
A Preliminary

Notation. We first introduce necessary notations as follows.

• x(k) = [(x
(k)
1 )T ; (x

(k)
2 )T ; · · · ; (x(k)

n )T ] ∈ Rn×d

• ∇F (x(k); ξ(k)) = [∇F1(x
(k)
1 ; ξ

(k)
1 )T ; · · · ;∇Fn(x

(k)
n ; ξ

(k)
n )T ] ∈ Rn×d

• ∇F (x(k); ξ(k,r)) = [∇F1(x
(k)
1 ; ξ

(k,r)
1 )T ; · · · ;∇Fn(x

(k)
n ; ξ

(k,r)
n )T ] ∈ Rn×d

• ∇f(x(k)) = [∇f1(x
(k)
1 )T ;∇f2(x

(k)
2 )T ; · · · ;∇fn(x

(k)
n )T ] ∈ Rn×d

• x̄(k) = [(x̄(k))T ; (x̄(k))T ; · · · ; (x̄(k))T ] ∈ Rn×d where x̄(k) = 1
n

∑n
i=1 x

(k)
i

• W = [wij ] ∈ Rn×n is the weight matrix.
• 1n = col{1, 1, · · · , 1} ∈ Rn.

• Given two matrices x,y ∈ Rn×d, we define inner product ⟨x,y⟩ = tr(xTy) and the
Frobenius norm ∥x∥2F = ⟨x,x⟩.

• Given W ∈ Rn×n, we let ∥W∥2 = σmax(W ) where σmax(·) denote the maximum sigular
value.

DSGD in matrix notation. The recursion of DSGD can be written in matrix notation:
x(k+1) = W

(
x(k) − γ∇F (x(k); ξ(k))

)
(12)

MG-DSGD in matrix notation. The main recursion of MG-DSGD can be written in matrix notation:

g(k) =
1

R

R∑
r=1

∇F (x(k); ξ(k,r)) (13)

x(k+1) = M̄(x(k) − γg(k)) (14)

where the weight matrix M̄ = M (R) and M (R) is achieved via the fast gossip averaging loop:

M (−1) = M (0) = I (15)

M (r+1) = (1 + η)WM (r) − ηM (r−1), ∀ r = 0, 1, · · · , R− 1. (16)

Smoothness. Since each fi(x) ∈ FL is L-smooth, it holds that f(x) = 1
n

∑n
i=1 fi(x) is also

L-smooth. As a result, the following inequality holds for any x,y ∈ Rd:

fi(x)− fi(y)−
L

2
∥x− y∥2 ≤ ⟨∇fi(y),x− y⟩ (17)

Network weighting matrix. Since the weight matrix W ∈ Wn,β , it holds that

∥W − 1

n
1n1

T
n∥2 = β. (18)

Furthermore, one can establish the following upper result for the multi-gossip matrix M̄ .
Proposition 1 (Proposition 3 of [42]). Let M (r) defined by iterations (15) and (16), then it holds
that for any r = 0, . . . , R,

M (r)1n = [M (r)]T1n = 1n, and ∥M (r) − 1

n
1n1

T
n∥2 ≤

√
2
(
1−

√
1− β

)r
. (19)

Therefore, when r grows, M (r) exponentially converges to 1
n1n1

T
n .

Submultiplicativity of the Frobenius norm. Given matrices W ∈ Rn×n and y ∈ Rn×d, it holds
that

∥Wy∥F ≤ ∥W∥2∥y∥F . (20)

To verify it, by letting yj be the j-th column of y, we have ∥Wy∥2F =
∑d

j=1 ∥Wyj∥22 ≤∑d
j=1 ∥W∥22∥yj∥22 = ∥W∥22∥y∥2F .
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B More detailed comparison

Table 6: Rate comparison in smooth and non-convex stochastic decentralized optimization. Parameter n denotes
the number of all computing nodes, β ∈ [0, 1) denotes the connectivity measure of the weight matrix, σ2

measures the gradient noise, b2 denotes data heterogeneity, L denotes smoothness constant, and T is the number
of iterations. The definition of transient iteration complexity can be found in Remark 6 (the smaller the better).
“LB” is lower bound while “UB” is upper bound. Notation Õ(·) hides all logarithm factors.

References Gossip matrix Convergence rate Tran. iters.

LB [44] β = cos(π/n) Ω
(
σ
√
L√

nT
+ L

T (1−β)
1
2

)
O( nL

(1−β)σ2 )

Theorem 2 β ∈ [0, cos(π/n)] Ω
(
σ
√
L√

nT
+ L

T (1−β)
1
2

)
O( nL

(1−β)σ2 )

UB

DSGD [30] β ∈ [0, 1) O
(
σ
√
L√

nT
+ σ

2
3 L

2
3

T
2
3 (1−β)

1
3
+ b

2
3 L

2
3

T
2
3 (1−β)

2
3

)
O
(

n3L
(1−β)2σ2

)†
D2/ED [66] β ∈ [0, 1) O

(
σ
√
L√

nT
+ L

T (1−β)3

)
O( nL

(1−β)6σ2 )

DSGT [29] β ∈ [0, 1) Õ
(
σ
√
L√

nT
+ σ

2
3 L

2
3

T
2
3 (1−β)

1
3

)
Õ( n3L

(1−β)2σ2 )

DeTAG [44] β ∈ [0, 1) Õ
(
σ
√
L√

nT
+ L

T (1−β)
1
2

)
Õ( nL

(1−β)σ2 )

MG-DSGD β ∈ [0, 1) Õ
(
σ
√
L√

nT
+ L

T (1−β)
1
2

)
Õ( nL

(1−β)σ2 )

† The complete complexity is O( n3L
(1−β)2 min{σ2,(1−β)2b2} ), which reduces to O( n3L

(1−β)2σ2 ) for small σ2.

Table 7: Rate comparison between different algorithms in smooth and non-convex stochastic decentralized
optimization under the PL condition. Quantity µ is the PL constant.

References Gossip matrix Convergence rate Tran. iters.

LB Theorem 3 β ∈ [0, cos(π/n)] Ω
(

σ2

µnT + µ
Le

−T
√

µ(1−β)/L
)

Õ( (L/µ)1/2

(1−β)1/2
)

UB

DSGD [30]† β ∈ [0, 1) Õ
(

σ2

µnT + Lσ2

µ2T 2(1−β)+
Lb2

µ2T 2(1−β)2

)
Õ( nL/µ

(1−β)min{1,(1−β)b2} )

DAGD[57]†‡ β ∈ [0, 1) Õ
(

σ2

µnT + e−T
√

µ(1−β)/L
)

Õ( (L/µ)1/2

(1−β)1/2
)

D2/ED [77]† β ∈ [0, 1) Õ
(

σ2

µnT + Lσ2

µ2T 2(1−β)+e−µT (1−β)/L
)

Õ(nL/µ
1−β )

DSGT [2] β ∈ [0, 1) Õ
(

Lσ2

µ2nT + L2σ2

µ3T 2(1−β)+e−µT (1−β)/L
)

Õ(nL/µ
1−β )

DSGT [73] β ∈ [0, 1) Õ
(

Lσ2

µ2nT + L2σ2

µ3T 2(1−β)3 +e−µT (1−β)/L
)

Õ( nL/µ
(1−β)3 )

MG-DSGD β ∈ [0, 1) Õ
(

Lσ2

µ2nT + e−Tµ(1−β)
1
2 /L
)

Õ( L/µ
(1−β)1/2

)

† These rates are derived under the strongly-convex assumption, not the general PL condition.
‡ This rate is achieved by utilizing increasing (non-constant) mini-batch sizes.

C Ring-Lattice graph

For any 2 ≤ k < n− 1 and k is even, the ring-lattice graph Rn,k has several preferable properties.
The following lemma estimates the order of the diameter of Rn,k.

Lemma 1 (Formal version) For any two nodes 1 ≤ i < j ≤ n, the distance between i and j is
⌈ 2min{j−i,i+n−j}

k ⌉. In particularly, the diameter of Rn,k is Dn,k = ⌈ 2⌊n/2⌋
k ⌉ = Θ(nk ).

Proof. By symmetry of Rn,k, it suffices to consider the case that j − i ≤ i + n − j. On the
one side, the path {i, k/2 + i, k + i, . . . , (⌈2(j − i)/k⌉ − 1)k/2 + i, j} connects the pair (i, j)

with length ⌈2(j − i)/k⌉, which leads to dist(i, j) ≤ ⌈2(j − i)/k⌋. On the other side, let {i0 ≜
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i, i1, . . . , im−1, im ≜ j} be one of the shortest paths connecting (i, j). Without loss of generality, we
assume i < i1 < · · · < im−1 < j. Since |ir − ir−1| ≤ k/2 for any r = 1, . . . ,m by the definition
of Rn,k, it holds that

dist(i, j) = m ≥ |im − i0|
k/2

=
2(j − i)

k
.

Since dist(i, j) is a integer, we reach dist(i, j) ≥ ⌈ 2(j−i)
k ⌉. The diameter is readily obtained by

maximizing the expression of dist(i, j) with respect i and j.

