaction with the input. Importantly, it reflects the full depth of the
model’s decision-making process, making it a powerful representation for downstream tasks where
diverse semantic and structural features of the input are essential.

3.2 COMPARATIVE & COMPLEMENTARY ANALYSIS OF ROUTING WEIGHTS & HIDDEN STATE

In this section, we investigate how routing weight (RW) embedding and hidden state (HS) embedding,
generated from MoE models, capture different aspects of input data. Understanding the distinct
roles these embedding play is crucial to determining how they complement each other. While HS
embedding from pre-trained LLMs provides a broad, context-driven representation of sentences,
they may overlook the nuanced, token-specific information that RW embedding can capture through
MoE’s dynamic routing.

This distinction suggests that RW and HS may excel in different contexts, potentially encoding
complementary information. To explore this, we first analyze their clustering behavior using k-means
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Table 1: Correlation of the clustering re-
sults achieved on the routing weight (RW)
and hidden state (HS) embedding extracted
from MoE LLMs. Low scores indicate the
complementarity of RW and HS.

Metric Score (max value)

Adjusted Mutual
Information (AMI) 0.29 (1.00)

Normalized Mutual
Information (NMI) 0.29 (1.00)

Jaccard Similarity 0.06 (1.00)
Exact Matching (%) 45.54% (100.00%)

HS

Cluster 1 Cluster 2 Cluster 3

MoEE

Figure 3: Word clouds of the top-20 topics from 3
clusters achieved on RW and HS separately, highlighting
their captured distinct semantic features.
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Figure 4: Heatmap of Spearman’s rank correlation between
RW and HS embedding achieved using nine different
prompts (defined in Table 2). The top-left (HS-HS) and
bottom-right (RW-RW) blocks show the correlations
between embedding when using different prompts, with
mean scores of 0.52 and 0.63 (excluding the diagonal
entries), respectively. This implies RW is more robust to
varying prompts than HS. The top-right and bottom-left
blocks reflect correlations between RW and HS when using
the same or different prompts, both with a mean score of
0.51. This lowest score indicates the complementarity
between RW and HS.

Table 2: Prompts used in Fig 4-5.

ID Prompt
1 This sentence: *sent* means in one

word:
2 In one word, describe the style of

the following sentence - *sent*:
3 In one word, describe the sentiment

of the following sentence (positive,
neutral, or negative) - *sent*:

4 In one word, describe the tone of
the following sentence - *sent* (e.g.,
formal, informal, humorous, seri-
ous):

5 In one word, describe the intent be-
hind the following sentence (e.g.,
request, suggestion, command) -
*sent*:

6 In one word, rate the complexity of
the following sentence (simple, mod-
erate, complex) - *sent*:

7 In one word, describe whether the
following sentence is subjective or
objective - *sent*:

8 In one word, describe the language
style of the following sentence (e.g.,
academic, conversational, literary) -
*sent*:

9 In one word, describe the grammat-
ical structure of the following sen-
tence (simple, compound, complex)
- *sent*:

clustering and perform a correlation analysis to quantify the differences between their respective
cluster structures. We then leverage the BERTopic framework (Grootendorst, 2022) to examine
the topics associated with each cluster, providing insights into the embedding’s capacity to capture
thematic content. Finally, we evaluate their performance in identifying semantically similar text
pairs, further confirming their complementary nature.

RW and HS embedding exhibit distinct clustering behaviors and encode different topics. Our
analysis shows that the clustering results from RW and HS embedding are markedly different. As
reflected in Table 1, the clustering metrics show moderate overlap (AMI and NMI at 0.29), but with
a low Jaccard Similarity of 0.06 and only 45.54% exact matching2 between clusters, underscoring
the distinct ways each method structures the data. This difference in clustering behavior is further
reflected in the topics captured by the embedding. As shown in Figure 3, the word clouds reveal that

2Exact matching refers to the proportion of data points that are grouped into identical clusters by two different
methods (in this case, RW and HS embeddings).
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the clusters from RW and HS embedding emphasize different thematic topics, highlighting how the
two methods capture divergent aspects of the input data.

