
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ADASPEC: ADAPTIVE SPECTRUM FOR ENHANCED
NODE DISTINGUISHABILITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Spectral Graph Neural Networks (GNNs) achieve strong performance in node clas-
sification, yet their node distinguishability remains poorly understood. We analyze
how graph matrices and node features jointly influence node distinguishability. Fur-
ther, we derive a theoretical lower bound on the number of distinguishable nodes,
which is governed by two key factors: distinct eigenvalues in the graph matrix and
nonzero frequency components of node features in the eigenbasis. Based on these
insights, we propose AdaSpec, an adaptive graph matrix generation module that
enhances node distinguishability of spectral GNNs without increasing the order of
computational complexity. We prove that AdaSpec preserves permutation equivari-
ance, ensuring that reordering the graph nodes results in a corresponding reordering
of the node embeddings. Experiments across eighteen benchmark datasets validate
AdaSpec’s effectiveness in improving node distinguishability of spectral GNNs.

1 INTRODUCTION

Graph Neural Networks (GNNs) have become increasingly popular for graph learning tasks due to
their strong performance in tasks such as graph and node classification (Kipf & Welling, 2017; Xu
et al., 2019; He et al., 2021; Wang & Zhang, 2022; Qin et al., 2025). Among the various GNN models,
spectral GNNs represent a prominent class that transforms graph signals into the spectral domain,
enabling graph filters to process information for downstream tasks. Although numerous spectral
GNN variants have been proposed, their node distinguishability remains insufficiently understood.
These models typically utilize different graph matrices, such as the normalized adjacency matrix or
the normalized Laplacian. Further, within a given spectral GNN, the distribution of node features
across the graph plays a crucial role in model performance (He et al., 2022b; Platonov et al., 2023).
To the best of our knowledge, no existing work has systematically analyzed the interaction between
the graph matrix and node features in determining node distinguishability in spectral GNNs.

Spectral GNNs with state-of-the-art performance generally follow the form:

Ψ(M,X) = gΘ(M)fW (X), (1)

where M ∈ Rn×n represents the graph matrix (such as the Laplacian or adjacency matrix), X ∈
Rn×h denotes the node feature matrix, gΘ(M) =

∑K
k=0 θkTk(M) is the graph convolution function

parameterized by Θ = {θk}Kk=0, and Tk(·) denotes the k-th polynomial basis. The term fW (X)
represents the feature transformation function parameterized by W . Spectral GNNs learn meaningful
node features by optimizing W , projecting them into the spectral domain. By adjusting Θ, spectral
GNNs filter out unnecessary information and enhance useful information for downstream tasks.

While this formulation illustrates how spectral GNNs process node features through graph
convolution, their capacity for node distinguishability remains inadequately understood. This leads to
a fundamental question: how does the interaction between the graph matrix M and the node features
X projected into the spectral domain affect the node distinguishability of spectral GNNs? In this
work, we demonstrate that node distinguishability is influenced by the eigenvalue multiplicity and the
missing frequency components of node features in the eigenbasis of the graph matrix. Further, we
derive a theoretical lower bound on the number of nodes that can be distinguished by spectral GNNs,
given a specific graph matrix and node features.

Motivated by our theoretical analysis of node distinguishability, we introduce AdaSpec, an
adaptive graph matrix generation module that optimizes the graph matrix to maximize its lower
bound on node distinguishability. Designed as a plug-in, AdaSpec can be seamlessly integrated

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

into any spectral GNN to enhance node distinguishability. Moreover, spectral GNNs augmented
with AdaSpec preserve permutation equivariance, ensuring that reordering graph nodes results in a
corresponding reordering of node embeddings. Finally, AdaSpec maintains the graph’s connectivity,
guaranteeing that the learned embeddings accurately reflect the underlying graph structure.

We evaluate our approach on eighteen benchmark node classification datasets, covering a range
of small- and large-scale graphs with both homophilic and heterophilic structures in Section 6.
Spectral GNNs with AdaSpec achieve notable performance improvements on heterophilic graphs,
while maintaining or slightly improving accuracy on homophilic ones. These results validate the
effectiveness of AdaSpec in boosting node distinguishability. Additionally, experimental results show
that the order of time complexity of spectral GNNs with and without AdaSpec are the same.

2 RELATED WORKS

Spectral GNNs. Spectral GNNs perform graph convolution by applying filters in the spectral
domain for representation learning. Based on the design of their graph filters, spectral GNNs can be
categorized into polynomial (He et al., 2022a; 2021) and rational types (Levie et al., 2019; Bianchi
et al., 2021; Li et al., 2025). Polynomial graph filters are computationally efficient and localized in the
vertex domain (Hammond et al., 2009; Defferrard et al., 2016), and this paper focuses on their analysis.
Recent studies primarily investigate how different polynomial bases affect spectral GNN performance,
for instance, ChebNet, ChebNetII, JacobiConv, BernNet, GPRGNN and GLN (Defferrard et al.,
2016; He et al., 2022a; Wang & Zhang, 2022; He et al., 2021; Chien et al., 2021; Li & Wang, 2024).
Further, FavardGNN, UniFilter and PolyCF learn polynomial bases that adapt to different graph
structures (Guo & Wei, 2023; Huang et al., 2024; Qin et al., 2025).

Above spectral GNNs use fixed graph matrices like normalized adjacency or Laplacian matrices.
While research has focused on effect of polynomial bases on performance of spectral GNNs, we
demonstrate the critical role of the graph matrix. We analyze how the interaction between the graph
matrix and node features affects spectral GNN performance. Further, we propose AdaSpec, a graph
matrix generation module to enhance the performance of spectral GNNs.

Expressive Power of Spectral GNNs. The expressive power of GNNs in graph classification has
been extensively analyzed through the Weisfeiler-Lehman (WL) test (Li & Leskovec, 2022; Zhang
et al., 2023; Jin et al., 2025), a family of algorithms designed to determine graph isomorphism (Weis-
feiler & Leman, 1968). In contrast, the expressive power of GNNs for node classification remains
less explored. The expressive capacity of linear spectral GNNs has been analyzed via the uniform
approximation theorem in (Wang & Zhang, 2022), which shows that when the graph matrix has no
repeated eigenvalues and node features span all frequency components, the model can approximate
any one-dimensional function. However, these conditions rarely hold in real-world graphs, where
symmetric structures are common and node features are often sparse. As shown in Figure 2, eigen-
value multiplicity and missing frequency components frequently occur in practice. An eigenvalue
correction method was proposed in (Lu et al., 2024) to enhance the expressiveness of spectral GNNs,
building on the analysis in (Wang & Zhang, 2022). However, this method does not ensure permutation
equivariance, leading to node embeddings that depend on node ordering, which is undesirable and
theoretically unsound.

Our work investigates the expressive power of spectral GNNs from the perspective of node
distinguishability. We extend the understanding of how the interaction between the graph matrix
and node features influences node distinguishability in spectral GNNs. Notably, our analysis goes
beyond linear GNNs by incorporating nonlinear feature transformations fW . Moreover, we rigorously
establish a theoretical lower bound on the number of distinguishable nodes in spectral GNNs.

Graph Rewiring. Another line of research focuses on improving the performance of GNNs through
graph rewiring techniques, which modify the graph topology. Early methods include DropEdge
and EDGEWIRE, which randomly or uses degree-preserving strategy to remove edges to alleviate
over-smoothing (Rong et al., 2020; Chan & Akoglu, 2016). Curvature-based approaches (Topping
et al., 2022) adjust connectivity using discrete Ricci curvature to combat over-squashing, while
locality-aware strategies preserve structures efficiency (Barbero et al., 2024). More recent methods
include DiffWire, a differentiable and parameter-free approach guided by the Lovász bound (Arnaiz-
Rodrıéguez et al., 2022); FoSR, which improves spectral expansion (Karhadkar et al., 2023); and
GPER, selecting edges based on effective resistance to enhance information flow (Shen et al., 2024).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

While graph rewiring methods offer valuable insights into improving GNN performance, their
objectives and underlying mechanisms differ fundamentally from ours. Graph rewiring addresses
structural issues by modifying graph topology in the spatial domain as a preprocessing step. In
contrast, our method enhances node distinguishability in the spectral domain through an adaptive
graph matrix generation module that trains end-to-end with spectral GNNs.

3 PRELIMINARIES

Let G = (V, E , X) denote an undirected, simple graph, where V is the set of nodes with cardinality
|V| = n, E is the set of edges, and X ∈ Rn×h is the node feature matrix. For each node v ∈ V ,
X(v) ∈ Rh denotes its associated feature vector. The graph structure is represented by the adjacency
matrix A ∈ {0, 1}n×n, where Aij = 1 if (vi, vj) ∈ E , and 0 otherwise. The degree matrix
D ∈ Rn×n is diagonal with entries Dii equal to the degree of node vi. The normalized adjacency
matrix is defined as Ã = D− 1

2AD− 1
2 . The normalized graph Laplacian is given by L̃ = I − Ã,

where I ∈ Rn×n is the identity matrix.
Two nodes u and v in an undirected graph G are structurally equivalent su ∼ sv if they share

exactly the same neighbors; formally, for every other node w ∈ V \ {u, v}, (u,w) ∈ E ⇐⇒
(v, w) ∈ E . In effect, swapping u and v leaves the graph’s adjacency relation unchanged.

A permutation of the node set V is a bijection π : V → V . The set of all permutations on V
forms the symmetric group Sym(V). An automorphism of the graph G is a permutation π ∈ Sym(V)
satisfying the following conditions: (1) edge preservation: (v, u) ∈ E ⇐⇒ (π(v), π(u)) ∈
E , ∀v, u ∈ V, and (2) feature preservation: X(π(v)) = X(v), ∀v ∈ V. The automorphism
group of G, denoted Aut(G), is the set of all such automorphisms.

Two nodes u and v are said to be isomorphic, denoted u ∼ v, if they belong to the same orbit
under Aut(G); that is, there exists a permutation π ∈ Aut(G) such that π(v) = u. Otherwise, u and
v are non-isomorphic.

