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ABSTRACT

Spectral Graph Neural Networks (GNNs) achieve strong performance in node clas-
sification, yet their node distinguishability remains poorly understood. We analyze
how graph matrices and node features jointly influence node distinguishability. Fur-
ther, we derive a theoretical lower bound on the number of distinguishable nodes,
which is governed by two key factors: distinct eigenvalues in the graph matrix and
nonzero frequency components of node features in the eigenbasis. Based on these
insights, we propose AdaSpec, an adaptive graph matrix generation module that
enhances node distinguishability of spectral GNNs without increasing the order of
computational complexity. We prove that AdaSpec preserves permutation equivari-
ance, ensuring that reordering the graph nodes results in a corresponding reordering
of the node embeddings. Experiments across eighteen benchmark datasets validate
AdaSpec’s effectiveness in improving node distinguishability of spectral GNNs.

1 INTRODUCTION

Graph Neural Networks (GNNs) have become increasingly popular for graph learning tasks due to
their strong performance in tasks such as graph and node classification (Kipf & Welling, 2017; Xu
et al., 2019; He et al., 2021; Wang & Zhang, 2022; Qin et al., 2025). Among the various GNN models,
spectral GNNs represent a prominent class that transforms graph signals into the spectral domain,
enabling graph filters to process information for downstream tasks. Although numerous spectral
GNN variants have been proposed, their node distinguishability remains insufficiently understood.
These models typically utilize different graph matrices, such as the normalized adjacency matrix or
the normalized Laplacian. Further, within a given spectral GNN, the distribution of node features
across the graph plays a crucial role in model performance (He et al., 2022b; Platonov et al., 2023).
To the best of our knowledge, no existing work has systematically analyzed the interaction between
the graph matrix and node features in determining node distinguishability in spectral GNNs.

Spectral GNNs with state-of-the-art performance generally follow the form:

Ψ(M,X) = gΘ(M)fW (X), (1)

where M ∈ Rn×n represents the graph matrix (such as the Laplacian or adjacency matrix), X ∈
Rn×h denotes the node feature matrix, gΘ(M) =

∑K
k=0 θkTk(M) is the graph convolution function

parameterized by Θ = {θk}Kk=0, and Tk(·) denotes the k-th polynomial basis. The term fW (X)
represents the feature transformation function parameterized by W . Spectral GNNs learn meaningful
node features by optimizing W , projecting them into the spectral domain. By adjusting Θ, spectral
GNNs filter out unnecessary information and enhance useful information for downstream tasks.

While this formulation illustrates how spectral GNNs process node features through graph
convolution, their capacity for node distinguishability remains inadequately understood. This leads to
a fundamental question: how does the interaction between the graph matrix M and the node features
X projected into the spectral domain affect the node distinguishability of spectral GNNs? In this
work, we demonstrate that node distinguishability is influenced by the eigenvalue multiplicity and the
missing frequency components of node features in the eigenbasis of the graph matrix. Further, we
derive a theoretical lower bound on the number of nodes that can be distinguished by spectral GNNs,
given a specific graph matrix and node features.

Motivated by our theoretical analysis of node distinguishability, we introduce AdaSpec, an
adaptive graph matrix generation module that optimizes the graph matrix to maximize its lower
bound on node distinguishability. Designed as a plug-in, AdaSpec can be seamlessly integrated
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into any spectral GNN to enhance node distinguishability. Moreover, spectral GNNs augmented
with AdaSpec preserve permutation equivariance, ensuring that reordering graph nodes results in a
corresponding reordering of node embeddings. Finally, AdaSpec maintains the graph’s connectivity,
guaranteeing that the learned embeddings accurately reflect the underlying graph structure.

We evaluate our approach on eighteen benchmark node classification datasets, covering a range
of small- and large-scale graphs with both homophilic and heterophilic structures in Section 6.
Spectral GNNs with AdaSpec achieve notable performance improvements on heterophilic graphs,
while maintaining or slightly improving accuracy on homophilic ones. These results validate the
effectiveness of AdaSpec in boosting node distinguishability. Additionally, experimental results show
that the order of time complexity of spectral GNNs with and without AdaSpec are the same.

2 RELATED WORKS

Spectral GNNs. Spectral GNNs perform graph convolution by applying filters in the spectral
domain for representation learning. Based on the design of their graph filters, spectral GNNs can be
categorized into polynomial (He et al., 2022a; 2021) and rational types (Levie et al., 2019; Bianchi
et al., 2021; Li et al., 2025). Polynomial graph filters are computationally efficient and localized in the
vertex domain (Hammond et al., 2009; Defferrard et al., 2016), and this paper focuses on their analysis.
Recent studies primarily investigate how different polynomial bases affect spectral GNN performance,
for instance, ChebNet, ChebNetII, JacobiConv, BernNet, GPRGNN and GLN (Defferrard et al.,
2016; He et al., 2022a; Wang & Zhang, 2022; He et al., 2021; Chien et al., 2021; Li & Wang, 2024).
Further, FavardGNN, UniFilter and PolyCF learn polynomial bases that adapt to different graph
structures (Guo & Wei, 2023; Huang et al., 2024; Qin et al., 2025).