Complementary nature of RW and HS embedding. Previous analyses suggest that RW and HS
embedding capture different aspects of input data. To validate this hypothesis and quantify their
complementarity, we need to examine how these two embedding relate to one another. We approach
this by conducting a Spearman correlation analysis using the STS12 dataset, which contains 6,216
sentence pairs. For each pair, we generate embedding from both RW and HS and calculate the similar-
ity between the sentences to assess how each embedding captures semantic relationships. To ensure
that any observed differences are not caused by prompt variation, we employ nine distinct prompts
(listed in Table 2). As shown in Figure 4, notably, the correlation between RW and HS embedding is
the lowest across all comparisons, with a mean value of 0.51. This low correlation highlights that
RW and HS capture largely unrelated aspects of the data, reinforcing their complementary nature.
Further evidence supporting this complementarity is presented in the error analysis (Figure 2) and the
experimental results (Section 4).

3.3 THE PROPOSED MOE EMBEDDING (MOEE)

Building on the analysis of routing weight (RW) and hidden state (HS) embedding, we propose our
method MOEE, which combines RW and HS to form a more comprehensive embedding representa-
tion. We introduce two approaches for this combination as follows.

Concatenation-based Combination. In this method, the embedding generated by the hidden state
(eHS) and the routing weights (eRW) are concatenated to form the final embedding. This approach is
denoted as MOEE (concat), and the final embedding is computed as:

efinal = [eHS; eRW] ∈ RdHS+dRW ,

where dHS is the dimensionality of the hidden state embedding, and dRW is the dimensionality of
the routing weight embedding. This method preserves the distinct information captured by each
component while allowing downstream tasks to leverage the combined representation.

Weighted Sum Integration. The second method performs a weighted sum of the similarity scores
calculated from RW and HS embedding, denoted as MOEE (sum). For tasks like STS, given a
sentence pair (s1, s2), we first compute the similarity score between the two sentences using both
HS-based embedding and RW-based embedding independently, as eHS(s1), eHS(s2), eRW(s1), and
eRW(s2). Then, a weighted sum of the similarity scores is performed before comparing the result to
the ground truth:

simHS = cosine_similarity(eHS(s1), eHS(s2)),

simRW = cosine_similarity(eRW(s1), eRW(s2))

The final similarity score is then computed as:

simfinal = simHS + α · simRW,

where α is used as a hyperparameter to control the contribution of RW. To maximize the comple-
mentary strengths of HS and RW, we optimize α adaptively at test time. Specifically, α is tuned
using a gradient-based approach to maximize the Spearman rank correlation between simfinal and its
components (simHS and simRW) over samples for the given task. This process does not require ground
truth labels, focusing instead on enhancing complementarity between HS and RW. Once optimized,
α remains consistent for the given task and is applied uniformly during testing.

Finally, we compute the rank correlation (e.g., Spearman’s rank correlation) between the predicted
similarity scores simfinal and the ground truth similarity. This framework can be applied consistently
across other tasks, adapting the weighted sum to task-specific needs.

4 EXPERIMENTS

4.1 EVALUATION SETUP

We evaluate MOEE on 6 task categories from the MTEB, including Classification, Clustering, Pair
Classification, Re-ranking, Semantic Textual Similarity (STS), and Summarization. We focus on
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Sentence-to-Sentence (S2S) tasks as they provide a direct and widely-used benchmark for embedding
quality. Multilingual datasets are excluded since most MoE LLMs are trained primarily on English
data. To control computational costs, we include all STS and Summarization tasks and select tasks
with manageable sample sizes from other categories: top-3 for Re-ranking and Classification, top-2
for Clustering, and top-2 for Pair Classification, based on task statistics in Muennighoff et al. (2022).
For consistent and fair comparisons, we adopt the MTEB evaluation framework and use task-specific
metrics: Accuracy (Classification), V-Measure (Clustering), Average Precision (Pair Classification),
Mean Average Precision (Re-ranking), nDCG (Retrieval), and Spearman’s correlation (STS and
Summarization).

Our experiments use three MoE models:
• DeepSeekMoE-16B (Dai et al., 2024): 28 layers, with 64 experts per layer.
• Qwen1.5-MoE-A2.7B (Team, 2024): 24 layers, each containing 60 experts.
• OLMoE-1B-7B (Muennighoff et al., 2024a): 16 layers, with 64 experts per layer.

All models use per-token routing, but MOEE uses the last token’s routing weights, which consistently
outperform averaging across all tokens. For the hidden state (HS) embeddings, we use the last-layer
hidden state of the last token. Ablation studies supporting this choice are provided in Section 4.3.