An important property of functions defined on graphs is permutation equivariance, which ensures
that the output remains consistent under any reordering of the nodes. Formally,
Definition 3.1 (Permutation Equivariance). Let G denote the set of graphs. A function f : G → Rn×d

is said to be permutation equivariant if, for any graph G ∈ G and any permutation π ∈ Sym(V), it
holds that

f(π(G)) = π(f(G)),

where π(G) denotes the graph obtained by permuting the nodes of G according to π, and π(f(G))
denotes the corresponding permutation of the output of f .

4 NODE DISTINGUISHABILITY OF SPECTRAL GNNS

The node distinguishability of a spectral GNN refers to its ability to distinguish non-isomorphic
nodes within graphs. Formally,
Definition 4.1 (Node Distinguishability). For a spectral GNN with function class F , where each
f ∈ F : G → Rn×d maps a graph to node representations, node distinguishability refers to the ability
to learn a function that assigns distinct representations to non-isomorphic nodes:

f(G)v ̸= f(G)u for all v, u ∈ V where v ̸∼ u

where f(G)v and f(G)u denote representations of node v and u. v ̸∼ u indicates node u, v are
non-isomorphic.

The spectral GNN’s node distinguishability capacity that mapping non-isomorphic nodes to
distinct representations is fundamentally determined by its function class F . To understand how
spectral GNNs of the form given in Equation (1) distinguish nodes, whose input consists of a graph
matrix M and a feature matrix X , we begin by formally defining the spectrum of M and the frequency
components of X .
Definition 4.2 (Spectrum and Frequency Components). Let M = UΛU⊤ be the eigendecomposition
of a graph matrix M ∈ Rn×n, where Λ is a diagonal matrix of eigenvalues and U = [u1, . . . , un]
contains the corresponding eigenvectors. The spectrum of M , denoted spec(M), is the multiset
of eigenvalues: spec(M) = {{λ1, λ2, . . . , λn}}, where λi = Λii. Let support supp(spec(M)) be

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(a) (b) (c) (d)

Figure 2: Eigenvalues and frequency component distributions.

the underlying set of spec(M). Define dM = |supp(spec(M))|, which is the number of distinct
eigenvalues. Given node features X ∈ Rn×h, the frequency components in the eigenbasis of M are
X̃ = U⊤X , where X̃i = u⊤

i X is the i-th frequency component. The number of non-zero frequency
components is ∥X̃(M)∥0 = |{X̃i | X̃i ̸= 0h}|.

Figure 1: Nodes 1 and 3 cannot
be distinguished by spectral
GNNs of K = 1 with Ã. (a)
Missing frequency compo-
nents: X = [1, 0, 1,−1,−1],
dÃ = 5, ∥X(Ã)∥0 = 3.
(b) Eigenvalue multiplicity:
X = [1, 0, 1, 1,−1], dÃ = 3,
∥X(Ã)∥0 = 5.

The limitations of node distinguishability in spectral GNNs stem
from two key factors: Eigenvalue multiplicity of the graph matrix
M and the missing of frequency components of node features X
when projected onto the eigenbasis of M . In Figure 1, we show that
spectral GNNs with a first-order polynomial filter and normalized
adjacency matrix Ã as graph matrix cannot distinguish node 1 and
3. (1) Non-distinguishable nodes can exist when there are missing
frequency components that dÃ = 5 = n but ∥X(Ã)∥0 = 3 < n
in Figure 1(a). (2) Non-distinguishable nodes can exist when there
are repeated eigenvalues dÃ = 3 < n even if ∥X(Ã)∥0 = 5 = n
in Figure 1(b). Nodes 1 and 3 in both subfigures are non-isomorphic
but spectral GNNs yield identical embeddings for them. Hence they
are indistinguishable. We provide a theoretical bound on the number
of nodes that can be distinguished by spectral GNNs, stated as follows.
Theorem 4.3. For X ̸= 0n×n, there exist a spectral GNN Ψ(M,X) that can distinguish at least
min(dM , ∥X̃(M)∥0) nodes on graph.

This result provides a fundamental guarantee on the node distinguishability of spectral GNNs.
The lower bound depends on both the number of distinct eigenvalues dM and the number of non-zero
frequency components ∥X̃(M)∥0, which together characterize the alignment between the graph
matrix M and the node features X . When multiple eigenvectors share the same eigenvalue, the
graph filter gΘ applies identical transformations to them, preventing from distinguishing different
structural patterns. Similarly, if node features lack frequency components corresponding to certain
eigenvectors, structural differences captured by those eigenvectors become invisible in embeddings.
This has practical implications: increasing distinct eigenvlaue number dM and non-zero frequency
components of X in the eigenbasis of M improves the theoretical guarantee on the lower bound of
number of distinguishable nodes, offering a clear direction for enhancing the expressive power of
spectral GNNs.

In real-world graphs, we observe that eigenvalue multiplicity and missing frequency component
are very common.

Observation I (Eigenvalues of Multiplicity.) The normalized graph adjacency matrix Ã =
D−1/2AD−1/2 often contains eigenvalues with multiplicities greater than one and the eigenvalue
zero has largest multiplicity.

We illustrate the eigenvalue distribution of the normalized graph adjacency matrix for the Texas
and Cora datasets in Figure 2(a-b). Additional eigenvalue distributions for various other real-world
datasets are provided in Figure 3 (Appendix). This phenomenon is also observed in (Lim et al.,
2023). Graph symmetry, repeated substructures often lead to repeated eigenvalues in the normalized
adjacency matrix and reduce its rank. Real-world graphs also tend to be sparse due to many low-
degree nodes, further lowering the rank. Since the rank of a real symmetric matrix equals the number
of non-zero eigenvalues, low-rank matrices imply high multiplicity of the zero eigenvalue.

Node features in connected real-world graphs are sampled independently of the graph structure.
For instance, in citation networks (such as Cora and PubMed), node features are the textual content of

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

papers, which are collected independently of the graph structure. Thus, graph signals are not aligned
with the graph’s eigenvectors. We have below observations.
Observation II (Missing Frequency Components.) Many frequency components of graph signal
(node feature) is zero in the eigenbasis of normalized graph adjacency matrix Ã.

We illustrate the distribution of frequency components for Texas and Cora in Figure 2(c-d), where
most components are zero. Additional results for other real-world datasets are provided in Figure 4
(Appendix). Zero frequency component means that the frequency component in the direction of
corresponding eigenvectors is missing. Real-world node features are often either smooth or oscillatory,
containing only low or high-frequency components, leading to many others to be zero or negligible.
Additionally, features are typically sparse, with only k non-zero entries that k ≪ n. When projected
onto the eigenbasis, each component scales as O(k/

√
n). As n → ∞, the proportion of non-zero

frequency components tends toward zero.
Based on above observations and Theorem 4.3, we propose AdaSpec to enhance the node

distinguishability of spectral GNNs.

5 ADASPEC

AdaSpec generates a graph matrix that adapts to both the graph structure and node features, enabling
it to serve as a plug-in module for any spectral GNN Ψ(M,X) of the form in Equation (1). The
spectral GNN augmented with AdaSpec is defined as:

Ψ+(A,X) = gΘ(Ω(A,X))fW (X), (2)
where Ω maps the adjacency matrix A and node features X to a new graph matrix. The functions gΘ
and fW (X) remain the same as those in Ψ(M,X).

AdaSpec enables Ψ+(A,X) to capture richer interactions between graph structure and node
features, which are not possible using fixed matrices in classic spectral GNNs Ψ(M,X). To ensure
permutation equivariance of node embeddings, the generated graph matrix M = Ω(A,X) must
satisfy two key properties: (1) M commutes with Aut(G): PσM = MPσ,∀σ ∈ Aut(G) where Pσ

is the permutation matrix corresponding to the automorphism σ; (2) M preserves edge connectivity:
Mij ̸= 0⇔ eij ∈ E and Mij = 0⇔ eij ̸∈ E . Thus, we design Ω(A,X) as

Ω(A,X) = ΩD(A) + α1ΩS(A) + α2ΩF (X) (3)
where ΩD(A) is designed to increase the number of distinct eigenvalues, ΩS(A) aims to reduce the
multiplicity of zero eigenvalues, and ΩF (X) is designed to decrease missing frequency components
of X . The hyperparameters α1, α2 control the eigenvalue range for stable training.

5.1 INCREASE DISTINCT EIGENVALUES

According to Theorem 4.3, increasing the number of distinct eigenvalues of the graph matrix can
raise the lower bound of number of nodes distinguished by a spectral GNN, thereby increasing its
node distinguishability. To achieve this, the term ΩD(A) in AdaSpec is designed as follows:

ΩD(A) = (D +B)
−1/2

(A+B) (D +B)
−1/2

,

where A and D are the graph adjacency matrix and the degree matrix, respectively, and B = diag(b)
is a learnable diagonal matrix with non-negative elements.

The diagonal element of B is initialized as bu = 1/Duu, ensuring nodes with the same degree
start with the same bias. For isomorphic nodes u ∼ v, we have bu = bv throughout training; for
u ̸∼ v, training yields bu ̸= bv . This initialization preserves permutation equivariance of Ψ+(A,X),
as shown in Proposition 5.5. Adding B to A introduces node-specific flexibility, enabling A+B and
D +B to adapt to graphs. This enhances node distinguishability by allowing structurally equivalent
but feature different nodes to play distinct roles. For two non-isomorphic nodes u, v that u ̸∼ v, if
su ∼ sv but X(u) ̸= X(v), introducing different biases bu ̸= bv breaks structure symmetry and
reduces eigenvalue multiplicity. Intuitively, B modifies the self-loop strength, altering information
flow from the node itself. We later provide theoretical justification that this increases the number of
distinct eigenvalues.
Theorem 5.1 (Increased Distinct Eigenvalues). Given a graph G with the adjacency matrix A, and
the degree matrix D, we have:

dΩD(A) ≥ dÃ

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

This indicates that the lower bound of the number of distinguishable nodes for spectral GNNs
using ΩD is greater than or equal to that for those using Ã, according to Theorem 4.3.