Above spectral GNNs use fixed graph matrices like normalized adjacency or Laplacian matrices.
While research has focused on effect of polynomial bases on performance of spectral GNNs, we
demonstrate the critical role of the graph matrix. We analyze how the interaction between the graph
matrix and node features affects spectral GNN performance. Further, we propose AdaSpec, a graph
matrix generation module to enhance the performance of spectral GNNs.

Expressive Power of Spectral GNNs. The expressive power of GNNs in graph classification has
been extensively analyzed through the Weisfeiler-Lehman (WL) test (Li & Leskovec, 2022; Zhang
et al., 2023; Jin et al., 2025), a family of algorithms designed to determine graph isomorphism (Weis-
feiler & Leman, 1968). In contrast, the expressive power of GNNs for node classification remains
less explored. The expressive capacity of linear spectral GNNs has been analyzed via the uniform
approximation theorem in (Wang & Zhang, 2022), which shows that when the graph matrix has no
repeated eigenvalues and node features span all frequency components, the model can approximate
any one-dimensional function. However, these conditions rarely hold in real-world graphs, where
symmetric structures are common and node features are often sparse. As shown in Figure 2, eigen-
value multiplicity and missing frequency components frequently occur in practice. An eigenvalue
correction method was proposed in (Lu et al., 2024) to enhance the expressiveness of spectral GNNs,
building on the analysis in (Wang & Zhang, 2022). However, this method does not ensure permutation
equivariance, leading to node embeddings that depend on node ordering, which is undesirable and
theoretically unsound.

Our work investigates the expressive power of spectral GNNs from the perspective of node
distinguishability. We extend the understanding of how the interaction between the graph matrix
and node features influences node distinguishability in spectral GNNs. Notably, our analysis goes
beyond linear GNNs by incorporating nonlinear feature transformations fW . Moreover, we rigorously
establish a theoretical lower bound on the number of distinguishable nodes in spectral GNNs.

Graph Rewiring. Another line of research focuses on improving the performance of GNNs through
graph rewiring techniques, which modify the graph topology. Early methods include DropEdge
and EDGEWIRE, which randomly or uses degree-preserving strategy to remove edges to alleviate
over-smoothing (Rong et al., 2020; Chan & Akoglu, 2016). Curvature-based approaches (Topping
et al., 2022) adjust connectivity using discrete Ricci curvature to combat over-squashing, while
locality-aware strategies preserve structures efficiency (Barbero et al., 2024). More recent methods
include DiffWire, a differentiable and parameter-free approach guided by the Lovász bound (Arnaiz-
Rodrıéguez et al., 2022); FoSR, which improves spectral expansion (Karhadkar et al., 2023); and
GPER, selecting edges based on effective resistance to enhance information flow (Shen et al., 2024).
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While graph rewiring methods offer valuable insights into improving GNN performance, their
objectives and underlying mechanisms differ fundamentally from ours. Graph rewiring addresses
structural issues by modifying graph topology in the spatial domain as a preprocessing step. In
contrast, our method enhances node distinguishability in the spectral domain through an adaptive
graph matrix generation module that trains end-to-end with spectral GNNs.

3 PRELIMINARIES

Let G = (V, E , X) denote an undirected, simple graph, where V is the set of nodes with cardinality
|V| = n, E is the set of edges, and X ∈ Rn×h is the node feature matrix. For each node v ∈ V ,
X(v) ∈ Rh denotes its associated feature vector. The graph structure is represented by the adjacency
matrix A ∈ {0, 1}n×n, where Aij = 1 if (vi, vj) ∈ E , and 0 otherwise. The degree matrix
D ∈ Rn×n is diagonal with entries Dii equal to the degree of node vi. The normalized adjacency
matrix is defined as Ã = D− 1

2AD− 1
2 . The normalized graph Laplacian is given by L̃ = I − Ã,

where I ∈ Rn×n is the identity matrix.
Two nodes u and v in an undirected graph G are structurally equivalent su ∼ sv if they share

exactly the same neighbors; formally, for every other node w ∈ V \ {u, v}, (u,w) ∈ E ⇐⇒
(v, w) ∈ E . In effect, swapping u and v leaves the graph’s adjacency relation unchanged.