Baselines Our goal is to extract advanced embedding from MoE LLMs by combining hidden
state (HS) and routing weights (RW) without further training. To demonstrate the effectiveness of
MOEE, we compare it against both RW and HS individually, as well as to several self-supervised
and supervised methods that require training. We also assess performance across different prompt
strategies, specifically comparing methods without prompts and with PromptEOL (Jiang et al., 2023).
For an in-depth analysis of the impact of sequence length on PromptEOL embedding quality, please
refer to Appendix B.

Table 3: Performance across MTEB Tasks without prompts, including Classification (CLF), Clustering
(Clust.), Pair Classification (Pair CLF), Re-ranking (Rerank), STS, and Summarization (Summ.).

MTEB Tasks CLF Clust. PairCLF Rerank STS Summ. Avg.

DeepSeekMoE-16B
Hidden State (HS) 44.79 25.87 44.34 38.13 34.54 24.51 35.36
Routing Weight (RW) 44.06 17.53 50.59 35.94 41.11 26.22 35.91
MOEE (concat) 44.93 24.15 51.88 41.20 46.82 31.17 40.03
MOEE (sum) 48.74 32.83 52.12 47.88 48.34 29.89 43.30

Qwen1.5-MoE-A2.7B
Hidden State (HS) 46.41 24.31 44.43 44.91 28.36 22.65 35.18
Routing Weight (RW) 38.99 10.55 42.26 33.53 23.97 27.44 29.46
MOEE (concat) 44.81 26.75 49.79 49.23 37.93 27.61 39.35
MOEE (sum) 50.70 31.35 51.87 49.82 45.75 24.00 42.25

OLMoE-1B-7B
Hidden State (HS) 44.23 23.79 47.56 45.60 35.44 20.94 36.26
Routing Weight (RW) 43.54 17.66 53.12 40.91 44.68 28.68 38.10
MOEE (concat) 44.62 22.83 51.64 46.58 48.84 31.67 41.03
MOEE (sum) 48.54 30.67 50.93 47.77 49.45 28.77 42.69

4.2 MAIN RESULTS

Our method demonstrates consistent performance improvements across a variety of MTEB tasks, as
shown in Tables 3 and 4. Results for datasets under each task type are detailed in Appendix A. MOEE
that combines routing weights with hidden state consistently outperforms both standalone methods
(RW and HS) in most cases, highlighting the complementary nature of these two components.

For tasks evaluated without prompts, the results show that MOEE (sum) achieves the highest average
performance across models, with notable improvements in tasks such as Classification, Re-ranking,
and STS. Specifically, DeepSeekMoE shows a substantial boost from 35.36 (HS) to 43.30 (MOEE
(sum)), a 22.45% improvement. This pattern holds across Qwen1.5-MoE and OLMoE, where MOEE
(sum) achieves consistent gains over both individual methods. When PromptEOL is introduced
(Table 4), we observe even greater performance gains, with 25.96% improvement for DeepSeekMoE.

7



Published as a conference paper at ICLR 2025

Table 4: Performance across MTEB Tasks when PromptEOL (Jiang et al., 2023) is applied to MoE.
Baselines marked with ⋆ are sourced from the MTEB leaderboard (Muennighoff et al., 2022) and
require training.

MTEB Tasks CLF Clust. PairCLF Rerank STS Summ. Avg.

Self-Supervised Methods
Glove⋆ (Pennington et al., 2014) 51.04 23.11 62.90 48.72 60.52 28.87 45.86
Komninos⋆ (Komninos & Manandhar, 2016) 50.21 24.96 66.63 50.03 61.73 30.49 47.34
BERT⋆ (Devlin, 2018) 52.36 23.48 66.10 48.47 52.89 29.82 45.52
SimCSE-BERT-unsup⋆ (Gao et al., 2021) 54.80 22.59 70.79 52.42 75.00 31.15 51.13

Supervised Methods
SimCSE-BERT-sup⋆ 58.98 29.49 75.82 53.61 79.97 23.31 53.53
coCondenser-msmarco⋆ (Gao & Callan, 2021) 53.89 32.85 74.56 60.08 76.41 29.50 54.55
SPECTER⋆ (Cohan et al., 2020) 42.59 27.94 56.24 55.87 60.68 27.66 45.16
LaBSE (Feng et al., 2020) 54.31 24.05 73.68 54.63 70.95 31.05 51.45
LASER2 42.54 14.01 70.52 46.99 64.52 26.80 44.23
SGPT-125M-nli (Muennighoff, 2022) 53.28 26.59 68.80 53.65 75.01 30.26 51.27