The following lemma clarifies the Laplacian matrix associated with Rn,k and its eigenvalues.
Lemma 2. The Laplacian matrix of Rn,k is given by Ln,k = kI − An,k with adjacency matrix
An,k =

∑k/2
ℓ=1(J

ℓ + (JT )ℓ) where

J =


0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
. . .

. . .
...

0 0
. . . 0 1

1 0 · · · 0 0

 ∈ Rn×n and JT = J−1 ∈ Rn×n.

Moreover, the eigenvalues of the Laplacian matrix Ln,k are given by

µj ≜ k + 1−
k/2∑

ℓ=−k/2

cos(
2π(j − 1)ℓ

n
) ∈ [0, 2k], ∀ j ∈ {1 . . . , n} (21)

where µj is the j-th eigenvalue of Ln,k. In addition, it holds that

(1− π2/12)
π2k(k + 1)(k + 2)

6n2
≤ min

2≤j≤n
µj ≤

π2k(k + 1)(k + 2)

6n2
. (22)

Proof. (Laplacian matrix.) Since every node in Rn,k is of degree k, the degree matrix of Rn,k is kI .
The adjacency matrix An,k can be easily achieved by following the construction of Rn,k.

(Eigenvalues.) Let ω := e2πi/n (where i is the imaginary number), then J can be decomposed
as J = Udiag(ω0 = 1, ω, . . . , ωn−1)UH with a unitary matrix U = 1√

n
[ω(p−1)(q−1)]np,q=1.

Since Jℓ = Udiag(1, ωℓ, . . . , ωℓ(n−1))UH for all −k/2 ≤ ℓ ≤ k/2, and JT = JH = J−1 =
Udiag(1, ω̄ . . . , ω̄n−1)UH where ω̄ = e−2πi/n = ω−1, we have that

I +An,k =

k/2∑
ℓ=−k/2

Jℓ = U

 k/2∑
ℓ=−k/2

diag(1, ωℓ, . . . , ωℓ(n−1))

UH

= U

 k/2∑
ℓ=−k/2

diag(1, cos(
2πℓ

n
), . . . , cos(

2πℓ(n− 1)

n
)

UH

= Udiag

k + 1,

k/2∑
ℓ=−k/2

cos(
2πℓ

n
), . . . ,

k/2∑
ℓ=−k/2

cos(
2πℓ(n− 1)

n
)

UH .

Therefore, the eigenvalues of Ln,k are real numbers {µj ≜ k + 1−
∑k/2

ℓ=−k/2 cos(
2π(j−1)ℓ

n ) : j =

1, . . . , n}. It is easy to verify that µj ≥ 0 and

µj = k −
∑

1≤|ℓ|≤k/2, k ̸=0

cos(
2π(j − 1)ℓ

n
) ≤ 2k ∀ j = 1, . . . , n.

Next we establish the bounds for min2≤j≤n µj . For the upper bound, by the inequality cos(θ) ≥
1− θ2/2 for any θ ∈ R, we have that

min
2≤j≤n

µj ≤ µ2 ≤ (k + 1)−
k/2∑

ℓ=−k/2

(1− 2π2ℓ2

n2
) = 2π2

k/2∑
ℓ=−k/2

ℓ2

n2
=

π2k(k + 1)(k + 2)

6n2
. (23)
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For the lower bound, by applying Lemma 3 (see below) with hk(θ) defined as
∑k/2

ℓ=−k/2 cos(2ℓθ)

and α = π
n , we reach

min
2≤j≤n

µj ≥ inf
θ∈[α,π−α]

(k + 1− hk(θ))

≥k + 1−max

(k + 1)

(
1− k(k + 2)π2/n2

1 + (k + 1)2π2/n2

) 1
2

︸ ︷︷ ︸
I

, hk(π/n)︸ ︷︷ ︸
II

 (24)

For term I, using the inequality (1− z)
1
2 ≤ 1− 1

2z for any z ∈ [0, 1], and k + 1 ≤ n, we have

I =(k + 1)

(
1− k(k + 2)π2/n2

1 + (k + 1)2π2/n2

) 1
2

≤(k + 1)

(
1− k(k + 2)π2/n2

2(1 + (k + 1)2π2/n2)

)
≤ (k + 1)

(
1− π2k(k + 2)

2(1 + π2)

)
. (25)

For term II, using the inequality cos(θ) ≤ 1− θ2/2 + θ4/24 ≤ 1− 12−π2

24 θ2 for all θ ∈ [0, π], we
have

II =hk(π/n) =

k/2∑
ℓ=−k/2

cos(
2πℓ

n
) ≤

k/2∑
ℓ=−k/2

(
1− (12− π2)π2

6

ℓ2

n2

)

=k + 1− (12− π2)π2

6

k/2∑
ℓ=−k/2

ℓ2

n2
= k + 1− (1− π2/12)

π2k(k + 1)(k + 2)

6n2
. (26)

Plugging (25) and (26) into (24), we reach (22).

We also establish an auxiliary lemma to facilitate the results in Lemma 2.

Lemma 3. For any k ≥ 1 and k is even, let hk(θ) =
∑k/2

ℓ=−k/2 cos(2ℓθ) for any θ ∈ [α, π−α] with
some α ∈ (0, π

k+1 ]. It holds that

max
θ∈[α,π−α]

hk(θ) ≤ max

{
(k + 1)

√
1 + α2

1 + (k + 1)2α2
, hk(α)

}
(27)

Proof. Since |hk(π/2)| = 1 while (k + 1)
√

1+α2

1+(k+1)2α2 > 1, we know (27) holds when θ = π/2.

Since hk(π − θ) = hk(θ) by the definition of hk(θ), it suffices to consider maxθ∈(α,π/2) |hk(θ)|.

For any θ ∈ (α, π/2), it holds that

hk(θ) =

k/2∑
ℓ=−k/2

cos(2ℓθ) =
1

2 sin(θ)

k/2∑
ℓ=−k/2

2 cos(2ℓθ) sin(θ)

=
1

2 sin(θ)

k/2∑
ℓ=−k/2

(sin((2ℓ+ 1)θ)− sin((2ℓ− 1)θ))

=
sin((k + 1)θ)

sin(θ)
.

Therefore, we have that

h′
k(θ) =

(k + 1) cos((k + 1)θ) sin(θ)− sin((k + 1)θ) cos(θ)

sin2(θ)

=
cos((k + 1)θ) cos(θ)

sin2(θ)
((k + 1) tan(θ)− tan((k + 1)θ)) . (if cos((k + 1)θ) cos(θ) ̸= 0)
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The special case that cos((k + 1)θ) cos(θ) = 0 and h′
k(θ) = 0 leads to that cos(θ) = 0, which is

impossible for z ∈ (α, π/2). Therefore, all the extrema of hk on (α, π/2) must satisfy

tan((k + 1)θ) = (k + 1) tan(θ). (28)

By combining the cases of endpoints, i.e., θ = α and θ = π/2, with (28) for the interior extrema, we
have that

max
θ∈[α,π/2]

hk(θ) = max{ sup
θ∈(α,π/2)

(28) holds

hk(θ), hk(α), hk(π/2)}

≤max{ sup
θ∈(α,π/2)

(28) holds

√
hk(θ)2, hk(α), 1}

=max{ sup
θ∈(α,π/2)

(28) holds

 tan((k+1)θ)2

1+tan((k+1)θ)2

tan(θ)2

1+tan(θ)2

 1
2

, hk(α)
2, 1}

≤max{ sup
θ∈(α,π/2)

(28) holds

 (k+1)2 tan(θ)2

1+(k+1)2 tan(θ)2

tan(θ)2

1+tan(θ)2

 1
2

, hk(α), 1}

≤max{(k + 1) sup
θ∈(α,π/2)

(
1 + tan(θ)2

1 + (k + 1)2 tan(θ)2

) 1
2

, hk(α)}

≤max{(k + 1)

(
1 + α2

1 + (k + 1)2α2

) 1
2

, hk(α)},

where the last inequality is because the function 1+z
1+(k+1)2z is decreasing with respect to z ∈ [0,+∞)

and tan(θ) ≥ tan(α) ≥ α.

Theorem 1 Given a fixed n and any β ∈ [0, cos(π/n)], there exists a ring-lattice graph with an
associated weight matrix W such that

(i) W ∈ Wn,β , i.e., W ∈ Rn×n and ∥W − 1
n1n1

T
n∥ = β;

(ii) its diameter D satisfies D = Θ(1/
√
1− β).

Proof. We prove this theorem in two cases:

(Case 1: 0 ≤ β ≤ min{cos(π/9), cos(π/n)}.) In this case, we consider the complete graph whose
diameter D = 1, and let W = 1−β

n 1n1
T
n +βI , then it holds that ∥W − 1

n1n1
T
n∥2 = β. Furthermore,

since 1 ≥ 1− β ≥ 1− cos(π/9) = Ω(1), we naturally have 1 = D = Ω((1− β)−
1
2 ). Note that the

complete graph can also be regarded as a special ring-lattice graph Rn,n−1.