5.2 SHIFTS EIGENVALUES FROM ZERO

The presence of zero eigenvalues can hinder node distinguishability. To mitigate this, we design a
graph matrix transformation that shifts eigenvalues away from zero:

ΩS(A) = I.

Several approaches exist for designing ΩS ; we choose the identity matrix because adding it to any
matrix shifts the eigenvalues while preserving the eigenvectors. This ensures minimal alteration to
the original matrix.

Adding term ϵΩS to any matrix C can reduce the number of zero eigenvalues. As all eigenvalues
of C add the same scalar ϵ, distinct eigenvalues remain distinct after addition. As all eigenvectors of
C stays the same, so the number of non-zero frequency component of node feature stays the same.

5.3 INCREASE FREQUENCY COMPONENTS

We can increase the number of non-zero frequency component to the node distinguishability of
spectral GNNs. Given a node feature matrix X , we design a matrix ΩF that adapts to X to increase
the frequency components:

ΩF (X) =

h∑
i=1

X:iX
⊤
:i

∥X:i∥2F
◦A (4)

where ◦ denotes the Hadamard product.
By dividing by the Frobenius norm ∥X:i∥2F , features with larger magnitudes don’t dominate the

transformation. The Hadamard product with the adjacency matrix A preserves the graph’s original
structure. We prove in theory that for any symmetric matrix C, adding ϵΩF (X) can increase non-zero
frequency components.
Theorem 5.2 (Non-Decreasing Frequency Components). For a real symmetric matrix C ∈ Rn×n

with orthonormal basis {ur}r∈[n]. Under Condition 5.3, the following holds for index i ∈ [h]:

∥X̃(C+ϵΩF)
:i ∥0 > ∥X̃(C)

:i ∥0
where ϵ is a non-zero constant.
Condition 5.3 (Non-zero feature projections). Let C ∈ Rn×n be a real symmetric matrix with
orthonormal eigenbasis {ur}nr=1. There exist two column node feature vectors X:i and X:l with
i, l ∈ [h] and i ̸= l such that u⊤

k X:i ̸= 0, u⊤
k X:l ̸= 0, and u⊤

j X:l ̸= 0 for some indices k, j ∈ [n].

Condition 5.3 are naturally satisfied in most real-world graph datasets. This condition requires
that node features have non-zero projections onto certain eigenvectors of the graph matrix. Nat-
ural heterogeneity in node features makes it likely that different nodes will have diverse nonzero
projections onto eigenvectors, even with sparse features. Additionally, while feature correlation
exists, real-world graph typically varies a lot along certain dimensions, satisfying our non-zero
projection condition. Therefore, incorporating ΩF (X) ensures that the number of non-zero frequency
components of node features is increased in real-world graphs.

In summary, each component of Ω(A,X) either increases the number of distinct eigenvalues or
the number of non-zero frequency components of the node features in the eigenbasis of the graph
matrix. By Theorem 4.3, this leads to a higher lower bound on the number of distinguishable nodes,
thereby enhancing node distinguishability. We show properties of our design Ω(A,X) as below.
Theorem 5.4. For a graph G, the learnable matrix Ω(A,X) is commutative with Aut(G) and
preserves edge connectivity.

As Ω(A,X) satisfies desirable properties, it ensures that the augmented spectral GNNs Ψ+(A,X)
with AdaSpec remains permutation equivariant.
Proposition 5.5. When fW is permutation equivariant, spectral GNNs Ψ+(A,X) augmented with
AdaSpec is permutation equivariant.

Theorem 5.4 and Proposition 5.5 ensures that for spectral GNNs Ψ+(A,X), reordering the graph
nodes results in a corresponding reordering of node embeddings. AdaSpec can be combined with any
spectral GNNs to enhance their node distinguishability.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5.4 TIME COMPLEXITY ANALYSIS

The time complexity of classic spectral GNNs Ψ(M,X) and Ψ+(A,X) augmented with AdaSpec is
in the same order in both forward and backward propagation. ΩF (X) in AdaSpec will increase the
pre-computing time, but it needs to be computed only once. We list the time complexity in Table 1.

The time complexity can be analyzed in two main phases: pre-computation and forward/backward
propagation. During pre-computation, graph matrix normalization requires O(|V|+ |E|) operations
such as graph adjacency matrix normalization. ΩF (X) in Ψ+(A,X) requires an additional O(h(|V|+
|E|)) where computation is efficiently limited to non-zero entries in the adjacency matrix. Thus, the
one-off pre-computing of Ψ+(A,X) scales linearly in the size of graph and node feature dimension.

For forward and backward propagation, the feature transformation step fW (X) incurs a com-
plexity of O(|W |h), while graph convolution gΘ requires O(KT |E|) operations when Tk(M) is
computed recursively, such as in ChebNet, JacobiConv. Although Ψ+(A,X) requires additional
computation of Ω(A,X) during each forward pass and gradient calculation for matrix B during
backpropagation at a cost of O(|V|+ |E|), this does not change the overall asymptotic complexity.

6 EXPERIMENTS

We design our experiments to investigate the following research questions: (1) Q1: To what extent
does AdaSpec generate task-adaptive graph matrices that enhance node distinguishability in spectral
GNNs? (2) Q2: What is the contribution of each component within AdaSpec to overall performance?
(3) Q3: How does AdaSpec affect the spectral properties of the graph matrix, particularly in terms
of increasing the number of distinct eigenvalues? (4) Q4: What is the computational overhead
introduced by integrating AdaSpec into spectral GNNs during training?

Experimental Setup. We conduct experiments on eighteen benchmark datasets for node classifica-
tion to verify the effectiveness of AdaSpec. Datasets includes: six small heterophilic graphs (Texas,
Wisconsin, Actor, Chameleon, Squirrel, Cornell), five large heterophilic graphs (Roman_Empire,
Amazon_Ratings, Minesweeper, Tolokers, Questions) and seven homophilic graphs (Citeseer,
Pubmed, Cora, Computers, Photo, Coauthor-CS, Coauthor-Physics). Statistics of datasets, details
about the baselines, and the setting of hyperparameters are included in Appendix B. For each dataset,
we follow (Chien et al., 2021; He et al., 2022a) and use sparse splitting that nodes are randomly
divided into training/validation/testing with ratios of 2.5%/2.5%/95%, respectively. Notably, for
Citeseer, Pubmed, and Cora datasets, 20 nodes per class are for training, 500 nodes for validation,
and 1,000 nodes for testing.

We chose five popular spectral GNNs as our baselines: ChebNet (Defferrard et al., 2016),
GPRGNN (Chien et al., 2021), BernNet (He et al., 2021), JacobiConv (Wang & Zhang, 2022), and
ChebNetII (He et al., 2022a), and compare their performances augmented with AdaSpec and with
fixed graph matrix across all datasets. For each spectral GNN, we use GNN (O) to denote the original
model and GNN (M) to denote the spectral GNNs augmented by AdaSpec, with ∆ ↑ indicating the
performance improvement.

Effectiveness of AdaSpec. We present the node classification performance with and without the
AdaSpec on all small heterophilic datasets and a subset of large heterophilic datasets in Table 2.
The Minesweeper and Question datasets are particularly challenging to classify, as their label
informativeness (i.e., the mutual information between the labels of the central node and its neighbors)
is zero (Platonov et al., 2023). The complete experimental results are in Table 9 (Appendix). Results
on homophilic graphs are shown in Table 3 .

Spectral GNNs Parameter Count Pre-computing Complexity Forward/Backward Complexity

Ψ(M,X) 1 +K O(|V|+ |E|) O(KT |E|+ |V||W |)
Ψ+(A,X) 1 +K + |V| O(h(|V|+ |E|)) O(KT |E|+ |V||W |)

Table 1: Time complexity comparison of GNNs with and without AdaSpec. V and E denotes the
node and edge set respectively. h is the node feature dimension. T is the node class number. K is the
polynomial order of spectral GNNs.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Model Texas Wisconsin Actor Chameleon Squirrel Cornell Minesweeper Questions
ChebNet(O) 38.67±9.31 32.92±7.38 25.15±0.69 29.32±4.13 24.23±3.24 31.33±7.51 86.29±0.2 55.13±0.54

ChebNet(M) 51.16±8.56 33.83±9.38 25.38±0.67 29.73±3.3 23.2±3.94 33.47±7.92 86.7±0.23 55.2±1.52

∆ ↑ +12.49 +0.91 +0.23 +0.41 -1.03 +2.14 +0.41 +0.07
ChebNetII(O) 56.24±1.39 51.5±5.63 29.89±0.68 35.26±3.66 37.19±0.66 39.54±6.88 78.35±0.14 64.13±0.95

ChebNetII(M) 56.76±3.12 52.0±7.75 30.43±1.23 35.62±3.52 36.88±0.69 39.94±7.05 79.1±0.09 65.54±0.7

∆ ↑ +0.52 +0.5 +0.54 +0.36 -0.31 +0.4 +0.75 +1.41
JacobiConv(O) 55.09±5.95 49.0±10.51 32.15±0.77 34.29±3.82 29.29±1.99 38.96±8.79 87.34±0.12 64.72±0.38

JacobiConv(M) 57.4±3.93 52.33±8.88 32.52±0.75 38.16±1.18 31.35±1.68 41.62±10.06 89.13±0.1 65.8±0.18

∆ ↑ +2.31 +3.33 +0.37 +3.87 +2.06 +2.66 +1.79 +1.08

GPRGNN(O) 48.15±4.74 44.25±5.92 30.39±1.24 32.5±2.92 27.7±3.88 34.39±6.88 87.15±0.49 53.14±0.27

GPRGNN(M) 58.27±4.97 53.25±7.21 30.4±1.51 32.82±4.76 27.3±6.03±4.77 36.13±7.52 88.58±0.18 58.19±0.36

∆ ↑ +10.12 +9.0 +0.01 +0.32 -0.4 +1.74 +1.43 +5.05
BernNet(O) 56.19±7.52 49.38±5.75 30.5±1.18 35.35±3.46 33.41±3.42 36.82±10.64 76.54±0.23 64.86±0.37

BernNet(M) 58.9±4.11 51.96±7.84 30.61±0.67 39.61±1.55 34.46±3.52 40.23±5.66 76.95±0.21 65.2±0.31

∆ ↑ +2.71 +2.58 +0.11 +4.26 +1.05 +3.41 +0.41 +0.34

Table 2: Performance of spectral GNNs with/without AdaSpec on heterophilic datasets. ROC AUC is
reported on Minesweeper, Questions. Testing accuracy is reported on other datasets. High accuracy
and ROC AUC indicate good performance.