DeepSeekMoE-16B
Hidden State (HS) 58.24 24.64 48.76 38.13 59.66 24.38 42.30
Routing Weight (RW) 49.52 19.97 68.30 37.48 59.52 29.26 44.01
MOEE (concat) 54.21 26.10 72.44 53.31 67.59 28.89 50.42
MOEE (sum) 58.31 34.52 70.95 55.99 70.66 29.22 53.28

Qwen1.5-MoE-A2.7B
Hidden State (HS) 59.34 29.50 74.29 56.51 67.39 23.01 51.67
Routing Weight (RW) 47.84 16.74 64.85 43.55 51.71 27.74 42.07
MOEE (concat) 54.23 27.18 73.93 56.12 68.52 28.57 51.43
MOEE (sum) 59.57 38.33 72.21 56.25 72.78 31.09 55.04

OLMoE-1B-7B
Hidden State (HS) 58.18 32.83 72.10 58.31 72.91 27.96 53.72
Routing Weight (RW) 45.02 19.93 61.58 43.91 54.33 29.49 42.38
MOEE (concat) 52.59 33.92 71.85 56.69 71.13 30.21 52.73
MOEE (sum) 57.46 36.46 71.26 60.43 74.63 30.71 55.16

Across all models, MOEE (sum) again leads to the best results, with OLMoE achieving the highest
overall average of 55.16 and Qwen1.5-MoE following closely at 55.04. While MOEE shows marginal
gains over HS in the Classification task, this is expected, as the final layer HS is more aligned with
output-specific features, which benefits classification.

Although MOEE initially trails behind self-supervised and supervised methods without prompts,
the introduction of PromptEOL leads to a significant shift. As shown in Table 4, MOEE surpasses
supervised approaches like SimCSE and coCondenser, achieving superior performance without
requiring additional training. This underscores both its effectiveness and efficiency.

4.3 ABLATION STUDY

Table 5: Ablation study on different ways of using routing weights (RW) and hidden state (HS).

STS Datasets STS12 STS13 STS14 STS15 STS16 Avg.

DeepSeekMoE-16B
HS - last token, last layer 51.99 69.56 54.68 58.04 68.47 60.40
HS - last token, all layers 59.82 60.59 45.20 51.08 58.88 55.03
HS - all tokens, last layer 30.95 34.42 26.77 34.90 37.11 32.78
HS - all tokens, all layers 60.81 62.46 46.90 52.38 59.99 56.34

RW - last token 61.97 65.86 51.38 65.86 62.49 61.18
RW - all tokens 50.76 46.42 41.47 43.68 48.37 46.03

MOEE (best) 67.39 81.43 68.98 67.76 74.26 71.75

This ablation study investigates how different methods of extracting routing weights (RW) and hidden
state (HS) affect embedding quality across the STS12-16 datasets, with results presented in Table 5.
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As detailed in Section 3.1, RW integrates routing decisions across all layers, capturing information at
multiple depths. In contrast, HS from only the last layer may miss important intermediate details.
Therefore, we evaluate the use of hidden states from all layers (HS - last token, all layers) to see if it
can match RW, which naturally leverages multi-layered information.

We also assess the impact of using only the last token versus averaging across all tokens. While the
last token often condenses crucial sequence information, mean pooling across all tokens may offer a
broader view by incorporating contributions from every token. Thus, we compare HS - last token
with HS - all tokens, and RW - last token with RW - all tokens. For multi-layer or multi-token cases,
mean pooling is applied.

Our results show that focusing on the last token, whether from HS or RW, consistently delivers the
best performance. This indicates that the last token captures the most critical semantic information,
while pooling across tokens or layers introduces noise. Notably, RW outperforms HS, underscoring
its superior ability to capture nuanced, dynamic information that HS alone cannot replicate.

4.4 A STABILITY COMPARISON OF RW AND HS USING DIFFERENT PROMPTS
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Figure 5: Box plots of the performance of the two embedding methods (RW or HS) using nine
different prompts (listed in Table 2) on five STS datasets, evaluated on three MoE models: (i)
DeepSeekMoE, (ii) Qwen1.5-MoE, and (iii) OLMoE. The higher variance and wider spread of HS in
the box plots indicate its sensitivity to the prompt choice, while RW is more robust (lower variance)
with better mean performance.