(Case 2: cos(π/9) < β ≤ cos(π/n).) Note that this case requires n ≥ 10. Letting

k = 2

⌈
n

√
3(1− β)

π2(1− π2/12)

⌉
≥ max

{
2n

√
3(1− β)

π2(1− π2/12)
, 2

}
, (29)

we consider the ring-lattice graph Rn,k with the weight matrix

W = I − 1− β

min2≤j≤n µj
Ln,k (30)

where k is defined as in (29) and {µj : 2 ≤ j ≤ n} are given in Lemma 2. For such ring-lattice graph
and its associated weight matrix defined in (30), we prove D = Ω((1− β)−

1
2 ) in following steps:
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• We first check whether Rn,k is well-defined, i.e., 2 ≤ k < n − 1 and k is even. It is easy to
observe that k is even by (29). Furthermore, since cos(π/9) < β and n ≥ 10, we have

k < 2

(
n

√
3(1− β)

π2(1− π2/12)
+ 1

)
< 2

(
n

√
3(1− cos(π/9))

π2(1− π2/12)
+ 1

)
< 0.7n+ 2 ≤ n− 1.

(31)

• We next check whether Wn,k ∈ Wn,β , i.e., ∥W − 1
n1n1

T
n∥2 = β. By Lemma 2, we have

1− β

min2≤j≤n µj
≤ 6(1− β)n2

(1− π2/12)π2k(k + 1)(k + 2)
<

1

2k

12(1− β)n2

(1− π2/12)π2k2
≤ 1

2k
.

Since all eigenvalues of Ln,k lie in [0, 2k] (see (21)), it holds that W is positive semi-definite (see
definition (30)). Moreover,

∥W − 1

n
1n1

T
n∥2 = max

2≤ℓ≤n

{
1− 1− β

min{µj : 2 ≤ j ≤ n}
µℓ

}
= β i.e., W ∈ Wn,β .

• Finally, we check whether Θ(nk ) = D = Θ((1 − β)−
1
2 ). By using the inequality cos(θ) ≤

1− θ2/2 + θ4/24 with θ = π/n, we have

β ≤ cos(π/n) ≤ 1− π2/2n2 + π4/24n4 ≤ 1− π2/3n2.

Therefore, we have that n
√

3(1−β)
π2(1−π2/12) ≥ n

√
π2

n2(1−π2/12) ≥ 2 and hence

k < 2

(
n

√
3(1− β)

π2(1− π2/12)
+ 1

)
≤ 3n

√
3(1− β)

π2(1− π2/12)
. (32)

Combining (29) and (32), we achieve
n

k
= Θ((1− β)−

1
2 ).

This fact together with Lemma 1 leads to D = Θ(1/
√
1− β).

D Lower bounds

D.1 Non-convex Case: Proof of Theorem 2

In this subsection, we establish the lower bound of the smooth and non-convex decentralized stochastic
optimization. Our analysis builds upon [44] but utilizes the proposed ring-lattice graphs for the
construction of worst-case instances, which significantly broadens the scope of weight matrices that
the lower bound can apply to, i.e., from β = cos(π/n) in [44] to any β ∈ [0, cos(π/n)]. Specifically,
we will prove for any β ∈ [0, cos(π/n)] and T = Ω(1/

√
1− β),

inf
A∈AW

sup
W∈Wn,β

sup
{g̃i}n

i=1⊆O2
σ

sup
{fi}n

i=1⊆FL

E∥∇f(x̂A,{fi}n
i=1,{g̃i}n

i=1,W,T )∥2

=Ω

(√
∆Lσ√
nT

+
∆L

T
√
1− β

)
. (33)

where ∆ := E[f(x(0))]−minx f(x).

We establish the two terms in (33) separately as in [44] by constructing two hard-to-optimize instances.
We denote the j-th coordinate of a vector x ∈ Rd by [x]j for j = 1, . . . , d, and let prog(x) be

prog(x) :=

{
0 if x = 0;

max1≤j≤d{j : [x]j ̸= 0} otherwise.
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Similarly, for a set of multiple points X = {x1, x2, . . . }, we define prog(X ) := maxx∈X prog(x).
As described in [9, 4], a function f is called zero-chain if it satisfies

prog(∇f(x)) ≤ prog(x) + 1, ∀x ∈ Rd,

which implies that, starting from x = 0, a single gradient evaluation can only earn at most one
more non-zero coordinate for the model parameters. We next introduce a key zero-chain function to
facilitate the analysis.
Lemma 4 (Lemma 2 of [4]). Let function

ℓ(x) := −Ψ(1)Φ([x]1) +

d−1∑
j=1

(
Ψ(−[x]j)Φ(−[x]j+1)−Ψ([x]j)Φ([x]j+1)

)
where for ∀ z ∈ R,

Ψ(z) =

{
0 z ≤ 1/2;

exp
(
1− 1

(2z−1)2

)
z > 1/2,

Φ(z) =
√
e

∫ z

−∞
e−

1
2 t

2

dt.

Then ℓ satisfy several properties as below:

1. ℓ(x)− infx ℓ(x) ≤ ∆0d, ∀x ∈ Rd with ∆0 = 12.

2. ℓ is L0-smooth with L0 = 152.

3. ∥∇ℓ(x)∥∞ ≤ G0, ∀x ∈ Rd with G0 = 23.

4. ∥∇ℓ(x)∥∞ ≥ 1 for any x ∈ Rd with [x]d = 0.

We next establish the two terms in (33) by constructing two hard-to-optimize instances.

Instance 1. The proof for the first term Ω((∆Lσ2

nT )
1
2 ) essentially follows [44]. We provide the proof

for the sake of being self-contained.

(Step 1.) Let all fi be Lλ2ℓ(x/λ)/L0 where ℓ is defined in Lemma 4 and λ is to be specified, and
thus f = Lλ2ℓ(x/λ)/L0. Since ∇2fi = L∇2ℓ/L0 and h is L0-smooth (Lemma 4), we know fi is
L-smooth for any λ > 0. By Lemma 4, we have

f(0)− inf
x

f(x) =
Lλ2

L0
(ℓ(0)− inf

x
ℓ(x))≤Lλ2∆0d

L0
.

Therefore, to ensure fi ∈ FL for all 1 ≤ i ≤ n and f(0)− infx f(x) ≤ ∆, it suffices to let

Lλ2∆0d

L0
≤ ∆, i.e., dλ2 ≤ L0∆

L∆0
. (34)

(Step 2.) We construct the stochastic gradient oracle g̃i ∀ i = 1, . . . , n as the follows:

[g̃i(x)]j = [∇fi(x)]j

(
1 + 1{j > prog(x)}

(
Z

p
− 1

))
,∀x ∈ Rd, j = 1, . . . , d

with Z ∼ Bernoulli(p), and p ∈ (0, 1) to be specified. The oracle g̃i(x) has probability p to zero
[∇fi(x)]prog(x)+1. It is easy to see g̃i is unbiased, i.e., E[g̃i(x)] = ∇fi(x) for all x ∈ Rd. Moreover,
since fis are zero-chain, we have prog(g̃i(x)) ≤ prog(∇fi(x)) ≤ prog(x) + 1 and hence

E[∥g̃i(x)−∇fi(x)∥2] = |[∇fi(x)]prog(x)+1|2E

[(
Z

p
− 1

)2
]
= |[∇fi(x)]prog(x)+1|2

1− p

p

≤ ∥∇fi(x)∥2∞
1− p

p
≤ L2λ2(1− p)

L2
0p

∥∇ℓ(x)∥2∞

Lemma 4
≤ L2λ2(1− p)G2

0

L2
0p

.
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Therefore, to ensure g̃i ∈ Oσ2 for all 1 ≤ i ≤ n, it suffices to let

p = min{L
2λ2G2

0

L2
0σ

2
, 1}. (35)

We let W = (1− β) 1n1n1
T
n + βI , then obviously W ∈ Wn,β .