Model Citeseer Pubmed Cora Computers Photo Coauthor-CS Coauthor-Physics
ChebNet(O) 69.21±0.87 75.29±2.34 80.45±1.09 82.64±1.76 91.77±0.32 90.95±0.34 95.03±0.11

ChebNet(M) 68.52±0.86 77.38±1.45 82.26±0.84 85.14±0.89 92.34±0.41 91.54±0.22 94.93±0.09

∆ ↑ -0.69 +2.09 +1.81 +2.5 +0.57 +0.59 -0.1
ChebNetII(O) 69.93±1.15 78.42±1.48 81.64±0.86 84.96±0.97 92.71±0.46 93.08±0.27 95.23±0.1

ChebNetII(M) 69.54±0.9 78.59±1.52 81.97±0.86 84.79±0.83 92.58±0.31 93.11±0.25 95.26±0.11

∆ ↑ -0.39 +0.17 +0.33 -0.17 -0.13 +0.03 +0.03
JacobiConv(O) 70.8±0.7 79.43±1.45 77.15±0.96 85.39±0.95 92.79±0.38 93.33±0.23 95.32±0.15

JacobiConv(M) 70.91±0.66 79.65±1.25 83.52±0.69 84.92±0.92 92.83±0.36 93.27±0.25 95.43±0.11

∆ ↑ +0.11 +0.22 +6.37 -0.47 +0.04 -0.06 +0.11
GPRGNN(O) 70.02±0.7 79.24±1.1 82.24±0.86 84.09±0.81 92.43±0.24 92.99±0.22 95.28±0.04

GPRGNN(M) 70.4±0.41 79.6±0.97 82.19±0.79 84.28±0.86 92.53±0.38 93.33±0.29 95.32±0.15

∆ ↑ +0.38 +0.36 -0.05 +0.19 +0.1 +0.34 +0.04
BernNet(O) 69.12±0.96 78.9±1.04 81.9±0.8 85.15±1.14 92.63±0.29 93.11±0.23 95.3±0.17

BernNet(M) 69.45±0.64 79.07±1.03 82.5±0.78 85.18±0.77 92.58±0.36 93.07±0.29 95.32±0.15

∆ ↑ +0.33 +0.17 +0.6 +0.03 -0.05 -0.04 +0.02

Table 3: Test accuracy of spectral GNNs with/without AdaSpec on homophilic datasets. High
accuracy indicates good performance.

From Tables 2 and 3, we observe the following: (1) AdaSpec significantly improves performance
on heterophilic graphs compared to homophilic graphs. There is an average accuracy improvement
of 1.89% on small heterophilic graphs, an average ROC AUC improvement of 1.27% on large
heterophilic graphs, and an average accuracy improvement of 0.43% on homophilic graphs. (2)
AdaSpec shows greater performance improvement on small-sized graphs compared to large-sized
graphs. The average node classification accuracy improvement on small graphs (Texas, Wisconsin,
Cornell) is 3.45%, whereas the improvement on larger graphs (Chameleon, Squirrel) is 0.46%.

The main performance improvement stems from AdaSpec’s ability to increase node distinguisha-
bility in spectral GNNs. By refining the graph structure representation, AdaSpec enables the model
to better separate nodes with similar features or structures. In homophilic graphs, low-frequency
components are sufficient for smooth features, so adding more may hurt. Heterophilic graphs require
richer spectral patterns, and AdaSpec help by increasing useful frequency components. In small
graphs, changes in graph matrix can reveal critical structure. In large graphs, existing structure
dominates, changes in graph matrix are less effective.

Component-wise Analysis. We report ChebNet performance augmented with AdaSpec across
multiple datasets and conduct an ablation study to isolate the effects of each component. Results
in Table 4 show: (1) Full components: Combining all three components consistently yields the best
performance. (2) Structure-dominated graphs (e.g., Chameleon, Cora): ΩD outperforms ΩS . (3)
Feature-dominated graphs (e.g., Texas, Roman_Empire): ΩS outperforms ΩD. (4) Frequency com-
ponents: Increasing non-zero frequency components via ΩF (X) improves performance, even when
used alone. Each component within AdaSpec independently improves node distinguishability. When
combined, these mechanisms complement each other, leading to the strongest overall performance.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

AdaSpec Texas Chameleon Roman Empire Amazon Ratings Citeseer Cora

ΩD(A) 40.75 26.71 22.70 40.75 68.27 81.53
ΩS(A) 44.51 23.27 54.04 35.28 52.29 55.63
ΩF (X) 26.24 28.22 54.12 37.16 29.49 65.49
Ω(A,X) 51.16 29.73 54.55 40.92 68.52 82.26

Table 4: Test accuracy of ChebNet with different components of AdaSpec across datasets that
Ω(A,X) contains all three components.

Increased Distinct Eigenvalue Number. We compare the number of distinct eigenvalues between
the original normalized adjacency matrix Ã and the modified matrix ΩD(A) from AdaSpec when
using ChebNet. Due to the computational cost of full eigendecomposition, we conduct this analysis on
small-scale homophilic and heterophilic datasets. As shown in Table 5, ΩD(A) consistently increases
the number of distinct eigenvalues, supporting Theorem 5.1. Standard normalized adjacency matrix
Ã and its self-loop version Â are specific cases of the component ΩD(A) in AdaSpec by setting
B = 0 and B = 1 respectively. We introduces richer structural information in spectral GNNs by
making B learnable matrix (updated via gradient descent) in AdaSpec. The increased number of
distinct eigenvalues directly enhances the model’s ability to differentiate non-isomorphic nodes.

Dataset Texas Wisconsin Chameleon Squirrel Cornell Citeseer Cora

|V| 183 251 890 2,223 183 3,327 2,708
dÃ 113 178 845 2,213 122 2,508 2,395
dΩD(A) 181 229 888 2,221 144 3,227 2,645
△ ↑ 68 51 43 8 22 719 250

Table 5: Number of distinct eigenvalues of the graph matrix. |V| denotes the number of nodes in
graphs. dÃ and dΩD(A) are numbers of distinct eigenvalues of Ã and ΩD(A) in AdaSpec respectively.

Time Complexity of AdaSpec. We evaluate the training efficiency of ChebNet with and without
AdaSpec across multiple datasets. For each dataset, we conduct ten independent runs. We report the
average training time per run and the pre-computing time of Ψ+(A,X) in Table 6. The results show
that AdaSpec introduces minimal overhead and can even accelerate convergence on large heterophilic
graphs (e.g., Roman_Empire, Amazon_Ratings). When increase graph size from Amazon_Ratings to
Coauthor-Physics, the pre-computation time rises from 0.03s to 12.44s, which is consistent with our
time complexity analysis in Section 5.4. By incorporating structural and feature bias into the node
representation, AdaSpec enables faster convergence and more efficient training.

Datasets Roman
_Empire

Amazon
_Ratings Tolokers Minesweeper Questions Computers Photo Coauthor

-CS
Coauthor
-Physics

ChebNet (O) 1.93 1.91 1.76 1.28 2.53 4.73 3.4 3.67 4.54
ChebNet (S) 1.88 1.35 2.51 2.18 3.05 5.32 4.83 4.11 4.60

∆ ↑ -0.05 -0.56 0.75 0.9 0.52 0.59 1.43 0.44 0.06

Pre-Computing 0.26 0.03 0.44 0.08 0.56 1.83 0.9 4.1 12.44

Table 6: Average training and pre-computing time (in seconds) for ChebNet with and without
AdaSpec on large heterophilic and homophilic datasets. Pre-computing is for ΩF (X) in AdaSpec.

7 CONCLUSION AND LIMITATIONS

This work analyzes node distinguishability of spectral GNNs and shows it is governed by the interplay
between the graph matrix and node features. Specifically, by the number of distinct eigenvalues and
nonzero frequency components in the graph matrix’s eigenbasis. We propose AdaSpec, a plug-in
module that enhances the node distinguishability of spectral GNNs, offering theoretical guarantees
and empirical gains.

While effective, our approach is limited to spectral GNNs and provides only a lower bound on
distinguishability. The design of AdaSpec is tailored to certain data distributions and may not gener-
alize universally. Future work could explore more generalizable graph matrix designs, applications to
dynamic graphs, and integration with advanced spectral GNNs for broader applicability.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work presents a theoretical analysis and algorithmic contribution to spectral GNNs for node
classification tasks. The research does not involve human subjects, collection of personal data, or
direct interaction with individuals. All experiments are conducted on publicly available benchmark
datasets that have been widely used in the graph learning community. The proposed AdaSpec is
a general-purpose technique for improving node distinguishability in spectral GNNs and does not
target specific populations or applications that could raise fairness or discrimination concerns.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have made every effort to document our methods and
experimental setup comprehensively. The main paper provides a complete description of the proposed
AdaSpec, including its theoretical derivation and integration with existing GNN architectures. Full
proofs for our theoretical claims are provided in Appendix A. All experiments were conducted using
publicly available benchmark datasets. Experimental settings, including datasets, preprocessing steps,
model architectures, and hyperparameters, are described in detail in the main text and Appendix B.
The complete source code, including the implementation of AdaSpec and the scripts to run all
experiments, will be released upon acceptance, enabling full reproduction of reported results.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Adrián Arnaiz-Rodrıéguez, Ahmed Begga, Francisco Escolano, and Nuria M Oliver. Diffwire:
Inductive graph rewiring via the lovász bound. In Learning on Graphs Conference, pp. 15–1.
PMLR, 2022.