Prompts are commonly used to boost the performance of embedding models across diverse
downstream tasks (Lei et al., 2024), as shown by the improved results of PromptEOL (Table 3)
compared to no prompts (Table 4). However, the effectiveness of these prompts can vary, and a
method’s robustness depends on its ability to handle these variations. To assess the prompt sensitivity
of RW and HS, we measure their Spearman correlation scores across STS12-16 datasets using 9
different prompts listed in Table 2. The analysis is performed on three MoE models: DeepSeekMoE,
Qwen1.5-MoE, and OLMoE, which differ in model size and architecture, allowing us to investigate
the generalizability of our findings. For each model, we compute the mean and variance of these
scores for each dataset, capturing how performance fluctuates under different prompt conditions
and whether the methods remain stable when exposed to prompt variations.

Figure 5 highlights the performance variance for both methods. HS exhibits significantly higher
variance, indicating that its performance is highly dependent on the specific prompt used. This
suggests that HS is more sensitive to prompt formulation, leading to inconsistent results that could
hinder its reliability in broader applications. Figure 4 (see Section 3.2) further supports this from
another perspective3, showing a smaller mean correlation of 0.52 for HS using different prompts,
reflecting a higher variance than RW.

In contrast, RW demonstrates greater stability, with consistently lower variance and narrower box
plots across all datasets, indicating its robustness to prompt choice. In Figure 4, RW also achieves

3The Spearman correlation in Figure 5, as a performance metric, is between HS/RW and the ground truth,
while the Spearman correlation in Figure 4 is to compare different embedding.
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a higher mean correlation of 0.63 between different prompts, underscoring its ability to maintain
stable performance across different prompts. This makes MOEE a more reliable option for tasks
where prompt variability is expected.

Notably, Qwen1.5-MoE and OLMoE exhibit greater sensitivity to prompt variations compared to
DeepSeekMoE. Despite this, HS embeddings consistently demonstrate significantly higher variance
than RW embeddings across all tasks and models. This pattern of RW robustness holds consistently
across the three MoE models, reinforcing its stability in diverse settings.

4.5 CASE STUDY: WHEN HS OUTPERFORMS RW & VICE VERSA

Table 6: Semantically similar sentence pairs cor-
rectly predicted by HS embedding but not by RW
embedding. Differences between the sentences
are highlighted to show subtle variations that in-
fluence prediction outcomes.

Sentence 1 Sentence 2
1 the vote will take place

today at 5.30 p.m
the vote will take
place at 17h30

2 the standards are
scarcely comparable,
let alone transferable

the norms are hardly
comparable and still
less transferable

3 that provision could
open the door wide to
arbitrariness

this point of proce-
dure opens the door to
the arbitrary

4 A woman puts flour
on a piece of meat

A woman is putting
flour onto some meat.

5 the fishermen are
inactive, tired and
disappointed

fishermen are inactive,
tired and disappoint-
ment

Table 7: Semantically similar sentence pairs cor-
rectly predicted by RW embedding but not by
HS embedding.

Sentence 1 Sentence 2
1 He did, but the initia-

tive did not get very
far.

What happened is that the
initiative does not go very
far.

2 then perhaps we
could have avoided a
catastrophe

we might have been able to
prevent a disaster

3 it increases the power
of the big countries
at the expense of the
small countries

it has the effect of augment-
ing the potency of the big
countries to the detriment of
babies

4 festive social event,
celebration

an occasion on which peo-
ple can assemble for so-
cial interaction and enter-
tainment.

5 group of people de-
fined by a specific
profession

organization of performers
and associated personnel
(especially theatrical).

In this section, we analyze instances where HS embedding performs better than RW embedding
(Table 6), as well as cases where RW outperforms HS (Table 7). This helps identify the strengths and
weaknesses of each method and offers insights into when one may be preferred over the other.

From the results, HS embeddings excel in capturing formal linguistic consistency, particularly
when sentence structure undergoes only superficial changes. They effectively represent the overall
structure and meaning of sentences, making them useful in cases with minimal semantic variation.
In contrast, RW embedding performs better when handling paraphrasing, synonym use, and
nuanced stylistic shifts. The RW mechanism’s sensitivity to input variations allows it to capture
deeper contextual changes, even when the overall meaning of the sentence is preserved.