A permutation of the node set V is a bijection π : V → V . The set of all permutations on V
forms the symmetric group Sym(V). An automorphism of the graph G is a permutation π ∈ Sym(V)
satisfying the following conditions: (1) edge preservation: (v, u) ∈ E ⇐⇒ (π(v), π(u)) ∈
E , ∀v, u ∈ V, and (2) feature preservation: X(π(v)) = X(v), ∀v ∈ V. The automorphism
group of G, denoted Aut(G), is the set of all such automorphisms.

Two nodes u and v are said to be isomorphic, denoted u ∼ v, if they belong to the same orbit
under Aut(G); that is, there exists a permutation π ∈ Aut(G) such that π(v) = u. Otherwise, u and
v are non-isomorphic.

An important property of functions defined on graphs is permutation equivariance, which ensures
that the output remains consistent under any reordering of the nodes. Formally,
Definition 3.1 (Permutation Equivariance). Let G denote the set of graphs. A function f : G → Rn×d

is said to be permutation equivariant if, for any graph G ∈ G and any permutation π ∈ Sym(V), it
holds that

f(π(G)) = π(f(G)),

where π(G) denotes the graph obtained by permuting the nodes of G according to π, and π(f(G))
denotes the corresponding permutation of the output of f .

4 NODE DISTINGUISHABILITY OF SPECTRAL GNNS

The node distinguishability of a spectral GNN refers to its ability to distinguish non-isomorphic
nodes within graphs. Formally,
Definition 4.1 (Node Distinguishability). For a spectral GNN with function class F , where each
f ∈ F : G → Rn×d maps a graph to node representations, node distinguishability refers to the ability
to learn a function that assigns distinct representations to non-isomorphic nodes:

f(G)v ̸= f(G)u for all v, u ∈ V where v ̸∼ u

where f(G)v and f(G)u denote representations of node v and u. v ̸∼ u indicates node u, v are
non-isomorphic.

The spectral GNN’s node distinguishability capacity that mapping non-isomorphic nodes to
distinct representations is fundamentally determined by its function class F . To understand how
spectral GNNs of the form given in Equation (1) distinguish nodes, whose input consists of a graph
matrix M and a feature matrix X , we begin by formally defining the spectrum of M and the frequency
components of X .
Definition 4.2 (Spectrum and Frequency Components). Let M = UΛU⊤ be the eigendecomposition
of a graph matrix M ∈ Rn×n, where Λ is a diagonal matrix of eigenvalues and U = [u1, . . . , un]
contains the corresponding eigenvectors. The spectrum of M , denoted spec(M), is the multiset
of eigenvalues: spec(M) = {{λ1, λ2, . . . , λn}}, where λi = Λii. Let support supp(spec(M)) be
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(a) (b) (c) (d)

Figure 2: Eigenvalues and frequency component distributions.

the underlying set of spec(M). Define dM = |supp(spec(M))|, which is the number of distinct
eigenvalues. Given node features X ∈ Rn×h, the frequency components in the eigenbasis of M are
X̃ = U⊤X , where X̃i = u⊤

i X is the i-th frequency component. The number of non-zero frequency
components is ∥X̃(M)∥0 = |{X̃i | X̃i ̸= 0h}|.

Figure 1: Nodes 1 and 3 cannot
be distinguished by spectral
GNNs of K = 1 with Ã. (a)
Missing frequency compo-
nents: X = [1, 0, 1,−1,−1],
dÃ = 5, ∥X(Ã)∥0 = 3.
(b) Eigenvalue multiplicity:
X = [1, 0, 1, 1,−1], dÃ = 3,
∥X(Ã)∥0 = 5.

The limitations of node distinguishability in spectral GNNs stem
from two key factors: Eigenvalue multiplicity of the graph matrix
M and the missing of frequency components of node features X
when projected onto the eigenbasis of M . In Figure 1, we show that
spectral GNNs with a first-order polynomial filter and normalized
adjacency matrix Ã as graph matrix cannot distinguish node 1 and
3. (1) Non-distinguishable nodes can exist when there are missing
frequency components that dÃ = 5 = n but ∥X(Ã)∥0 = 3 < n
in Figure 1(a). (2) Non-distinguishable nodes can exist when there
are repeated eigenvalues dÃ = 3 < n even if ∥X(Ã)∥0 = 5 = n
in Figure 1(b). Nodes 1 and 3 in both subfigures are non-isomorphic
but spectral GNNs yield identical embeddings for them. Hence they
are indistinguishable. We provide a theoretical bound on the number
of nodes that can be distinguished by spectral GNNs, stated as follows.
Theorem 4.3. For X ̸= 0n×n, there exist a spectral GNN Ψ(M,X) that can distinguish at least
min(dM , ∥X̃(M)∥0) nodes on graph.