Federico Barbero, Ameya Velingker, Amin Saberi, Michael M Bronstein, and Francesco Di Giovanni.
Locality-aware graph rewiring in gnns. In ICLR, 2024.

Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Francesco Livi, and Cesare Alippi. Graph neural
networks with convolutional arma filters. IEEE transactions on pattern analysis and machine
intelligence, 2021.

Hau Chan and Leman Akoglu. Optimizing network robustness by edge rewiring: a general framework.
Data Mining and Knowledge Discovery, 30:1395–1425, 2016.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. arXiv: Learning, 2021.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In NIPS, 2016.

Yu Tang Guo and Zhewei Wei. Graph neural networks with learnable and optimal polynomial bases.
ArXiv, abs/2302.12432, 2023. URL https://api.semanticscholar.org/CorpusID:
257205644.

David K. Hammond, Pierre Vandergheynst, and Rémi Gribonval. Wavelets on graphs via spectral
graph theory. ArXiv, abs/0912.3848, 2009.

Mingguo He, Zhewei Wei, Zengfeng Huang, and Hongteng Xu. Bernnet: Learning arbitrary graph
spectral filters via bernstein approximation. In Advances in Neural Information Processing Systems
(NeurIPS), 2021.

Mingguo He, Zhewei Wei, and Ji rong Wen. Convolutional neural networks on graphs with
chebyshev approximation, revisited. ArXiv, abs/2202.03580, 2022a. URL https://api.
semanticscholar.org/CorpusID:246652363.

Mingguo He, Zhewei Wei, and Ji rong Wen. Convolutional neural networks on graphs with
chebyshev approximation, revisited. ArXiv, abs/2202.03580, 2022b. URL https://api.
semanticscholar.org/CorpusID:246652363.

Keke Huang, Yu Guang Wang, Ming Li, et al. How universal polynomial bases enhance spec-
tral graph neural networks: Heterophily, over-smoothing, and over-squashing. arXiv preprint
arXiv:2405.12474, 2024.

Ming Jin, Guangsi Shi, Yuan-Fang Li, Bo Xiong, Tian Zhou, Flora D Salim, Liang Zhao, Lingfei Wu,
Qingsong Wen, and Shirui Pan. Towards expressive spectral-temporal graph neural networks for
time series forecasting. IEEE transactions on pattern analysis and machine intelligence, 2025.

Kedar Karhadkar, Pradeep Kr Banerjee, and Guido Montufar. Fosr: First-order spectral rewiring for
addressing oversquashing in gnns. In ICLR, 2023.

Thomas Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations, 2017.

Ron Levie, Federico Monti, Xavier Bresson, and Michael M. Bronstein. Cayleynets: Graph con-
volutional neural networks with complex rational spectral filters. IEEE Transactions on Signal
Processing, 67:97–109, 2019.

Guoming Li, Jian Yang, and Shangsong Liang. Ergnn: Spectral graph neural network with explicitly-
optimized rational graph filters. In ICASSP 2025-2025 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 1–5. IEEE, 2025.

Pan Li and Jure Leskovec. The expressive power of graph neural networks. Graph Neural Networks:
Foundations, Frontiers, and Applications, pp. 63–98, 2022.

11

https://api.semanticscholar.org/CorpusID:257205644
https://api.semanticscholar.org/CorpusID:257205644
https://api.semanticscholar.org/CorpusID:246652363
https://api.semanticscholar.org/CorpusID:246652363
https://api.semanticscholar.org/CorpusID:246652363
https://api.semanticscholar.org/CorpusID:246652363

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhengpin Li and Jian Wang. Spectral graph neural networks with generalized laguerre approximation.
In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 7760–7764. IEEE, 2024.

Derek Lim, Joshua David Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and
Stefanie Jegelka. Sign and basis invariant networks for spectral graph representation learning. In
ICLR, 2023.

Kangkang Lu, Yanhua Yu, Hao Fei, Xuan Li, Zixuan Yang, Zirui Guo, Meiyu Liang, Mengran Yin,
and Tat-Seng Chua. Improving expressive power of spectral graph neural networks with eigenvalue
correction. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
14158–14166, 2024.

Hongbin Pei, Bingzhen Wei, K. Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric graph
convolutional networks. ArXiv, abs/2002.05287, 2020.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova. A
critical look at the evaluation of gnns under heterophily: Are we really making progress? arXiv
preprint arXiv:2302.11640, 2023.

Yifang Qin, Wei Ju, Yiyang Gu, Ziyue Qiao, Zhiping Xiao, and Ming Zhang. Polycf: Towards
optimal spectral graph filters for collaborative filtering. ACM Transactions on Information Systems,
43(4):1–28, 2025.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. In ICLR, 2020.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. J.
Complex Networks, 9, 2021.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

Xu Shen, Pietro Lio, Lintao Yang, Ru Yuan, Yuyang Zhang, and Chengbin Peng. Graph rewiring
and preprocessing for graph neural networks based on effective resistance. IEEE Transactions on
Knowledge and Data Engineering, 2024.

GW Stewart. Matrix perturbation theory. Computer Science and Scientific Computing/Academic
Press, Inc, 1990.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. 2022.

Xiyuan Wang and Muhan Zhang. How powerful are spectral graph neural networks. ArXiv,
abs/2205.11172, 2022.

Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra
which appears therein. NTI, Series, 2(9):12–16, 1968.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor K. Prasanna.
Graphsaint: Graph sampling based inductive learning method. ArXiv, abs/1907.04931, 2020.

Bingxu Zhang, Changjun Fan, Shixuan Liu, Kuihua Huang, Xiang Zhao, Jincai Huang, and Zhong
Liu. The expressive power of graph neural networks: A survey. arXiv preprint arXiv:2308.08235,
2023.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. In Advances in
Neural Information Processing Systems, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

A PROOFS

Detailed proofs of theorems and propositions are provided.

Theorem 4.3. For X ̸= 0n×n, there exist a spectral GNN Ψ(M,X) that can distinguish at least
min(dM , ∥X̃(M)∥0) nodes on graph.

Proof. (1) fW .
The rank of a matrix corresponds to the dimension of its column space. When fW is MLP, which

can approximate any function, there exist a parameter W ′ so that fW ′ is injective function, and
rank(fW ′(X)) = rank(X).

(2) gΘ(M).
For K order polynomial function on symmetric graph matrix g(M), we can represent it as

g(M) =
∑

k=0 αkM
k. We conduct eigendecomposition M = UΛUT , thus, g(M) = Ug(Λ)UT ,

where g(λi) =
∑K

k=0 αkλ
k
i . Rank(g(M)) equals the number of non-zeros in g(Λ). When α0 ̸= 0,

we have Rank(g(M) = n as I is full rank matrix. Therefore, there exist a parameter Θ′ that θ′0 ̸= 0,
such that rank(gΘ′(M)) = n ≥ rank(M).

(3) Rank and eigenvalues.
As gΘ′(M) is a full rank matrix, so rank(gΘ′(M)) ≥ rank(M) ≥ dM .
As eigenvectors of M are linearly independent, if X has r non-zero frequency components, then

there at least r linearly independent directions to represent X in eigenbasis of M , i.e., rank(X) ≥
∥X̃(M)∥0.

Thus, for spectral GNN Ψ in Equation (1), there exist a parameter Θ′,W ′ that

rank(Ψ(M,X))

= rank(gΘ′(M)fW ′(X))

≥ min(rank(gΘ′(M)), rank(fW ′(X)))

≥ min(dM , rank(X))

≥ min(dM , ∥X̃(M)∥0)

(5)

If rank(Ψ(M,X)) ≥ r, it means that at least r rows in embeddings Ψ(M,X) are linearly
independent. Thus, Ψ(M,X) can distinguish r nodes in graph.

In summary, there exist a spectral GNN that can distinguish at least min(dM , ∥X̃(M)∥0) on graph.

Theorem 5.1 (Increased Distinct Eigenvalues). Given a graph G with the adjacency matrix A, and
the degree matrix D, we have:

dΩD(A) ≥ dÃ

Proof. We denote M1 = D−1/2AD−1/2 and M2 = (D +B)−1/2(A+B)(D +B)−1/2. Then we
rove that the characteristic polynomial of M2 has more distinct coefficients than the characteristic
polynomial of M1.
(1)Determinants

The determinant of M1 is:

det(M1 − λI) = det(D−1/2AD−1/2 − λI)

= det
(
D−1/2

(
AD−1/2 − λD1/2

))
= det

(
D−1/2 (A− λD)D−1/2

)
= det

(
D−1/2

)
det (A− λD) det

(
D−1/2

)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

thus, det(M1 − λI) and det (A− λD) share same roots and det
(
D−1/2

)
is a constant that does not

affect roots.
We denote the characteristic polynomial of M1 as

P1(λ) = det (A− λD)

The determinant of M2 is:

det(M2 − λI)

= det((D +B)−
1
2 (A+B)(D +B)−

1
2 − λI)

= det
(
(D +B)

− 1
2

(
(A+B) (D +B)

− 1
2 − λ (D +B)

1/2
))

= det
(
(D +B)

− 1
2 ((A+B)− λ (D +B)) (D +B)

− 1
2

)
= det

(
(D +B)

− 1
2

)
det ((A+B)− λ (D +B)) det

(
(D +B)

− 1
2

)
thus, det(M2 − λI) and det ((A+B)− λ (D +B)) share same root.

We denote the characteristic polynomial of M2 as

P2(λ) = det ((A+B)− λ (D +B))

We show that P2(λ) has more distinct coefficients than P1(λ), implying M2 has more distinct
eigenvalues.

(2)Expansion of Determinants For any square matrix A and diagnoal matrix D, we expand the
the determinant for A− λD using the Leibniz formula:

det(A− λD) =
∑
σ∈Sn

sgn(σ)
n∏

i=1

(aiσ(i) − λdiδiσ(i))

where σ is a permutation of {1, . . . , n}, and Sn is the symmetric group, sgn(•) is the sign function
of permutations in Sn, which returns +1 or −1 for even and odd permutations respectively.