(Step 3.) Next we show the error E[∥∇f(x)∥2] is lower bounded by Ω((∆Lσ2

nT )
1
2 ), with any algorithm

A ∈ AW . Let x(t)
i , ∀ t = 0, . . . and 1 ≤ i ≤ n, be the t-th query point of node i. Let prog(t) =

max1≤i≤n, 0≤s<t prog(x
(s)
i ). By Lemma 2 of [44], we have

P(prog(T ) ≥ d) ≤ e(e−1)npT−d. (36)

On the other hand, when prog(T ) < d, by the fourth point in Lemma 4, it holds that

min
x̂∈span{{x(t)

i }1≤i≤n,0≤t<T }
∥∇f(x̂)∥ ≥ min

[x̂]d=0
∥∇f(x̂)∥ =

Lλ

L0
min
[x̂]d=0

∥∇ℓ(x̂)∥ ≥ Lλ

L0
. (37)

Therefore, by combining (36) and (37), we have

E[∥∇f(x̂)∥2] ≥ (1− e(e−1)npT−d)
L2λ2

L2
0

. (38)

Let

λ =
L0

L

(
∆Lσ2

3nTL0∆0G2
0

) 1
4

and d =

⌊(
3L∆nTG2

0

σ2L0∆0

) 1
2

⌋
. (39)

Then (34) naturally holds and p = min{G2
0

σ2

(
∆Lσ2

3nTL0∆0G2
0

) 1
2

, 1} by plugging (39) into (35). Without
loss of generality, we assume T is sufficiently large such that d ≥ 2. Then, using the definition of p,
we have that

(e− 1)npT − d ≤ (e− 1)nT
G2

0

σ2

(
∆Lσ2

3nTL0∆0G2
0

) 1
2

− d

=
e− 1

3

(
3L∆nTG2

0

σ2L0∆0

) 1
2

− d <
e− 1

3
(d+ 1)− d ≤ 1− e < 0

which, combined with (38), further implies

E[∥∇f(x̂)∥2] = Ω

(
L2λ2

L2
0

)
= Ω

((
∆Lσ2

3nTL0∆0G2
0

) 1
2

)
= Ω

((
∆Lσ2

nT

) 1
2

)
.

Instance 2. The proof for the second term Ω( ∆L
T
√
1−β

) utilizes weight matrices defined on the
ring-lattice graphs described in Theorem 1.

(Step 1.) Let functions

ℓ1(x) := − n

⌈n/3⌉
Ψ(1)Φ([x]1) +

n

⌈n/3⌉
∑

j even, 0<j<d

(
Ψ(−[x]j)Φ(−[x]j+1)−Ψ([x]j)Φ([x]j+1)

)
and

ℓ2(x) :=
n

⌈n/3⌉
∑

j odd, 0<j<d

(
Ψ(−[x]j)Φ(−[x]j+1)−Ψ([x]j)Φ([x]j+1)

)
.

Compared to the ℓ function in instance 1, the ℓ1 and ℓ2 defined here are 3L0-smooth. Furthermore, let

fi =


Lλ2ℓ1(x/λ)/(3L0) if i ∈ E1 ≜ {j : 1 ≤ j ≤ ⌈n

3 ⌉},
Lλ2ℓ2(x/λ)/(3L0) if i ∈ E2 ≜ {j : ⌊n

2 ⌋+ 1 ≤ j ≤ ⌊n
2 ⌋+ ⌈n

3 ⌉},
0 else.
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where λ > 0 is to be specified. To ensure fi ∈ FL for all 1 ≤ i ≤ n and f(0)− infx f(x) ≤ ∆, it
suffices to let

Lλ2∆0d

3L0
≤ ∆, i.e., dλ2 ≤ 3L0∆

L∆0
. (40)

With the functions defined above, we have f(x) = 1
n

∑n
i=1 fi(x) = Lλ2ℓ(x/λ)/(3L0) and

prog(∇fi(x))

{
= prog(x) + 1 if {prog(x) is even and i ∈ E1} ∪ {prog(x) is odd and i ∈ E2}
≤ prog(x) otherwise.

Therefore, to make progress (i.e., to increase prog(x)), for any gossip algorithm A ∈ AW , one must
take the gossip communication protocol to transmit information between E1 to E2 alternatively.
Namely, it takes at least dist(E1, E2) rounds of gossip communications for any possible gossip
algorithm A to increase prog(x̂) by 1. Therefore, we have

prog(T ) = max
1≤i≤n, 0≤t<T

prog(x
(t)
i ) ≤

⌊
T

dist(E1, E2)

⌋
+ 1, ∀T ≥ 0. (41)

(Step 2.) We consider a gradient oracle that return lossless full-batch gradients, i.e., g̃i = ∇fi(x),
∀x ∈ Rd, 1 ≤ i ≤ n. For the construction of weight matrix, we consider the ring-lattice graph with
diameter D in Theorem 1 and its associated weight matrix W such that W ∈ Wn,β . Then by Lemma
1 and Theorem 1, we have dist(E1, E2) = dist(⌈n/3⌉, ⌊n/2⌋ + 1) = Θ(D) = Θ(1/

√
1− β).

Suppose dist(E1, E2) ≥ 1/(C
√
1− β) with some absolute constant C, then by (41), we have

prog(T ) = max
1≤i≤n, 0≤s≤T

prog(x
(s)
i ) ≤

⌊
C
√

1− βT
⌋
+ 1, ∀T ≥ 0. (42)

(Step 3.) We finally show the error E[∥∇f(x)∥2] is lower bounded by Ω
(

∆L√
1−βT

)
, with any

algorithm A ∈ AW . For any T ≥ 1/(C
√
1− β) = Ω(1/

√
1− β), consider

d =
⌊
C
√
1− βT

⌋
+ 2 < 4C

√
1− βT

and

λ =

(
3L0∆

4L∆0C
√
1− βT

) 1
2

. (43)

Then (40) naturally holds. Since prog(T ) < d by (42), following (37) and using (43), we have

E[∥∇f(x̂)∥2] ≥ min
[x̂]d=0

∥∇f(x̂)∥2 ≥ L2λ2

9L2
0

= Ω

(
∆L√
1− βT

)
.

D.2 Non-convex Case with PL Condition: Proof of Theorem 3

In this subsection, we provide the proof for smooth and non-convex decentralized stochastic opti-
mization under the PL condition: for any β ∈ [0, cos(π/n)] and T = Ω(1/

√
1− β),

inf
A∈AW

sup
W∈Wn,β

sup
{g̃i}n

i=1⊆O2
σ

sup
{fi}n

i=1⊆FL,µ

E[f(x̂A,{fi}n
i=1,{g̃i}n

i=1,W,T )− f⋆]

=Ω

(
σ2

µnT
+

µ∆

L
exp(−

√
µ/L

√
1− βT )

)
. (44)

where ∆ := E[f(x(0))]−minx f(x). We still prove the two terms in (44) separately.

Instance 1. Our proof for first term Ω( σ2

µnT ) is inspired by [56], who study the lower bounds in the
stochastic but single-node regime.

We consider all functions fi = f are homogeneous and W = 1−β
n 1n1

T
n + βI ∈ Wnβ . We then

choose two functions f1, f−1 ∈ FL,µ which are close enough to each other so that f1 and f−1 are
hard to distinguish within T gradient queries on each node. The indistinguishability between f1

and f−1 follows the standard Le Cam’s method in hypothesis testing. Next, we carefully show that
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the indistinguishability between f1 and f−1 can be properly translated into the lower bound of the
algorithmic performance.

Recall that [x]j denotes the j-th coordinate of vector x ∈ Rd. Let

fv =
1

2

µ([x]1 − vλ)2 + L

d∑
j=2

[x]2j

 ,

where v ∈ {±1}, d can be any integer greater than 2, and λ > 0 is a quantity to be determined.
Clearly, fv is L-smooth and µ-strongly convex, and thus satisfies the µ-PL condition. The optimum
xv,⋆ of fv is vλe1 with function value minx∈Rd fv(x) = 0, where e1 is the first canonical vector.

We construct the gradient oracle with N (0, σ2) noise. Specifically, on query at point x on node i, the
oracle returns g̃i(x) = ∇fi(x) + si with independent noise si ∼ N (0, σ2). Obviously g̃i ∈ Oσ2 for
all 1 ≤ i ≤ n.

Let S(T ) := {(x(t) ≜ (x
(t)
1 , . . . , x

(t)
n ), g̃(x(t)) ≜ (g̃1(x

(t)
1 ), . . . , g̃n(x

(t)
n ))}T−1

t=0 be set of variables
corresponding to the sequence of T queries on all nodes. Let P v,T := P (S(T ) | fv) be the joint
distribution of S(T ) if the underlying function was fv , i.e., f1 = · · · = fn = fv .
Lemma 5. Let V ∼ Unif({±1}), then for any optimization procedure x̂ based on the observed
gradients, it holds that

EV [f
V (x̂)] ≥ µλ2/2 inf

V̂
P(V̂ ̸= V ) (45)

where the randomness is over the random index V and the observed data S(T ) and the infimum is
taken over all testing procedures V̂ based on the observed queries.

Proof. Since P v,T is probability of the observed queries conditioned on {V = v}, by Markov’s
inequality, we have

EV [f
V (x̂)] ≥ µλ2/2EV [P

V,T (fV (x̂) ≥ µλ2/2)]. (46)

Now, we define the test V̂op based on the optimization procedure x̂ as follows:

V̂op =

{
v if fv(x̂) < µλ2/2

randomly pick one from {±1} otherwise.
,

By the definition of fv, at most one of {f1(x̂), f−1(x̂)} is strictly below µλ2/2, so V̂op is well-
defined. By the definition of V̂op, {V̂op ̸= v} implies {fv(x̂) ≥ µλ2/2}. Thus we have

P v,T (fv(x̂) ≥ µλ2/2) ≥ PV,T (V̂op ̸= v) ≥ inf
V̂

P(V̂ ̸= v) for any v ∈ {±1} (47)

Plugging (47) into (46), we reach the conclusion.