5 CONCLUSION

In this paper, we explore the untapped potential of MoE as effective embedding generators without
extra training. Our analysis reveals that RW derived from MoE models complements the widely-used
HS embedding, offering a deeper understanding of input semantics. By leveraging both RW and HS,
we propose MOEE, which significantly improves embedding performance across diverse tasks in
the MTEB benchmark. Our results demonstrate that combining RW and HS boosts generalization,
making MoE models versatile tools for embedding tasks. Future work would further explore how to
leverage MOEE adaptively for task-specific scenarios.
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A MTEB RESULTS

We present detailed evaluation results of task types, including STS (Table 8), classification (Table 9),
pair classification (Table 10), clustering (Table 11), and re-ranking (Table 12) tasks. We show the
performance of our method across different models and prompts, and compares it to baseline methods
like Hidden State (HS) and Routing Weight (RW).

Table 8: Detailed Results of STS Tasks. The DeepSeekMoE, Qwen1.5-MoE, and OLMoE models
are evaluated on tasks from STS12 to STSBenchmark. The MOEE method (without and with
PromptEOL) significantly improves performance across most benchmarks.

Prompt STS12 STS13 STS14 STS15 STS16 BIOSSES SICK-R STSBenchmark

DeepSeekMoE-16b
Hidden State (HS) none 20.90 43.39 24.02 37.75 47.15 29.87 42.66 30.61
Routing Weight (RW) none 45.22 41.38 28.75 38.63 50.36 34.14 51.98 38.44
MOEE (concat) none 46.26 55.88 37.90 42.37 54.19 41.20 53.66 43.06
MOEE (sum) none 46.41 60.58 41.50 42.85 54.98 42.33 53.70 44.36
Hidden State (HS) PromptEOL 51.99 69.56 54.68 58.04 68.47 45.29 63.78 65.48
Routing Weight (RW) PromptEOL 61.97 65.86 51.38 65.86 62.49 53.97 57.93 56.68
MOEE (concat) PromptEOL 66.79 77.60 63.56 64.60 71.22 61.96 66.29 68.72
MOEE (sum) PromptEOL 67.39 81.43 68.98 67.76 74.26 62.09 69.98 73.41

Qwen1.5-MoE-A2.7B
Hidden State (HS) none 8.39 25.23 15.76 22.08 38.11 28.69 51.73 36.88
Routing Weight (RW) none 27.96 18.89 13.88 17.11 36.29 25.40 29.42 22.80
MOEE (concat) none 33.36 36.30 24.68 25.86 47.16 39.06 53.92 43.09
MOEE (sum) none 35.72 47.29 31.51 31.00 50.61 53.40 62.35 54.11
Hidden State (HS) PromptEOL 55.05 77.48 63.63 73.60 73.49 61.42 67.01 67.42
Routing Weight (RW) PromptEOL 54.39 59.05 45.49 48.11 56.96 43.65 55.46 50.54
MOEE (concat) PromptEOL 64.44 77.38 64.05 67.18 71.48 64.87 69.01 69.71
MOEE (sum) PromptEOL 65.54 82.44 71.39 72.88 75.43 67.84 71.15 75.57

OLMoE-1B-7B
Hidden State (HS) none 21.53 41.47 22.71 39.88 51.49 44.11 39.98 22.36
Routing Weight (RW) none 47.16 43.92 32.62 43.87 51.91 44.30 52.89 40.77
MOEE (concat) none 48.82 52.69 37.48 46.80 56.06 54.58 52.24 42.02
MOEE (sum) none 49.59 54.19 38.87 47.27 56.11 54.58 52.82 42.16
Hidden State (HS) PromptEOL 65.51 81.86 69.37 77.64 77.19 73.54 66.62 71.51
Routing Weight (RW) PromptEOL 55.76 60.01 48.08 49.88 57.88 56.28 56.02 50.72
MOEE (concat) PromptEOL 67.35 80.13 68.42 68.76 73.35 73.02 67.51 70.47
MOEE (sum) PromptEOL 68.84 84.34 74.02 73.81 76.88 73.02 70.56 75.58
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Table 9: Detailed Results of Classification Tasks, including sentiment extraction, emotion classifi-
cation, and toxic conversations classification. The performance of different methods (Hidden State,
Routing Weight, and MOEE) with and without PromptEOL is shown.