We expand the determinant for P1(λ) and P2(λ) using Leibniz formula:

P1(λ) =
∑
σ

sgn(σ)
∏

(aiσ(i) − λdiδiσ(i))

P2(λ) =
∑
σ

sgn(σ)
∏

(aiσ(i) + biδiσ(i) − λ(di + bi)δiσ(i))

We focus on the diagonal terms when i = σ(i):

In P1(λ) : aii − λdi

In P2(λ) : (aii + bi)− λ(di + bi)

• In P1(λ), (aii − λd) and (ajj − λd) have the same coefficient of λ.

• In P2(λ), (aii + bi − λ(d+ bi)) and (ajj + bj − λ(d+ bj)) can have different coefficients
of λ.

That is, in P1(λ), term (aii − λdi) is repeated for vertices with the same degree. In P2(λ), due to
the distinct bi, terms (aii+ bi−λ(di+ bi)) can be different even if di = dj , resulting in a polynomial
with more distinct coefficients.

We express this as follows:

In P1(λ), the coefficient of λk (for 0 ≤ k ≤ n) has the form:

c1k =
∑

f1(d1, . . . , dn, a11, . . . , ann)

In P2(λ), the corresponding coefficient has the form:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

c2k =
∑

f2(d1 + b1, . . . , dn + bn, a11 + b1, . . . , ann + bn)

Where f1 and f2 are functions resulting from the determinant expansion.
As analyzed above, the function f2 can produce more unique coefficients than f1.
More unique coefficients in characteristic polynomial implies more unique eigenvalues of the

matrix. Thus, we prove matrix (D + B)−1/2(A + B)(D + B)−1/2 has more unique eigenvalues
than matrix D−1/2AD−1/2, i.e., dΩ(A) ≥ dÃ

Theorem A.1 (First-order Perturbation Theorem (Stewart, 1990)). When a system described by a
matrix A ∈ Rn×n of no repeated eigenvalues is slightly altered by a small perturbation ζ ∈ Rn×n

and the new new system can be represented as A′ = A+ ϵζ, where ϵ is a non-zero constant. A has
eigenvalues {λi}i∈[n] and eigenvectors {ui}i∈[n]. A′ has eigenvalues {λ′

i}i∈[n] and eigenvectors
{u′

i}i∈[n].

Relations between eigenvalues and eigenvectors of A,A′ are:

λ′
i = λi + ϵδλi = u⊤

i ζui +O(ϵ2)

u′
i = ui + ϵ

∑
j ̸=i

u⊤
j ζui

λi − λj
uj +O(ϵ2)

Theorem 5.2 (Non-Decreasing Frequency Components). For a real symmetric matrix C ∈ Rn×n

with orthonormal basis {ur}r∈[n]. Under Condition 5.3, the following holds for index i ∈ [h]:

∥X̃(C+ϵΩF)
:i ∥0 > ∥X̃(C)

:i ∥0
where ϵ is a non-zero constant.

Proof. Since C is a real symmetric matrix, it can be diagonalized

C = UΛUT

where U = [u1, . . . , un] is orthonormal eigenvectors and Λ = diag(λ1, . . . , λn) is the diagonal
matrix of eigenvalues.

We denote {λ̃i}i∈[n] and {ũi}i∈[n] eigenvalues and eigenvectors of C + ϵΩF .
According to Theorem A.1, we have

ũj = uj + ϵ
∑
k ̸=j

u⊤
k ΩFuj

λj − λk
uk +O(ϵ2)

Then,

ũ⊤
j X:i = u⊤

j X:i + ϵ
∑
k ̸=j

u⊤
k ΩFuj

λj − λk
ukX:i +O(ϵ2)

(1) for {j|uT
j X:i ̸= 0}

The leading term uT
j X:i ̸= 0 ensures that ũ⊤

j X:i ̸= 0.
It indicates that non-zero components of X:i in eigenspace of C is still non-zero components in

eigenspace of C + ϵΩF .
(2) for {j|uT

j X:i = 0}
we have

ũ⊤
j X:i = ϵ

∑
k ̸=j

u⊤
k ΩFuj

λj − λk
ukX:i +O(ϵ2)

= ϵ
∑
j ̸=i

[

h∑
l=1

(u⊤
k X:l)(X

⊤
:l uj)

∥X:l∥2F (λj − λk)
]u⊤

k X:i +O(ϵ2)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

When there exist k that uT
kX:i ̸= 0 and there exist l that u⊤

k X:l ̸= 0, u⊤
j X:l ̸= 0. Thus,

(u⊤
k X:l)(X

⊤
:l uj) ̸= 0 and ũ⊤

k X:i ̸= 0.
It indicates that the zero-components of X:i in eigenspace of C becomes non-zero components in

eigenspace of C + ϵΩF .
In summary, when perturbing matrix C with ϵΩF , the non-zero frequency component

∥X̃(C+ϵΩF)
:i ∥0 > ∥X̃(C)

:i ∥0.

Theorem 5.4. For a graph G, the learnable matrix Ω(A,X) is commutative with Aut(G) and
preserves edge connectivity.

Proof. (1) Ω(A,X) commutes with Aut(G).
For any permutation matrix P ∈ Aut(G), we have PAP = A, P−1 = P⊤ and PDP⊤ = D.
Therefore:

P (D +B)P⊤ = PDP⊤ + PBP⊤ = D +B

P (D +B)−1/2P⊤ = (D +B)−1/2

For two isomorphic nodes u ∼ v, they will have same node labels. Each element in B is updated
by gradient, when u ∼ v, the gradient of bu and bv are the same. As we initial all bu = 1

n , we will
get bu = bv . Thus, PBP⊤ = B.

For ΩD(A) = (D +B)−1/2(A+B)(D +B)−1/2

PΩD(A)P⊤

= P (D +B)−1/2(A+B)(D +B)−1/2P⊤

= P (D +B)−1/2A(D +B)−1/2P⊤

+ P (D +B)−1/2B(D +B)−1/2P⊤

= (D +B)−1/2PAP⊤(D +B)−1/2

+ (D +B)−1/2PBP⊤(D +B)−1/2

= (D +B)−1/2A(D +B)−1/2

+ (D +B)−1/2B(D +B)−1/2

= (D +B)−1/2(A+B)(D +B)−1/2

= ΩD(A)

Obviously, for ΩS(A) = I , we have PIP⊤ = I , i.e., PΩS(A)P⊤ = ΩS(A).

For ΩF (X) =
∑h

i=1
X:iX

⊤
:i

∥X:i∥2
F
◦A, we have

PΩF (X)P⊤

= P

(
X:iX

⊤
:i

∥X:i∥2F
◦A
)
P⊤

=
(PX:i)(PX:i)

⊤

∥X:i∥2F
◦A

=
X:iX

⊤
:i

∥X:i∥2F
◦A

= ΩF (X)

As each term in Ω(A,X) commutes with Aut(G), putting them together, we have

PΩ(A,X)P⊤ = Ω(A,X)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(2) Ω(A,X) preserves edge connectivity.

For ΩD(A) = (D +B)−1/2(A+B)(D +B)−1/2, B is a diagonal matrix and A represents the
edge connectivity, (D +B)−1/2(A+B)(D +B)−1/2 ensures that all original edges are scaled but
not removed.

For ΩS(D) = I , it adds self-loops but does not affect the existing edges.

For ΩF (X) =
∑h

i=1
X:iX

⊤
:i

∥X:i∥2
F
◦A, the Hadamard product ◦A ensures that only weights of existing

edges are modified (no new edges are added), the edge connectivity is preserved.
In summary, Ω(A,X) commutes with Aut(G) and preserves edge connectivity.

Proposition 5.5. When fW is permutation equivariant, spectral GNNs Ψ+(A,X) augmented with
AdaSpec is permutation equivariant.

Proof. The spectrum GNNs in Equation (2) has the format Ψ+(A,X) = gΘ(Ω(A,X))fW (X). We
denote M = Ω(A,X) to simplify the analysis.

It has been proved in Theorem 5.4 that M = Ω(A,X) is commutative with Aut(G) and preserves
edge connectivity.

(1) Permuted Graph.
Let π ∈ Sym(V) be a permutation of the nodes. Applying π to G results in a permuted graph

π(G), where both the adjacency matrix M and the feature matrix X are permuted:

π(M) = PπMP⊤
π

π(X) = PπX

where Pπ is the permutation matrix corresponding to π.
(2) Applying Ψ+ to the Permuted Graph π(G).

Ψ+(π(G)) = gΘ(π(M))fW (π(X))

=

(
K∑

k=0

θkTk(π(M))

)
fW (PπX)

(3) Term Tk(π(M)).
Since Tk is a polynomial basis and M = Ω(A,X) commutes with Pσ for all σ ∈ Aut(G), we

have:

Tk(π(M)) = PπTk(M)P⊤
π

Therefore:

gΘ(π(M)) =

K∑
k=0

θkTk(π(M)) =

K∑
k=0

θkPπTk(M)P⊤
π = PπgΘ(M)P⊤

π

(4) Term fW (π(X)).
As fW is permutation equivariant, we have

fW (π(X)) = PπfW (X)

Therefore,

Ψ+(π(G)) = PπgΘ(M)P⊤
π · PπfW (X) = PπgΘ(M)fW (X) = PπΨ

+(G)

Thus, a spectral GNN Ψ+(A,X) is permutation equivariant.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Statistics Texas Wisconsin Cornell Actor Chameleon Squirrel
Nodes 183 251 183 7,600 890 2,223
Edges 295 466 280 26,752 27,168 131,436

Features 1,703 1,703 1,703 932 2,325 2,089
Classes 5 5 5 5 5 5

Edge Homophily 0.11 0.21 0.3 0.22 0.24 0.22

Statistics of six small heterophilic datasets (Pei et al., 2020; Rozemberczki et al., 2021; Platonov
et al., 2023).