Based on Lemma 5, we know that the worst-case optimization performance in the above scenario
can be lower bounded by the indistinguishabiligty between to hypothesises f1 and f−1. Recall the
following standard result of Le Cam [8]

inf
V̂

(
P 1,T (V̂ ̸= 1) + P−1,T (V̂ ̸= −1)

)
= 1− ∥P 1,T − P−1,T ∥TV (48)

where ∥P 1,T − P−1,T ∥TV is the total variation distance between the two distributions. We can
precisely measure the indistinguishabiligty between f1 and f−1 by ∥P 1,T − P−1,T ∥TV . Since
the total variation distance is hard to compute, we turn to compute the KL-divergence, which is a
relaxation of the total variation distance due to Pinsker’s inequality [14]:

∥P 1,T − P−1,T ∥2TV ≤ 1

2
DKL(P

1,T ||P−1,T ). (49)

Lemma 6. The KL-divergence between P 1,T and P−1,T is upper bounded by:

DKL(P
1,T ||P−1,T ) ≤ 2nTµ2λ2/σ2. (50)
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Proof. Since the observed data obey Markov’s property, i.e., g̃i(x
(t)
i ) ⊥ S(t) | x(t)

i for any 1 ≤ i ≤ n
and 0 ≤ t < T , we have

DKL(P
1,T ||P−1,T ) = EP 1,T

[
log
(
P 1,T /P−1,T

)]
=EP 1,T

[
log

(
T−1∏
t=0

P(g̃(x(t)) | x(t), f1)/

T−1∏
t=0

P(g̃(x(t)) | x(t), f−1)

)]

=

T−1∑
t=0

ES(t)|f1

[
Eg̃(x(t))∼N (∇f1(x),σ2)

[
log
(
P(g(x(t)) | x(t), f1)/P(g(x(t)) | x(t), f−1)

)]]
=

T−1∑
t=0

n∑
i=1

ES(t)|f1

[
DKL

(
P(g̃(x(t)

i ) | x(t)
i , f1)||P(g(x(t)

i ) | x(t)
i , f−1)

)]
.

Then we apply the uniform upper bound over x as follows:

DKL(P
1,T ||P−1,T ) ≤ nT sup

x,i
DKL

(
P(g̃i(x) | x, f1)||P(g̃i(x) | x, f−1)

)
. (51)

Note the KL-divergence between two Gaussians can be computed explicitly from their means and
variances as follows: for any x ∈ Rd

DKL

(
P(g̃i(x) | x, f1)||P(g̃i(x) | x, f−1)

)
=DKL

(
N (∇f1(x), σ2))||N (∇f−1(x), σ2))

)
=

1

2σ2
∥∇f1(x)−∇f−1(x)∥2 =

2µ2λ2

σ2
. (52)

Plugging (52) into (51), we reach the result (50).

Therefore, by Lemma 5 and Lemma 6, we can obtain the lower bound based (44). Specifically, for
f1, f−1 ∈ FL,µ constructed above, assume that the algorithm A receives stochastic gradients with
N (0, σ2) noise, then we have

inf
A∈AW

sup
W∈Wn,β

sup
{g̃i}n

i=1⊆O2
σ

sup
{fi}n

i=1⊆FL,µ

E[f(x̂A,{fi}n
i=1,{g̃i}n

i=1,W,T )− f⋆]

≥ inf
A∈AW

max
v∈{±1}

E[fv(x̂A,{fv}n
i=1,N (∇fv(x),σ2), 1−β

n 1n1T
n+βI,T )]

≥ inf
A∈AW

EV∼Unif({±1})[E[fV (x̂A,{fV }n
i=1,N (∇fV (x),σ2), 1−β

n 1n1T
n+βI,T )]]. (53)

Plugging Lemma 5 and Lemma 6 into (53) and using Pinsker’s inequality, we immediately have

inf
A∈AW

sup
W∈Wn,β

sup
{g̃i}n

i=1⊆O2
σ

sup
{fi}n

i=1⊆FL,µ

E[f(x̂A,{fi}n
i=1,{g̃i}n

i=1,W,T )− f⋆]

≥µλ2

2

(
1−

√
DKL(P 1,T ||P−1,T )/2

)
=
µλ2

2

(
1− µλ

σ

√
nT

)
. (54)

Choosing λ = 2σ
3µ

√
nT

in (54), we reach the lower bound Ω( σ2

µnT ).

Instance 2. Our proof for the term Ω(µ∆/L exp(−
√

µ/L
√
1− βT )) builds on the similar idea

to [60]: splitting the function used by Nesterov to prove the lower bound for strongly convex and
smooth optimization [52]. However, the number of nodes n is fixed in our analysis while [60] needs
n to be varying when establishing the lower bound. Besides, our construction allows the objective
functions to be suitable to an arbitrary initialization scope ∆ = f(x(0))−minx f(x) which, however,
is not fully addressed and discussed in [60]. These differences make our analysis novel and stronger.

We construct deterministic scenarios where no gradient noise is employed in the oracle. We assume
the variable x ∈ ℓ2 ≜ {([x]1, [x]2, . . . , ) :

∑∞
r=1[x]

2
r < ∞} to be infinitely dimensional and square-

summable for simplicity. It is easy to adapt the argument for finitely dimensional variables as long
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as the dimension is proportionally larger than T . Without loss of generality, we assume all the
algorithms start from x(0) = 0 ∈ ℓ2. Let M be

M =


2 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

 ∈ R∞×∞,

then it is easy to see 0 ⪯ M ⪯ 4I . Let E1 ≜ {j : 1 ≤ j ≤ ⌈n
3 ⌉} and E2 ≜ {j : ⌊n

2 ⌋ + 1 ≤ j ≤
⌊n
2 ⌋+ ⌈n

3 ⌉} as in Appendix D.1, and let

fi(x) =


µ
2 ∥x∥

2 + L−µ
12

n
⌈n/3⌉

(
[x]21 +

∑
r≥1([x]2r − [x]2r+1)

2 − 2λ[x]1

)
if i ∈ E1,

µ
2 ∥x∥

2 + L−µ
12

n
⌈n/3⌉

∑
r≥1([x]2r−1 − [x]2r)

2 if i ∈ E2,
µ
2 ∥x∥

2 otherwise.

(55)

where λ ∈ R is to be specified. It is easy to see that [x]21 +
∑

r≥1([x]2r − [x]2r+1)
2 − 2λ[x]1 and∑

r≥1([x]2r−1 − [x]2r)
2 are convex and 4-smooth. We thus have all fi are L-smooth and µ-strongly

convex, which implies fi ∈ FL,µ for all 1 ≤ i ≤ n. We further have f(x) = 1
n

∑n
i=1 fi(x) =

µ
2 ∥x∥

2 + L−µ
12

(
xTMx− 2λ[x]1

)
.

For the functions defined above, we establish that
Lemma 7. Denote κ := L/µ > 1, then it holds that for any x and r ≥ 1 satisfying prog(x) ≤ r,

f(x)−min
x

f(x) ≥ µ

2L

(
1− 6√

3 + 6κ+ 3

)2r

(f(x(0))−min
x

f(x)).

Proof. The minimum x⋆ of function f satisfies
(

L−µ
6 M + µ

)
x−λL−µ

6 e1 = 0, which is equivalent
to (

2 +
6

κ− 1

)
[x]1 − [x]2 = λ,

−[x]j−1 +

(
2 +

6

κ− 1

)
[x]j − [x]j+1 = 0, ∀ j ≥ 2. (56)

Let q be the smallest root of the equation q2 −
(
2 + 6

κ−1

)
q + 1 = 0, then the variable

x⋆ =
(
[x⋆]j = λqj

)
j≥1

satisfies (56). By the strong convexity of f , x⋆ is the unique solution. Therefore, when prog(x) ≤ r,
it holds that

∥x− x⋆∥2 ≥
∞∑

j=r+1

λ2q2j = λ2 q
2(r+1)

1− q2
= q2r∥x(0) − x⋆∥2.

Finally, noting that

q = 1 +
3−

√
3 + 6κ

κ− 1
= 1− 6√

3 + 6κ+ 3
,

and using the strong convexity of f , we reach the conclusion.

Moreover, it is easy to see that the optimal value of f(x) is

min
x

f(x) = f(x⋆) = −L− µ

12
λ[x⋆]1 = −L− µ

12
λ2q.

Therefore, for any given ∆ > 0, we can chose λ =
√

12∆
(L−µ)q such that f(x(0))−minx f(x) = ∆.
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Similar to the argument in Appendix D.1, we have

prog(∇fi(x))

{
= prog(x) + 1 if {prog(x) is even and i ∈ E1} ∪ {prog(x) is odd and i ∈ E2}
≤ prog(x) otherwise.