Prompt
TweetSentiment-
Extraction-
Classification

Emotion-
Classification

Toxic-
Conversations-
Classification

DeepSeekMoE-16b
Hidden State (HS) none 49.14 27.55 57.69
Routing Weight (RW) none 52.37 26.49 53.32
MOEE (concat) none 52.64 28.02 54.12
MOEE (sum) none 50.32 27.52 68.39
Hidden State (HS) PromptEOL 60.13 49.11 65.47
Routing Weight (RW) PromptEOL 57.68 35.57 55.32
MOEE (concat) PromptEOL 61.12 45.59 55.93
MOEE (sum) PromptEOL 59.32 46.86 68.76

Qwen1.5-MoE-A2.7B
Hidden State (HS) none 48.83 31.02 59.38
Routing Weight (RW) none 42.80 20.63 53.53
MOEE (concat) none 49.60 30.93 53.90
MOEE (sum) none 48.84 32.76 70.50
Hidden State (HS) PromptEOL 61.14 48.09 68.80
Routing Weight (RW) PromptEOL 55.33 33.82 54.37
MOEE (concat) PromptEOL 60.78 46.10 55.82
MOEE (sum) PromptEOL 60.72 47.97 70.03

OLMoE-1B-7B
Hidden State (HS) none 50.29 30.29 52.10
Routing Weight (RW) none 50.15 25.53 54.93
MOEE (concat) none 51.59 28.76 53.51
MOEE (sum) none 51.00 29.75 64.86
Hidden State (HS) PromptEOL 59.58 47.50 67.46
Routing Weight (RW) PromptEOL 52.79 28.51 53.75
MOEE (concat) PromptEOL 59.72 42.78 55.27
MOEE (sum) PromptEOL 59.92 45.63 66.84

Table 10: Pair classification task results on TwitterURLCorpus and TwitterSemEval2015.

Prompt TwitterURLCorpus TwitterSemEval2015

DeepSeekMoE-16b
Hidden State (HS) none 49.04 39.63
Routing Weight (RW) none 53.39 47.79
MOEE (concat) none 57.27 46.48
MOEE (sum) none 58.99 45.25
Hidden State (HS) PromptEOL 36.72 60.79
Routing Weight (RW) PromptEOL 76.58 60.01
MOEE (concat) PromptEOL 80.08 64.79
MOEE (sum) PromptEOL 79.20 62.70

Qwen1.5-MoE-A2.7B
Hidden State (HS) none 45.71 43.14
Routing Weight (RW) none 48.78 35.74
MOEE (concat) none 53.74 45.83
MOEE (sum) none 57.78 45.95
Hidden State (HS) PromptEOL 82.50 66.07
Routing Weight (RW) PromptEOL 73.72 55.98
MOEE (concat) PromptEOL 82.34 65.51
MOEE (sum) PromptEOL 80.21 64.20

OLMoE-1B-7B
Hidden State (HS) none 55.07 40.04
Routing Weight (RW) none 54.25 51.99
MOEE (concat) none 56.97 46.31
MOEE (sum) none 57.03 44.82
Hidden State (HS) PromptEOL 82.32 61.87
Routing Weight (RW) PromptEOL 70.37 52.79
MOEE (concat) PromptEOL 82.32 61.38
MOEE (sum) PromptEOL 80.98 61.53
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Table 11: Clustering task results, showing performance on TwentyNewsgroupsClustering and Medrx-
ivClusteringS2S. MOEE (sum) consistently performs best without a prompt, while the MOEE method
with PromptEOL delivers substantial gains.

Prompt TwentyNewsgroupsClustering MedrxivClusteringS2S

DeepSeekMoE-16b
Hidden State (HS) none 25.62 26.11
Routing Weight (RW) none 15.33 19.72
MOEE (concat) none 22.94 25.35
MOEE (sum) none 31.44 34.22
Hidden State (HS) PromptEOL 27.02 22.26
Routing Weight (RW) PromptEOL 21.89 18.04
MOEE (concat) PromptEOL 29.13 23.06
MOEE (sum) PromptEOL 35.77 33.27

Qwen1.5-MoE-A2.7B
Hidden State (HS) none 26.14 22.48
Routing Weight (RW) none 9.71 11.38
MOEE (concat) none 28.99 24.51
MOEE (sum) none 32.07 30.62
Hidden State (HS) PromptEOL 34.04 24.95
Routing Weight (RW) PromptEOL 16.94 16.54
MOEE (concat) PromptEOL 30.45 23.91
MOEE (sum) PromptEOL 42.05 34.60

OLMoE-1B-7B
Hidden State (HS) none 21.05 26.52
Routing Weight (RW) none 17.14 18.17
MOEE (concat) none 20.72 24.94
MOEE (sum) none 27.58 33.75
Hidden State (HS) PromptEOL 38.96 26.69
Routing Weight (RW) PromptEOL 22.13 17.72
MOEE (concat) PromptEOL 41.23 26.60
MOEE (sum) PromptEOL 38.58 34.33

Table 12: Re-ranking task results, showing performance on AskUbuntu, SciDocsRR, and StackOver-
flow duplicate questions re-ranking tasks.