Statistics Roman_Empire Amazon_Ratings Tolokers Minesweeper Questions
Nodes 22,662 24,492 11,758 10,000 48,921
Edges 32,927 93,050 519,000 39,402 153,540

Features 300 300 10 7 301
Classes 18 5 2 2 2

Edge Homophily 0.05 0.38 0.59 0.68 0.84

Statistics of five large heterophilic datasets Platonov et al. (2023).

Statistics Citeseer Pubmed Cora Computers Photo Coauthor-CS Coauthor-Physics
Nodes 3,327 19,717 2,708 13,752 7,650 18,333 134,493
Edges 4,676 44,327 5,278 491,722 238,162 163,788 495,924

Features 3,703 500 1,433 767 745 6,805 8,415
Classes 6 5 7 10 8 15 5

Edge Homophily 0.74 0.8 0.81 0.78 0.83 0.81 0.93

Statistics of homophilic datasets, including three small datasets (Citeseer, Pubmed, Cora) and four
large datasets (Computers, Photo, Coauthor-CS, Coauthor-Physics) (Kipf & Welling, 2017; Zeng
et al., 2020; Shchur et al., 2018).

Table 7: Statistics of real-world datasets.

B EXPERIMENTAL SETTINGS AND RESULTS

We introduce statistical information of datasets, details of spectral GNNs, hyperparameter setting,
distribution of graph matrix spectrum and frequency components of node features of real-world
datasets and more experimental results in this section.

B.1 DATASETS

The statistical information of the datasets, including node numbers, edge number, feature dimensions,
node class numbers, edge homophilic ratios are summarized in in Table 7.

We use the directed clean version of Chameleon and Squirrel provided by (Platonov et al., 2023)
which removes repeated nodes in graphs. The large heterophilic dataset is proposed in (Platonov
et al., 2023). The datasets Tolokers, Minesweeper and Questions are classified as homophilic datasets
under the Hedge metric (Zhu et al., 2020), although they belong to heterophilic datasets according to
the adjusted homophily metric in (Platonov et al., 2023).

B.2 DATA DISTRIBUTION IN REAL-WORLD DATASETS

We show eigenvalues distributions of normalized graph adjacency matrix of real-world datasets
in Figure 3. Distributions of frequency components of node feature column vectors in eigenspace of
normalized graph adjacency matrix in Figure 4.

B.3 HYPERPARAMETER SETTINGS

All experiments are run on a GPU NVIDIA RTX A6000 with 48G memory.
Following (Platonov et al., 2023), we fix the hidden size of the MLP to 512 and set early stopping

with patience of 100 steps on five large heterophilic datasets (Roman_Empire, Amazon_Ratings,
Tolokers, Minesweeper, Questions). Following (Chien et al., 2021; He et al., 2021), we For all other
fix the hidden size of the MLP to 64 and set early stopping with patience of 200 steps on all other
datatsets. The maximum number of epochs is set to 1,000.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: Distributions of eigenvalues of real-world normalized graph adjacency matrix.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: Distributions of frequency components of real-world column node feature vectors in
eigenspace of normalized graph adjacency matrix.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Datasets Hyperparameters GNNs Range

’Cora’, ’Citeseer’, ’Pubmed’,
’Chameleon’, ’Squirrel’, ’Actor’,
’Texas’, ’Cornell’, ’Wisconsin’

dropout in MLP All/JacobiConv 0.5, 0.7, 0.9
dropout after MLP All/JacobiConv 0.5, 0.7, 0.9

dropout in MLP JacobiConv 0.5, 0.7
dropout after MLP JacobiConv 0.5, 0.7
learning rate of Θ All 0.001, 0.01
learning rate of W All 0.01, 0.05
weight decay of Θ All 0.0, 0.0005
weight decay of W All 0.0, 0.0005

a JacobiConv −0.5, 0.5
b JacobiConv −0.5, 0.5

propagation parameter α JacobiConv 0.1, 0.9
propagation parameter α GPRGNN 0.1, 0.2, 0.9

’amazon_ratings’, ’minesweeper’,
’questions’, ’roman_empire’,
’tolokers’

dropout in MLP All 0.5
dropout after MLP All 0.5, 0.7
learning rate of Θ All 0.001, 0.01
learning rate of W All 0.01, 0.05
weight decay of Θ All 0.0, 0.0005
weight decay of W All 0.0, 0.0005

a JacobiConv −0.5, 0.5
b JacobiConv −0.5, 0.5

propagation parameter α JacobiConv 0.1, 1.0
propagation parameter α GPRGNN 0.0, 0.9

’computers’, ’photo’,
’coauthor-cs’, ’coauthor-physics’

dropout in MLP All 0.5, 0.7
dropout after MLP All 0.5, 0.7
learning rate of Θ All 0.001, 0.01
learning rate of W All 0.01, 0.05
weight decay of Θ All 0.0, 0.0005
weight decay of W All 0.0, 0.0005

a JacobiConv −0.5, 0.5
b JacobiConv −0.5, 0.5

propagation parameter α JacobiConv 0.1, 0.9
propagation parameter α GPRGNN 0.1, 0.2, 0.9

Table 8: Grid search ranges of hyperparameters. Dropout search ranges of JacobiConv is smaller than
other spectral GNNs as it contains too many hyperparameters, we have to reduce the search range to
guarantee that the searching process can be finished in accepted computing time.

We conduct a grid search for hyperparameters used during the training of spectral GNNs, including
learning rates, dropout rates, exponential decay parameters, propagating coefficient for GPRGNN and
JacobiConv, parameters a, b in JacobiConv. For different datasets, we use different grid search range,
The exact search ranges for different hyperparameters on different datasets are detailed in Table 8.

B.4 SPECTRAL GNNS

We provide the detailed description for spectral GNNs used in our experiments in the following.
For a graph with the adjacency matrix A, the degree matrix D, and the identity matrix I , we use

L̂ = I −D−1/2AD−1/2, L̃ = −D−1/2AD−1/2, Ã = D−1/2AD−1/2, and Ã′ = (D+ I)−1/2(A+
I)(D + I)−1/2 to denote the normalized Laplacian matrix, the shifted normalized Laplacian matrix,
the normalized adjacency, matrix and the normalized adjacency matrix with self-loops, respectively.

ChebNet (Defferrard et al., 2016): This model uses the Chebyshev basis to approximate a spectral
filter:

Ŷ =

K∑
k=0

θkTk(L̃)fW (X)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

where X is the raw feature matrix, Θ = [θ0, θ1, . . . , θK] is the graph convolution parameter, W is the
feature transformation parameter and fW (X) is usually a 2-layer MLP. Tk(L̃) is the k-th Chebyshev
basis expanded on the shifted normalized graph Laplacian matrix L̃ and is recursively calculated:

T0(L̃) = I

T1(L̃) = L̃

Tk(L̃) = 2L̃Tk−1(L̃)− Tk−2(L̃)

ChebNetII (He et al., 2022a): The model is formulated as

Ŷ =
2

K + 2

K∑
k=0

K∑
j=0

θjTk(xj)Tk(L̃)fW (X),

where X is the input feature matrix, W is the feature transformation parameter, fW (X) is usually a
2-layer MLP, Tk(·) is the k-th Chebyshev basis expanded on ·, xj = cos ((j + 1/2)π/ (K + 1)) is
the j-th Chebyshev node, which is the root of the Chebyshev polynomials of the first kind with degree
K + 1, and θj is a learnable parameter. Graph convolution parameter in ChebNet is reparameterized
with Chebyshev nodes and learnable parameters θj .

JacobiNet (Wang & Zhang, 2022): This model uses the Jacobi basis to approximate a filter as:

Ŷ =

K∑
k=0

θkP
a,b
k (Ã)fW (X),

where X is the input feature matrix, Θ = [θ0, θ1, . . . , θK] is the graph convolution parameter, W is
the feature transformation parameter and fW (X) is usually a 2-layer MLP. P a,b

k (Ã) is the Jacobi
basis on normalized graph adjacency matrix Ã and is recursively calculated as

P a,b
k (Ã) = I

P a,b
k (Ã) =

1− b

2
I +

a+ b+ 2

2
Ã

P a,b
k (Ã) = γkÃP a,b

k−1(Ã) + γ′
kP

a,b
k−1(Ã) + γ′′

kP
a,b
k−2(Ã)

where γk = (2k+a+b)(2k+a+b−1)
2k(k+a+b) , γ′

k = (2k+a+b−1)(a2−b2)
2k(k+a+b)(2k+a+b−2) , γ

′′
k = (k+1−1)(k+b−1)(2k+a+b)

k(k+a+b)(2k+a+b−2) . a

and b are hyperparameters. Usually, grid search is used to find the optimal a and b values.
GPRGNN (Chien et al., 2021): This model uses the monomial basis to approximate a filter:

Ŷ =

K∑
k=0

θkÃ
′kfW (X)

where X is the input feature matrix, Θ = [θ0, θ1, . . . , θK] is the graph convolution parameter, W
is the feature transformation parameter and fW (X) is usually a 2-layer MLP. Ã′ is the normalized
adjacency matrix with self-loops.

