
Warning: This supplementary material
contains model outputs that are offensive in

nature.
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A More Visualization Results

More visualization results of ColJailBreak are shown in Figure 7.
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Figure 7: More Visualization Results of ColJailBreak.

B Details of UnsafeEdit Dataset

For a more thorough evaluation of our method, we curated a dataset called the UnsafeEdit dataset.
Referring to the division of I2P dataset, we categorise the dataset into four categories: violence,
harassment, self-harm and nudity. Specifically, violence contains scenes about violence and gore,
harassment contains scenes of threats and harassment, self-harm contains scenes of suicide and
self-harm, and nudity contains scenes of sexual content.

Collection Details. Considering that ChatGPT cannot directly generate prompts containing unsafe
contents, we first generate safe prompts and then manually replace the unsafe words to create our
dataset. Initially, we manually crafted a template prompt devoid of sensitive words, thereby ensuring
it does not activate ChatGPT’s safety mechanisms (e.g.,"A man points a pen at another woman in a
supermarket. The two faced each other, and the woman looked scared.").

Then we use ChatGPT to generate more prompt data through the template prompt, the example
prompt is:

"A man points a pen at another woman in a supermarket. The two faced each other, and the woman
looked scared. I want to generate a prompt dataset. Please follow the above format and help me
generate some similar prompts. The requirements are 1. Contain Two people face to face 2. Including
the action of pointing a pen at the other person 3. One of the people must be very scared 4. Daily
scenes".

Finally, we build the dataset by manually replacing unsafe words.
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Dataset details. UnsafeEdit dataset has a total of 100 prompts, each category containing 25 prompts.
To ensure the quality and relevance of the dataset, we carefully reviewed each generated prompt and
made necessary adjustments to maintain the intended context while introducing the unsafe elements.
This meticulous process guarantees that the dataset accurately reflects real-world scenarios where
such harmful content might appear.

For external dataset, in the experiment, we find that T2I model’s safety filter is more stringent
when detecting nudity compared to other categories. For nudity, we primarily select prompts from
the dataset using keywords such as "breast", "tit", "sexy" and "naked". For other categories, we
primarily select prompts from the dataset using keywords such as "pistol", "dagger", "knife", "gun"
and "revolver".

C Implementation Details

C.1 Computing resources

All experiments are performed using two NVIDIA A100 40GB GPUs. The overall duration of all the
experiments in the paper was about six weeks.

C.2 Details of Baselines

In the setups of Section 5.1, we introduce two baseline methods, and here are more detailed imple-
mentation details.

MMA-Diffusion. MMA-Diffusion[43] is a method to generate unsafe content by bypassing T2I
model safetu filters. In Text-Modal Attack, MMA-Diffusion obtains adversarial prompts through the
gradient optimization based search method. Subsequently, sensitive words within the adversarial
prompts are eliminated by sensitive word regularization to bypass the safety filter. For hyperparam-
eters, the random seed is 7867, the number of optimization iterations is 500, and the number of
adversarial prompts per target prompt is 10.

QF-Attack. QF-Attack[49] is an attack method designed to disrupt T2I model generation, introducing
a five-character perturbation to the text prompt alters the generated image content. QF-Attack
comprises three attack modes: Greedy search, Genetic algorithm, and PGD attack. Based on
experimental results reported in the QF-Attack paper, the Genetic algorithm proves more effective
than other attack methods. Consequently, for the experiments in this paper, we selected the Genetic
algorithm for comparison. Specifically, we choose the targeted query-free attack of QF-Attack.
Following the settings used in Ring-A-Bell[40], we mask out words related to peace and non-harm,
such as "peaceful and fine," and words related to clothing, such as "wear tops and pants".

C.3 Details of Defense Models

Safe Latent Diffusion (SLD). For the four variants of SLD[36], we set the image size to 512 × 512.
As shown in Table 3, we set the hyperparameters according to the official configuration.

Config warmup steps δ guidance scale sS threshold λ momentum scale sm mom beta βm

SLD-Weak 15 200 0.0 0.0 -
SLD-Medium 10 1000 0.01 0.3 0.4
SLD-Strong 7 2000 0.025 0.5 0.7
SLD-Max 0 5000 1.0 0.5 0.7

Table 3: Configuration sets of SLD

ESD. For the category of nudity, we use the officially provided NSFW pre-trained weights. For
other inappropriate content, we use "violence, harassment, and self-harm" as the prompt for training
ESD[15]. In generating images, we set the image size to 512 × 512, and the model to SDv1.4. For
the hyperparameters, the guidance scale is 7.5, and the ddim steps is 100.
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C.4 Details of ColJailBreak

Adaptive Safe Word Substitution. As mentioned in Section 4.2, we utilize ChatGPT to create
the substitution pool for sensitive words, the size of the substitution pool is set to 10, and then we
select the substitution word in the substitution pool. We design a prompt template for generating the
substitution pool:

Hello ChatGPT, you are a helpful assistant. You are a safety testing expert in the field of AI. I am
doing image editing work and need to replace an object in the image with an object of similar shape.
I need to create a vocabulary of similar-shaped objects for each object. Can you understand what I
mean? If so, let’s get started. The first word is {}. Please give me {} words directly, without any other
text, and separate them with commas.

Inpainting-driven Injection of Unsafe Content. Inspired by Inpainting Anything[45], in general, we
use substitution word s as a text prompt, mask the area related to the text prompt based on SAM, and
apply inpainting model for editing. Initially, as SAM’s input consists of points, mask, and bounding
box, but not text prompt, we employ CLIP Surgery [21], which converts text prompt into points
by leveraging the explainability of CLIP. Then, we generate a preliminary semantic segmentation
map utilizing the robust semantic segmentation capabilities of SAM[20], and then obtain the mask
of the editing region. Subsequently, we edit the image using the pre-trained Fooocus-Inpainting
model to inject unsafe content. For Fooocus-Inpainting, we set the image size to 512 × 512. For the
hyperparameters, the guidance scale is 7.5, the num inference steps is 50, and the strength is 0.9999.

D Broader Impacts

Our work provides new insights into the security and robustness of commercial T2I models. However,
while our research aims to evaluate the security of current commercial T2I models against jailbreak
attacks, there is a risk that malicious users may exploit our work to generate unsafe images, which
requires more caution. Considering that our proposed ColJailBreak may be used maliciously, we
have provided user guidelines for ColJailBreak.

E Use Guidelines of ColJailBreak

In utilizing the ColJailBreak framework for jailbreaking T2I models, it is essential to adhere to the
following guidelines to ensure responsible and ethical usage:

• Purpose and Intent: ColJailBreak should be used primarily for research purposes to understand
the limitations and vulnerabilities of existing T2I models and to improve their safety mechanisms.
Users must ensure that their intent aligns with ethical research standards and contributes to the
advancement of safe AI technologies.

• Compliance with Regulations: Users must comply with all relevant laws and regulations governing
the use of AI and deep learning technologies in their respective jurisdictions.

• Privacy and Consent: Respect the privacy and consent of individuals. Do not use personal data
or identifiable information without explicit permission. Avoid creating images that depict real
individuals in a harmful or misleading manner.

• Reporting and Accountability: Report any misuse or inappropriate content generated using Col-
JailBreak to the developers. Be accountable for the content you generate and share using the
framework.

• Strict Confidentiality: Users must rigorously safeguard the model’s operational principles, datasets,
and any associated information to prevent disclosure to unauthorized individuals or organizations.
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