We further have

prog(T ) = max
1≤i≤n, 0≤s≤T

prog(x
(t)
i ) ≤

⌊
T

dist(E1, E2)

⌋
+ 1, ∀T ≥ 0. (57)

Therefore, with T rounds of gossip communications budget in total, starting from x
(0)
i = 0 for any

i = 1, . . . , n, any gossip algorithm A can only achieves at most prog(x̂) = 1+ ⌊ T
dist(E1,E2)

⌋, which,
combined with Lemma 7, leads to lower bound that

f(x̂)−min
x

f(x) ≥ µ∆

2L

(
1− 6√

3 + 6κ+ 3

)2+2⌊ T
dist(E1,E2)

⌋

=Ω

(
µ

L
exp

(
−

√
6⌊ T

dist(E1,E2)
⌋

√
κ

)
∆

)
. (58)

where ∆ measures the initialization E[f(x(0))]−minx f(x). The rest follows using the ring-lattice
associated weight matrix W ∈ Wn,β such that

dist(E1, E2) = Ω((1− β)−
1
2 ).

D.3 Connectivity measures in common weight matrices

Table D.3 lists the order of the connectivity measure β for weight matrices, if generated through
the Laplacian rule W = I − L/dmax in which L is the Laplacian matrix and dmax is the maximum
degree, associated with commonly-used topologies. Since cos(πn ) ≥ 1− π2

2n2 , we have [0, 1− π2

2n2 ] ⊆
[0, cos(π/n)]. Since β listed in Table D.3 lies in [0, 1− π2

2n2 ] for sufficiently large n, we conclude
that our lower bound established in Theorems 2 and 3 applies to weight matrices associated with
topologies listed in Table D.3.

Table 8: Order of connectivity measure β. “E.-R. Rand”: Erdos-Renyi random graph G(n, p) with probability
p = (1 + a) ln(n)/n for some a > 0; “Geo. Rand”: geometric random graph G(n, r) with radius r2 =
(1 + a) ln(n)/n for some a > 0.

Topology Order of β

Grid [49] 1-Θ([n ln(n)]−1)
Torus [49] 1-Θ(n−1)
Hypercube [49] 1-Θ([ln(n)]−1)
Exponential [75] 1-Θ([ln(n)]−1)
Complete 0
E.-R. Rand. [6] 1-Θ([ln(n)]−1)
Geo. Rand. [7] 1-Θ(ln(n)n−1)

E Convergence in MG-DSGD

E.1 Smooth and non-convex setting

This section examines the convergence rate of MG-DSGD under the smooth and non-convex setting.
Since MG-DSGD is a direct variant based on the vanilla DSGD, we first establish the convergence of
DSGD to facilitate the convergence of MG-DSGD.

E.1.1 Convergence rate of DSGD

The convergence rate of DSGD has been established in literatures such as [30, 13]. We adjust
the analysis therein to achieve a slightly different result, which lays the foundation for the later
convergence analysis in MG-DSGD.
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The following lemma established in [30, Lemma 8] (also in [13, Lemma 6]) shows how E[f(x̄(k))]
evolves with iterations.
Lemma 8 (DESCENT LEMMA [30]). If {fi(x)}ni=1 ⊆ FL, {g̃i} ⊆ Oσ2 , and learning rate γ < 1

4L ,
it holds for k = 0, 1, 2, · · · that

E[f(x̄(k+1))] ≤ E[f(x̄(k))]− γ

4
E∥∇f(x̄(k))∥2 + 3γL2

4n
E∥x(k) − x̄(k)∥2F +

γ2σ2L

2n
, (59)

where x̄(k) = [(x̄(k))T ; · · · ; (x̄(k))T ] ∈ Rn×d, and x̄(k) = 1
n

∑n
i=1 x

(k)
i .

The following lemma established in [13, Lemma 8] shows how the ergodic consensus term evolves
with iterations.
Lemma 9 (CONSENSUS LEMMA [13]). If {fi(x)}ni=1 ⊆ FL, {g̃i} ⊆ Oσ2 , W ∈ Wn,β ,
1
n

∑n
i=1 ∥∇fi(x)−∇f(x)∥2 ≤ b2 for any x ∈ Rd, and learning rate γ ≤ 1−β

4βL , it holds that

1

K + 1

K∑
k=0

E∥x(k) − x̄(k)∥2F ≤ 12nβ2γ2

(1− β)2(K + 1)

K∑
k=0

E∥∇f(x̄(k))∥2 + 2nγ2β2

1− β
(
3b2

1− β
+ σ2).

(60)

Proof. The Lemma 8 in [13] covers both DSGD and DSGD with periodic global average. To recover
the result for DSGD, we let Cβ = 1/(1−β), Dβ = 1/(1−β) in [13, Lemma 8] to achieve (60).

The following lemma establishes the convergence rate of DSGD under the smooth and non-convex
setting.
Lemma 10 (DSGD CONVERGENCE). If {fi(x)}ni=1 ⊆ FL, {g̃i} ⊆ Oσ2 , W ∈ Wn,β ,
1
n

∑n
i=1 ∥∇fi(x)−∇f(x)∥2 ≤ b2 for any x ∈ Rd, and learning rate is set as

γ = min{
√
2n∆

σ
√

L(K + 1)
,
1− β

6βL
,
1

4L
}, (61)

where ∆ = E[f(x(0))]− f⋆, it holds that

1

K + 1

K∑
k=0

E∥∇f(x̄(k))∥2 = O

(
σ
√
∆L√
nK

+
β2Ln∆

(1− β)K
+

β2Lnb2∆

(1− β)2Kσ2
+

βL∆

(1− β)K
+

L∆

K

)
(62)

Remark 9. This result is slightly different from Theorem 2 in [30] where β does not appear in the
numerator of any terms in the upper bound therein. However, as we will show in the analysis of
MG-DSGD, the β appearing in the numerator of the third term in (62) can significantly reduce the
influence of data heterogeneity b2 if β → 0.

Proof. When γ ≤ 1/(4L), we know from Lemma 8 that

E∥∇f(x̄(k))∥2 ≤ 4

γ
E[f(x̄(k))]− 4

γ
E[f(x̄(k+1))] +

3L2

n
E∥x(k) − x̄(k)∥2F +

2γσ2L

n
, (63)

Taking running average over the above inequality, we obtain

1

K + 1

K∑
k=0

E∥∇f(x̄(k))∥2 ≤ 4

γ(K + 1)

(
E[f(x̄(0))]− E[f(x̄(K+1))]

)
+

2γσ2L

n
,

+
3L2

n(K + 1)

K∑
k=0

E∥x(k) − x̄(k)∥2F (64)

With Lemma (60) and the fact that E[f(x̄(0))]− E[f(x̄(K+1))] ≤ E[f(x̄(0))]− f⋆, (64) becomes(
1− 36β2L2γ2

(1− β)2

) 1

K + 1

K∑
k=0

E∥∇f(x̄(k))∥2

≤
4
(
E[f(x̄(0))]− f⋆

)
γ(K + 1)

+
2γσ2L

n
+

6γ2β2L2σ2

1− β
+

18γ2β2L2b2

(1− β)2
(65)
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If learning rate γ ≤ 1−β
12βL , it holds that 1− 36β2L2γ2

1−β ≥ 1/2 and hence

1

K + 1

K∑
k=0

E∥∇f(x̄(k))∥2 ≤ 8∆

γ(K + 1)
+

4γσ2L

n
+

12γ2β2L2σ2

1− β
+

36γ2β2L2b2

(1− β)2
(66)

where we introduce constant ∆ = E[f(x̄(0))]− f⋆. Next we set

γ1 =

√
2∆n

σ
√
L(K + 1)

, γ2 =
1− β

6βL
, γ3 =

1

4L
, γ = min{γ1, γ2, γ3}. (67)

Apparently, it holds that

8∆

γ(K + 1)
≤ 8∆

γ1(K + 1)
+

8∆

γ2(K + 1)
+

8∆

γ3(K + 1)

= O

(
σ
√
∆L√
nK

+
β∆L

(1− β)K
+

∆L

K

)
(68)

and

4γσ2L

n
+

12γ2β2L2σ2

1− β
+

36γ2β2L2b2

(1− β)2
≤ 4γ1σ

2L

n
+

12γ2
1β

2L2σ2

1− β
+

36γ2
1β

2L2b2

(1− β)2

= O

(
σ
√
∆L√
nK

+
β2L∆n

(1− β)K
+

β2L∆nb2

(1− β)2Kσ2

)
(69)

Combining (66), (68) and (69), we have (62).

E.1.2 Convergence rate of MG-DSGD

Recall the recursions of DSGD and MG-DSGD as follows.