BernNet (He et al., 2021): This model uses the Bernstein basis for approximation:

Ŷ =

K∑
k=0

θk
1

2K

(
K

k

)
(2I − L̂)K−kL̂kfW (X)

where X is the input feature matrix, Θ = [θ0, θ1, . . . , θK] is the graph convolution parameter, W
is the feature transformation parameter and fW (X) is usually a 2-layer MLP. L̂ is the normalized
Laplacian matrix.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Model Roman_Empire Amazon_Ratings Tolokers Minesweeper Questions
ChebNet(O) 47.15±0.42 39.79±0.29 70.1±0.25 86.29±0.2 55.13±0.54

cheb (M) 54.55±0.3 40.92±0.27 69.2±0.61 86.7±0.23 55.2±1.52

∆ ↑ +7.4 +1.13 -0.9 +0.41 +0.07
ChebNetII (O) 55.44±0.19 39.99±0.28 69.93±0.83 78.35±0.14 64.13±0.95

ChebNetII (M) 55.1±0.35 40.66±0.33 70.94±0.36 79.1±0.09 65.54±0.7

∆ ↑ -0.34 +0.67 +1.01 +0.75 +1.41
JacobiConv (O) 55.86±0.57 40.27±0.3 70.1±0.22 87.34±0.12 64.72±0.38

JacobiConv (M) 56.21±0.38 40.17±0.24 71.04±0.22 89.13±0.1 65.8±0.18

∆ ↑ +0.35 -0.1 +0.94 +1.79 +1.08
GPRGNN (O) 56.33±1.51 40.07±0.25 66.34±1.76 87.15±0.49 53.14±0.27

GPRGNN (M) 56.96±1.59 40.14±0.38 68.44±0.39 88.58±0.18 58.19±0.36

∆ ↑ +0.63 +0.07 +2.1 +1.43 +5.05
BernNet (O) 55.06±0.3 39.36±0.37 68.81±0.91 76.54±0.23 64.86±0.37

BernNet (M) 55.51±0.91 39.85±0.23 69.49±0.72 76.95±0.21 65.2±0.31

∆ ↑ +0.45 +0.49 +0.68 +0.41 +0.34

Table 9: Performance with/without AdaSpec on large heterophilic datasets (Roman_Empire, Ama-
zon_Ratings, Tolokers, Minesweeper, Questions). Test accuracy is used as the metric for Roman-
Empire and Amazon-Ratings datasets and ROC AUC is reported on Minesweeper, Tolokers, Ques-
tions. High accuracy and ROC AUC indicate good performance.

Model Texas Wisconsin Actor Chameleon Squirrel Cornell
ChebNet(O) 38.67±9.31 32.92±7.38 25.15±0.69 29.32±4.13 24.23±3.24 31.33±7.51

ChebNet(M) 45.84±10.23 29.96±7.88 25.38±0.67 29.73±3.3 22.39±3.21 33.47±7.92

∆ ↑ +7.17 -2.96 +0.23 +0.41 -1.84 +2.14
ChebNetII(O) 56.24±1.39 51.5±5.63 29.89±0.68 35.26±3.66 37.19±0.66 39.54±6.88

ChebNetII(M) 56.71±5.72 52.0±7.75 30.43±1.23 34.99±3.03 36.88±0.69 36.76±9.31

∆ ↑ +0.47 +0.5 +0.54 -0.27 -0.31 -2.78
JacobiConv(O) 55.09±5.95 49.0±10.51 32.15±0.77 34.29±3.82 29.29±1.99 38.96±8.79

JacobiConv(M) 54.91±4.16 49.67±5.8 32.0±0.93 34.88±2.5 28.66±3.51 40.06±7.52

∆ ↑ -0.18 +0.67 -0.15 +0.59 -0.63 +1.1
GPRGNN(O) 48.15±4.74 44.25±5.92 30.39±1.24 32.5±2.92 27.7±3.88 34.39±6.88

GPRGNN(M) 54.68±10.81 40.46±9.0 30.39±1.57 31.93±3.08 27.3±6.03 34.51±5.43

∆ ↑ +6.53 -3.79 +0.0 -0.57 -0.4 +0.12
BernNet(O) 56.19±7.52 49.38±5.75 30.5±1.18 35.35±3.46 33.41±3.42 36.82±10.64

BernNet(M) 58.9±4.11 49.71±8.29 29.88±0.89 38.38±2.15 34.46±3.52 40.23±5.66

∆ ↑ +2.71 +0.33 -0.62 +3.03 +1.05 +3.41

Table 10: Test accuracy with/without AdaSpec of fixed hyperparameters α1 = 0.0001, α2 = 0.0001
on small heterophilic datasets. High accuracy indicates good performance.

B.5 FULL EXPERIMENTAL RESULTS ON LARGE HETEROPHILIC GRAPHS

We show our full experimental results on large heterophilic graphs in Table 9. There is an average
1.08% accuracy improvement on Roman_Empire, Amazon_Ratings and an average 1.1% ROC AUC
improvement on the rest datasets.

B.6 EXPERIMENTAL RESULTS WITH FIXED HYPERPARAMETERS

We use fixed hyperparameters for AdaSpec during experiments. More specific, for small heterophilic
datasets, we set α1 = 0.0001, α2 = 0.0001 and corresponding results are shown in Table 10. For
large heterophilic graphs, we set α1 = 0.001, α2 = 0.001 and corresponding results are shown
in Table 11. For homophilic graphs, we set α1 = 0.001, α2 = 0.001 and corresponding results are
shown in Table 12.

C THE USE OF LARGE LANGUAGE MODELS

Portions of the writing in this paper were polished with the assistance of large language models
(LLMs). LLMs were employed for tasks including sentence restructuring, grammar correction, and
language polishing. All ideas, technical content, and conclusions are original to the authors, and the
LLM did not contribute to the conceptual or experimental aspects of this work.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Model Roman_Empire Amazon_Ratings Tolokers Minesweeper Questions
ChebNet(O) 47.15±0.42 39.79±0.29 70.1±0.25 86.29±0.2 55.13±0.54

ChebNet(M) 40.73±0.32 40.92±0.16 68.87±3.25 86.7±0.23 47.09±1.1

∆ ↑ -6.42 +1.13 -1.23 +0.41 -8.04
ChebNetII(O) 55.44±0.19 39.99±0.28 69.93±0.83 78.35±0.14 64.13±0.95

ChebNetII(M) 55.0±0.51 40.66±0.33 70.94±0.36 79.1±0.09 65.24±0.62

∆ ↑ -0.44 +0.67 +1.01 +0.75 +1.11
JacobiConv(O) 55.86±0.57 40.27±0.3 70.1±0.22 87.34±0.12 64.72±0.38

JacobiConv(M) 56.21±0.38 40.17±0.24 71.04±0.22 89.13±0.1 65.8±0.18

∆ ↑ +0.35 -0.1 +0.94 +1.79 +1.08
GPRGNN(O) 56.33±1.51 40.07±0.25 66.34±1.76 87.15±0.49 53.14±0.27

GPRGNN(M) 56.96±1.59 40.14±0.38 68.44±0.39 88.58±0.18 58.19±0.36

∆ ↑ +0.63 +0.07 +2.1 +1.43 +5.05
BernNet(O) 55.06±0.3 39.36±0.37 68.81±0.91 76.54±0.23 64.86±0.37

BernNet(M) 55.51±0.91 39.85±0.23 69.37±0.6 76.95±0.21 65.17±0.3

∆ ↑ +0.45 +0.49 +0.56 +0.41 +0.31

Table 11: Performance with/without AdaSpec of fixed hyperparameters α1 = 0.001, α2 = 0.001
on large heterophilic datasets. Test accuracy is used as the metric for Roman-Empire and Amazon-
Ratings datasets and ROC AUC is reported on Minesweeper, Tolokers, Questions. High accuracy and
ROC AUC indicate good performance.

Model Citeseer Pubmed Cora Computers Photo Coauthor-CS Coauthor-Physics
ChebNet(O) 69.21±0.87 75.29±2.34 80.45±1.09 82.64±1.76 91.77±0.32 90.95±0.34 95.03±0.11

ChebNet(M) 68.09±0.74 77.38±1.45 82.26±0.84 84.62±1.05 92.33±0.44 91.54±0.22 94.9±0.12

∆ ↑ -1.12 +2.09 +1.81 +1.98 +0.56 +0.59 -0.13
ChebNetII(O) 69.93±1.15 78.42±1.48 81.64±0.86 84.96±0.97 92.71±0.46 93.08±0.27 95.23±0.1

ChebNetII(M) 69.34±0.72 78.59±1.52 81.97±0.86 84.53± 1.25 92.48± 0.41 91.78±0.27 95.26±0.11

∆ ↑ -0.59 +0.17 +0.33 -0.87 -0.23 -1.3 +0.03
JacobiConv(O) 70.8±0.7 79.43±1.45 77.15±0.96 85.39±0.95 92.79±0.38 93.33±0.23 95.32±0.15

JacobiConv(M) 70.91±0.66 79.65±1.25 83.52±0.69 84.08±1.07 92.83±0.36 93.27±0.25 95.43±0.11

∆ ↑ +0.11 +0.22 +6.37 -1.32 +0.04 -0.06 +0.11
GPRGNN(O) 70.02±0.7 79.24±1.1 82.24±0.86 84.09±0.81 92.43±0.24 92.99±0.22 95.28±0.04

GPRGNN(M) 70.29±0.44 79.21±1.17 81.9±0.7 83.97±1.14 92.53±0.38 92.86±0.22 95.2±0.08

∆ ↑ +0.27 -0.03 -0.34 -0.12 +0.1 -0.13 -0.08
BernNet(O) 69.12±0.96 78.9±1.04 81.9±0.8 85.15±1.14 92.63±0.29 93.11±0.23 95.3±0.17

BernNet(M) 68.92±0.58 78.95±1.1 82.5±0.78 84.84±1.23 92.58±0.36 93.07±0.29 95.32±0.15

∆ ↑ -0.2 +0.05 +0.6 -0.31 -0.05 -0.04 +0.02

Table 12: Test accuracy with/without AdaSpec on homophilic datasets of fixed hyperparameters
α1 = 0.001, α2 = 0.001. High accuracy indicates good performance.

24

	Introduction
	Related Works
	Preliminaries
	Node Distinguishability of Spectral GNNs
	AdaSpec
	Increase Distinct Eigenvalues
	Shifts Eigenvalues From Zero
	Increase Frequency Components
	Time Complexity Analysis

	Experiments
	Conclusion and Limitations
	Proofs
	Experimental Settings and Results
	Datasets
	Data Distribution in Real-world Datasets
	hyperparameter Settings
	Spectral GNNs
	Full Experimental Results on Large Heterophilic Graphs
	Experimental Results With Fixed Hyperparameters

	The Use of Large Language Models