Prompt AskUbuntuDupQuestions SciDocsRR StackOverflowDupQuestions

DeepSeekMoE-16b
Hidden State (HS) none 43.75 45.23 25.79
Routing Weight (RW) none 41.97 42.65 23.21
MOEE (concat) none 44.10 53.43 26.06
MOEE (sum) none 45.26 70.79 27.58
Hidden State (HS) PromptEOL 43.75 45.23 25.41
Routing Weight (RW) PromptEOL 46.57 42.65 23.21
MOEE (concat) PromptEOL 50.66 72.63 36.65
MOEE (sum) PromptEOL 52.93 76.17 38.88

Qwen1.5-MoE-A2.7B
Hidden State (HS) none 43.71 60.91 30.12
Routing Weight (RW) none 41.00 36.85 22.75
MOEE (concat) none 44.95 68.42 34.31
MOEE (sum) none 44.30 70.85 34.31
Hidden State (HS) PromptEOL 54.69 75.06 39.79
Routing Weight (RW) PromptEOL 44.65 55.03 30.96
MOEE (concat) PromptEOL 52.15 75.69 40.51
MOEE (sum) PromptEOL 51.30 74.53 42.91

OLMoE-1B-7B
Hidden State (HS) none 43.67 69.08 24.05
Routing Weight (RW) none 42.83 54.17 25.72
MOEE (concat) none 43.91 70.33 25.49
MOEE (sum) none 44.57 72.54 26.20
Hidden State (HS) PromptEOL 55.32 78.24 41.36
Routing Weight (RW) PromptEOL 45.11 55.43 31.20
MOEE (concat) PromptEOL 52.81 77.14 40.13
MOEE (sum) PromptEOL 56.68 81.19 43.41
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B ANALYSIS: IMPACT OF TEXT LENGTH ON PROMPTEOL EMBEDDING
QUALITY
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Figure 6: (i) Distribution of sentence lengths in the STS12-16 dataset, concentrated on short to
medium-length sequences. (ii) and (iii) show that sentence length has no significant negative impact
on the average accuracy of Hidden State (HS) and Routing Weights (RW) embeddings, respectively.

PromptEOL is designed to condense the meaning of a sentence into a single word, making it well-
suited for shorter sequences. However, its robustness for longer or more complex inputs raises impor-
tant questions. Specifically, does sequence length affect the quality of the embeddings? Addressing
this is crucial for evaluating PromptEOL’s effectiveness and identifying areas for improvement.

This analysis leverages the STS12-16 datasets, which provide diverse sentence pairs commonly used
in Sentence-to-Sentence (S2S) tasks. These datasets offer a representative sample of real-world
sentence lengths, making them ideal for studying the relationship between length and embedding
quality. We first examine the length distribution to understand the typical input range and then
analyze how sequence length correlates with embedding quality, measured by accuracy. Accuracy is
determined by how closely the embedding-based ranking aligns with the ground truth, with deviations
beyond a threshold considered correct.

Figure 6 (i) illustrates the length distribution in the STS12-16 datasets, with a concentration of
short to medium-length sequences and a median of approximately 25 tokens. Figure 6 (ii) and (iii)
shows the relationship between sentence length and average accuracy for HS and RW embeddings
generated using PromptEOL, respectively. The results indicate no significant negative correlation,
confirming that sentence length does not adversely affect embedding quality within the S2S context
for both Hidden State (HS) and Routing Weights (RW). These findings demonstrate that PromptEOL
effectively captures the semantic meaning of shorter sequences without being sensitive to variations
in length.
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However, for tasks involving longer sequences, such as Paragraph-to-Paragraph (P2P) embeddings,
challenges may emerge. Compressing extensive information into a single word may limit embedding
quality. Addressing this limitation—for instance, by segmenting longer texts or introducing multi-
token sinks—remains an important direction for future work.
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