(DSGD) x(k+1) = W
(
x(k) − γ∇F (x(k); ξ(k))

)
(70)

(MG-DSGD) x(k+1) = M̄
(
x(k) − γg(k))

)
, where g(k) =

1

R

R∑
r=1

∇F (x(k); ξ(k,r)) (71)

where M̄ is doubly stochastic (see Prop. 1). MG-DSGD has two differences from the vanilla DSGD.
First, the weight matrix W is replaced with M̄ . Second, the stochastic gradient g(k) is achieved
via gradient accumulation. This implies that the convergence analysis of MG-DSGD can follow
that of vanilla DSGD. We only need to pay attentions to the influence of M̄ obtained by fast gossip
averaging and the g(k) achieved by gradient accumulation. To proceed, we notice that

E[∥g(k)i −∇fi(x)∥2] =
1

R
E[∥∇F (x

(k)
i ; ξ

(k,r)
i )−∇fi(x)∥2] ≤

σ2

R

because {ξ(k,r)i }Rr=1 are sampled independently. We introduce σ̃2 ≜ σ2/R for notation simplicity. In
addition, we know from Prop. 1 that

∥M̄ − 1

n
1n1

T
n∥2 ≤ β̃, where β̃ :=

√
2
(
1−

√
1− β

)R
.

If we let

R =


max{ln(2), 1

2 ln(nmax{1, b2

σ2
√
1−β

})}
√
1− β

 = Õ

(
1√

1− β

)
, (72)

then it holds that

β̃ ≜
√
2(1−

√
1− β)R ≤

√
2e−

√
1−βR ≤ min

{
1√
2
,
√
2

(
nmax

{
1,

b2

σ2
√
1− β

})− 1
2

}
.

(73)
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We thus immediately have 1− β̃ = Ω(1) and

β̃2nmax{1, b2R/σ2} = Õ

(
β̃2nmax

{
1,

b2

σ2
√
1− β

})
= Õ(1). (74)

Theorem 4 (Formal version). Given L > 0, n ≥ 2, β ∈ [0, 1), σ > 0, and let A denote Algorithm 1.
Assuming that 1

n

∑n
i=1 ∥∇fi(x)−∇f(x)∥2 ≤ b2 for any x ∈ Rn and the number of gossip rounds

R is set as in (72), the convergence of A can be bounded for any {fi}ni=1 ⊆ FL and any W ∈ Wn,β

that

1

K

K∑
k=1

E∥∇f(x̄(k))∥2 = Õ

(
σ
√
∆L√
nT

+
L∆√
1− βT

)
where x̄(k) =

1

n

n∑
i=1

x
(k)
i (75)

and ∆ = E[f(x̄(0))]− f⋆.

Remark 10. Comparing with the established lower bound (33), we find the upper bound (75) matches
it tightly in all constants.

Proof. The convergence analysis of DSGD applies to MG-DSGD by replacing σ2 with σ̃2, and β
with β̃. As a result, we know from Lemma 10 that if the learning rate is set as

γ = min{
√
∆n

σ̃
√
L(K + 1)

,
1− β̃

6β̃L
,
1

4L
} = Õ

(
min{

√
2∆n

σ
√

(1− β)LT
,
1

L
}

)
(76)

where the last equality holds since T = KR (where T is the number of total gradient queries or
communication rounds), it holds that

1

K + 1

K∑
k=0

E∥∇f(x̄(k))∥2 = O

(
σ̃
√
∆L√
nK

+
β̃2L∆n

(1− β̃)K
+

β̃2L∆nb2

(1− β̃)2Kσ̃2
+

β̃L∆

(1− β̃)K
+

L∆

K

)
β̃≤ 1√

2
; T=KR

= O

(
σ
√
∆L√
nT

+
β̃2RL∆n

T
+

β̃2R2L∆nb2

Tσ2
+

RL∆

T

)

(72)
= Õ

σ
√
∆L√
nT

+
β̃2RL∆n

T
+

β̃2RL∆n b2

σ2
√
1−β

T
+

RL∆

T


(74)
= Õ

(
σ
√
∆L√
nT

+
RL∆

T

)
(72)
= Õ

(
σ
√
∆L√
nT

+
L∆√
1− βT

)
.

E.2 Smooth and non-convex setting under PL condition

Similar to Appendix E.1, we first establish the convergence of DSGD under the PL condition, and
then derive the convergence of MG-DSGD.

E.2.1 Convergence rate of DSGD

Substituting (3) to inequality (59), we achieve the following descent lemma.

Lemma 11 (DESCENT LEMMA). If {fi(x)}ni=1 ⊆ FL,µ, {g̃i} ⊆ Oσ2 and learning rate γ ≤ 1
4L , it

holds for k = 0, 1, 2, · · · that

E[f(x̄(k+1))]− f⋆ ≤ (1− µγ

2
)(E[f(x̄(k))]− f⋆) +

3γL2

4n
E∥x(k) − x̄(k)∥2F +

γ2σ2L

2n
. (77)

The following lemma establishes the consensus lemma for smooth and non-convex loss functions
satisfying the PL condition.

30



Lemma 12 (CONSENSUS LEMMA). If {fi(x)}ni=1 ⊆ FL,µ, {g̃i} ⊆ Oσ2 , W ∈ Wn,β ,
1
n

∑n
i=1 ∥∇fi(x) − ∇f(x)∥2 ≤ b2 for any x ∈ Rd, and learning rate γ ≤ 1−β

3βL , it holds for
k = 0, 1, 2, · · · that

E∥x(k+1) − x̄(k+1)∥2 ≤
(1 + β

2

)
E∥x(k) − x̄(k)∥2 + 6nβ2γ2L

1− β

(
Ef(x̄(k))− f⋆

)
+ nγ2β2σ2 +

3nβ2γ2b2

1− β
. (78)

Proof. When {fi}Li=1 ⊆ FL, it is know from [13, Eq. (78)] that

E∥x(k+1) − x̄(k+1)∥2 ≤
(
β +

3β2γ2L2

1− β

)
E∥x(k) − x̄(k)∥2 + 3nβ2γ2E∥∇f(x̄(k))∥2

1− β

+ nγ2β2σ2 +
3nβ2γ2b2

1− β
. (79)

If γ ≤ (1− β)/(3βL), it holds that

β +
3β2γ2L2

1− β
≤ 1 + β

2
. (80)

Moreover, since {fi}Li=1 ⊆ FL and hence f(x) ∈ FL, we have

∥∇f(x̄(t))∥2 ≤ 2L
(
f(x̄(t))− f⋆

)
. (81)

Substituting (80) and (81) to (79), we achieve (78).

The following lemma establishes the convergence rate of DSGD under the PL condition. Using
different proof techniques from those for the strongly-convex scenario in [30], we can show how fast
the last-iterate variable, i.e., f(x̄(K))− f⋆, converges. In contrast, authors in [30] show the ergodic
convergence, i.e., 1

HK

∑K
i=1 hkf(x̄

(k)) − f⋆ where hk > 0 is some positive weight and HK =∑K
k=1 hk. Moreover, the β appearing in the numerator of the third term in (83) can significantly

reduce the influence of data heterogeneity b2 when β → 0.

Lemma 13 (DSGD CONVERGENCE). If {fi(x)}ni=1 ⊆ FL,µ, {g̃i} ⊆ Oσ2 , W ∈ Wn,β ,
1
n

∑n
i=1 ∥∇fi(x)−∇f(x)∥2 ≤ b2 for any x ∈ Rd, and learning rate γ is set as

γ = min

{
4

µK
ln(

∆µ2nK

σ2L
),
1− β

4L
,
µ(1− β)

24nβL2

}
, (82)

it holds that

E[f(x̄(K))]− f⋆ + LE∥x(K) − x̄(K)∥2 (83)

=Õ
( σ2L

µ2nK
+

c1β
2σ2

µ2K2(1− β)
+

c2β
2b2

µ2K2(1− β)2
+∆exp(−µ(1− β)K

L
) + ∆exp(−µ2(1− β)K

nβL2
)
)

where ∆ = E[f(x(0))]− f⋆, c1 and c2 are constants defined as follows

c1 =
6L

µ
+

24L3

µ2
+ 4nL, c2 =

18L2

µ
+ 12nL. (84)

Proof. With Lemmas 11 and 12, if γ satisfies

γ ≤ 1

4L
, and γ ≤ 1− β

3βL
, (85)
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then we have[
E[f(x̄(k+1))]− f⋆

LE∥x(k+1) − x̄(k+1)∥2

]
︸ ︷︷ ︸

:=z(k+1)

≤

[
1− µγ

2
3γL
4n

6nβ2γ2L2

1−β
1+β
2

]
︸ ︷︷ ︸

:=A

[
E[f(x̄(k))]− f⋆

LE∥x(k) − x̄(k)∥2

]
︸ ︷︷ ︸

:=z(k)

+

[
γ2σ2L
2n

nLγ2β2σ2 + 3nLβ2γ2b2

1−β

]
︸ ︷︷ ︸

:=s

(86)

By recursing the above inequality, we have

z(k) ≤ Akz(0) +

k−1∑
ℓ=0

Aℓs ≤ Akz(0) + (I −A)−1s (87)

where the last inequality holds because A is nonnegative and

ρ(A) ≤ ∥A∥1 ≤ max{1− µγ

2
+

6nβ2γ2L2

1− β
,
3γL

4n
+

1 + β

2
} ≤ 1− µγ

4
. (88)

The last inequality in (88) holds when γ satisfies

γ ≤ (1− β)n

3L
=⇒ 3γL

4n
+

1 + β

2
≤ 3 + β

4
(89)

γ ≤ 1− β

µ
=⇒ 3 + β

4
≤ 1− µγ

4
(90)

γ ≤ µ(1− β)

24nβ2L2
=⇒ 1− µγ

2
+

6nβ2γ2L2

1− β
≤ 1− µγ

4
(91)

Furthermore, we can derive from (87) that

∥z(k)∥1 ≤ ∥Ak∥1∥z(0)∥1 + ∥(I −A)−1s∥1
≤ ∥A∥k1∥z(0)∥1 + ∥(I −A)−1s∥1
(88)
≤ (1− µγ

4
)k∥z(0)∥1 + ∥(I −A)−1s∥1. (92)

It is easy to verify that

(I −A)−1s =
1

µγ(1−β)
4 − 9β2γ3L3

2(1−β)

[
1−β
2

3γL
4n

6nβ2γ2L2

1−β
µγ
2

][
γ2σ2L
2n

nLγ2β2σ2 + 3nLβ2γ2b2

1−β

]
(a)

≤ 8

µγ(1− β)

[
1−β
2

3γL
4n

6nβ2γ2L2

1−β
µγ
2

][
γ2σ2L
2n

nLγ2β2σ2 + 3nLβ2γ2b2

1−β

]

=

 2γσ2L
µn + 6L2γ2β2σ2

µ(1−β) + 18L2β2γ2b2

µ(1−β)2

24β2γ3σ2L3

µ(1−β)2 + 4nLγ2β2σ2

1−β + 12nLβ2γ2b2

(1−β)2

 , (93)

where (a) holds when

γ ≤ 1− β

6βL

√
µ

L
. (94)

Inequality (93) implies that

∥(I −A)−1s∥1 ≤ 2γσ2L

µn
+
(6L2

µ
+

24γL3

µ(1− β)
+ 4nL

)γ2β2σ2

1− β
+
(18L2

µ
+ 12nL

) γ2β2b2

(1− β)2

(a)

≤ 2γσ2L

µn
+
(6L
µ

+
24L3

µ2
+ 4nL

)γ2β2σ2

1− β
+
(18L2

µ
+ 12nL

) γ2β2b2

(1− β)2

(b)
=

2γσ2L

µn
+

c1γ
2β2σ2

1− β
+

c2γ
2β2b2

(1− β)2
(95)
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where (a) holds because γ satisfies (90), and (b) holds by introducing

c1 :=
6L

µ
+

24L3

µ2
+ 4nL, c2 :=

18L2

µ
+ 12nL. (96)

Substituting (95) to (92), and recalling the definition of z(k) in (86), we have (at iteration K)

E[f(x̄(K))]− f⋆ + LE∥x(K) − x̄(K)∥2

≤∆(1− µγ

4
)K +

2γσ2L

µn
+

c1γ
2β2σ2

1− β
+

c2γ
2β2b2

(1− β)2

≤∆exp(−µγK

4
) +

2γσ2L

µn
+

c1γ
2β2σ2

1− β
+

c2γ
2β2b2

(1− β)2
(97)

where ∆ = E[f(x̄(0))] − f⋆ + LE∥x(0) − x̄(0)∥2 = E[f(x(0))] − f⋆ if x(0)
i = 0 for any i ∈ [n].

Next we let

γ1 =
4

µK
ln(

∆µ2nK

σ2L
), γ2 =

1− β

4L
, γ3 =

µ(1− β)

24nβL2
, γ = min{γ1, γ2, γ3}. (98)

It is easy to verify that γ satisfies all conditions in (85), (89), (90), (91) and (94). With (98), we have

∆exp(−µγK

4
) ≤ ∆

[
exp(−µγ1K

4
) + exp(−µγ2K

4
) + exp(−µγ3K

4
)
]

= O
( σ2L

µ2nK
+∆exp(−µ(1− β)K

L
) + ∆exp(−µ2(1− β)K

nβL2
)
)

(99)

and
γσ2L

µn
+

c1γ
2β2σ2

1− β
+

c2γ
2β2b2

(1− β)2
≤ γ1σ

2L

µn
+

c1γ
2
1β

2σ2

1− β
+

c2γ
2
1β

2b2

(1− β)2

= Õ
( σ2L

µ2nK
+

c1β
2σ2

µ2K2(1− β)
+

c2β
2b2

µ2K2(1− β)2

)
(100)

Combining (97), (99) and (100), we achieve (83).

E.2.2 Convergence rate of MG-DSGD

As discussed in Appendix E.1.2, it holds that σ̃2 ≜ σ2/R and β̃ ≜
√
2(1−

√
1− β)R. If we let

R =


max{ln(2), ln(nLµ ), 1

2 ln(
n
L max{c1, c2b

2

σ2
√
1−β

})}
√
1− β

 = Õ

(
1√

1− β

)
, (101)

we then have

β̃ ≜
√
2(1−

√
1− β)R ≤

√
2e−

√
1−βR ≤ min

{
1√
2
,
√
2
µ

nL
,

(
2
L

n
min

{
1

c1
,
σ2

√
1− β

b2c2

}) 1
2

}
.

(102)
which immediately leads to 1− β̃ = Ω(1) and

β̃2 max{c1, c2R
b2

σ2
} = Õ

(
β̃2 max

{
c1, c2

b2√
1− βσ2

})
= Õ(

L

n
). (103)

Theorem 5 (Formal version). Under the same assumptions as in Theorem 4 and setting R as
in (101), the convergence of A can be bounded for any loss functions {fi}ni=1 ⊆ FL,µ, and any
W ∈ Wn,β by

E[f(x̄(K))− f⋆] = Õ
(

σ2L

µ2nT
+∆exp(−µ

√
1− βT

L
)

)
. (104)

where ∆ = E[f(x(0))]− f⋆.
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Remark 11. Comparing with the lower bound established in (44), we find the upper bound (104)
matches it tightly in terms of T , n, σ2, and β, but is a little bit worse in dependence on L and µ. We
will leave it as a future work to develop new algorithms that can match (44) tightly in all constants.

Proof. The convergence analysis of DSGD applies to MG-DSGD by replacing σ2 with σ̃2, and β
with β̃. As a result, we know from Lemma 13 that if the learning rate is set as

γ = min

{
4

µK
ln(

∆µ2nK

σ̃2L
),
1− β̃

4L
,
µ(1− β̃)

24nβ̃L2

}
= Õ

(
min{ 1

µ
√
1− βT

,
1

L
}
)

(105)

it holds that

1

K + 1

K∑
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2b2
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L
) + ∆exp(−µ2(1− β̃)K

nβ̃L2
)
)

β̃≤ 1√
2
; T=KR≥R

= O
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+
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2σ2

µ2T
+

c2β̃
2Rb2

µ2T
+∆exp(− µT
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nβ̃RL2
)

)
(103),(102)

= Õ
(

σ2L

µ2nT
+∆exp(− µT

RL
)

)
(101)
= Õ

(
σ2L

µ2nT
+∆exp(−

√
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µT

L
)

)
.

F Experiments

F.1 Performance in terms of epochs

Fig. 2 depicts the performance of several algorithms in terms of the communicated messages. In
Fig. 3 we illustrate their performances in terms of epochs. It is observed that MG-DSGD achieves
slightly better validation accuracy than other baselines in both CIFAR-10 and ImageNet dataset.
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Figure 3: Convergence results in terms of validation accuracy. Left: CIFAR-10 with heterogeneous
data (α = 1); Right: ImageNet with homogeneous data.

F.2 Effects of accumulation rounds

We further investigate the performance of the proposed MG-DSGD and DeTAG over different
accumulation rounds. The “M-” prefix indicates methods with momentum acceleration. As shown in
Table 9, MG-DSGD reaches almost the same performance as DeTAG with less communications. Both
methods have performance degradation as accumulation round scales up. We conjecture that while
gradient accumulation, which amounts to using large-batch samples in gradient evaluation, can help
in the optimization and training stage, it may hurt the generalization performance because gradient
with less variance can lead the algorithm to a sharp local minimum. As a result, we recommend using
MG-DSGD in applications that are friendly to large-batch training.
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Table 9: Effects of round numbers for CIFAR-10 dataset

MODELS RESNET18 RESNET20
ROUNDS 2 3 4 5 2 3 4 5

M-DETAG 94.40±.13 93.50±.75 92.88±.50 92.57±.66 91.77±.25 91.50±.14 91.19±.26 90.62±.31
M-OURS 94.57±.05 93.95±.11 93.15±.25 92.01±.91 91.77±.09 91.17±.07 91.19±.13 90.44±.36
DETAG 93.17±.18 92.59±.03 92.26±.23 91.48±.27 88.97±.11 89.02±.08 88.77±.09 88.37±.24
OURS 93.75±.12 92.72±.20 92.43±.32 91.78±.28 89.18±.08 88.92±.10 88.80±.15 88.52±.20
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