This result provides a fundamental guarantee on the node distinguishability of spectral GNNs.
The lower bound depends on both the number of distinct eigenvalues dM and the number of non-zero
frequency components ∥X̃(M)∥0, which together characterize the alignment between the graph
matrix M and the node features X . When multiple eigenvectors share the same eigenvalue, the
graph filter gΘ applies identical transformations to them, preventing from distinguishing different
structural patterns. Similarly, if node features lack frequency components corresponding to certain
eigenvectors, structural differences captured by those eigenvectors become invisible in embeddings.
This has practical implications: increasing distinct eigenvlaue number dM and non-zero frequency
components of X in the eigenbasis of M improves the theoretical guarantee on the lower bound of
number of distinguishable nodes, offering a clear direction for enhancing the expressive power of
spectral GNNs.

In real-world graphs, we observe that eigenvalue multiplicity and missing frequency component
are very common.

Observation I (Eigenvalues of Multiplicity.) The normalized graph adjacency matrix Ã =
D−1/2AD−1/2 often contains eigenvalues with multiplicities greater than one and the eigenvalue
zero has largest multiplicity.

We illustrate the eigenvalue distribution of the normalized graph adjacency matrix for the Texas
and Cora datasets in Figure 2(a-b). Additional eigenvalue distributions for various other real-world
datasets are provided in Figure 3 (Appendix). This phenomenon is also observed in (Lim et al.,
2023). Graph symmetry, repeated substructures often lead to repeated eigenvalues in the normalized
adjacency matrix and reduce its rank. Real-world graphs also tend to be sparse due to many low-
degree nodes, further lowering the rank. Since the rank of a real symmetric matrix equals the number
of non-zero eigenvalues, low-rank matrices imply high multiplicity of the zero eigenvalue.

Node features in connected real-world graphs are sampled independently of the graph structure.
For instance, in citation networks (such as Cora and PubMed), node features are the textual content of
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papers, which are collected independently of the graph structure. Thus, graph signals are not aligned
with the graph’s eigenvectors. We have below observations.
Observation II (Missing Frequency Components.) Many frequency components of graph signal
(node feature) is zero in the eigenbasis of normalized graph adjacency matrix Ã.

We illustrate the distribution of frequency components for Texas and Cora in Figure 2(c-d), where
most components are zero. Additional results for other real-world datasets are provided in Figure 4
(Appendix). Zero frequency component means that the frequency component in the direction of
corresponding eigenvectors is missing. Real-world node features are often either smooth or oscillatory,
containing only low or high-frequency components, leading to many others to be zero or negligible.
Additionally, features are typically sparse, with only k non-zero entries that k ≪ n. When projected
onto the eigenbasis, each component scales as O(k/

√
n). As n → ∞, the proportion of non-zero

frequency components tends toward zero.
Based on above observations and Theorem 4.3, we propose AdaSpec to enhance the node

distinguishability of spectral GNNs.

5 ADASPEC

AdaSpec generates a graph matrix that adapts to both the graph structure and node features, enabling
it to serve as a plug-in module for any spectral GNN Ψ(M,X) of the form in Equation (1). The
spectral GNN augmented with AdaSpec is defined as:

Ψ+(A,X) = gΘ(Ω(A,X))fW (X), (2)
where Ω maps the adjacency matrix A and node features X to a new graph matrix. The functions gΘ
and fW (X) remain the same as those in Ψ(M,X).

AdaSpec enables Ψ+(A,X) to capture richer interactions between graph structure and node
features, which are not possible using fixed matrices in classic spectral GNNs Ψ(M,X). To ensure
permutation equivariance of node embeddings, the generated graph matrix M = Ω(A,X) must
satisfy two key properties: (1) M commutes with Aut(G): PσM = MPσ,∀σ ∈ Aut(G) where Pσ

is the permutation matrix corresponding to the automorphism σ; (2) M preserves edge connectivity:
Mij ̸= 0⇔ eij ∈ E and Mij = 0⇔ eij ̸∈ E . Thus, we design Ω(A,X) as

Ω(A,X) = ΩD(A) + α1ΩS(A) + α2ΩF (X) (3)
where ΩD(A) is designed to increase the number of distinct eigenvalues, ΩS(A) aims to reduce the
multiplicity of zero eigenvalues, and ΩF (X) is designed to decrease missing frequency components
of X . The hyperparameters α1, α2 control the eigenvalue range for stable training.

5.1 INCREASE DISTINCT EIGENVALUES

According to Theorem 4.3, increasing the number of distinct eigenvalues of the graph matrix can
raise the lower bound of number of nodes distinguished by a spectral GNN, thereby increasing its
node distinguishability. To achieve this, the term ΩD(A) in AdaSpec is designed as follows:

ΩD(A) = (D +B)
−1/2

(A+B) (D +B)
−1/2

,

where A and D are the graph adjacency matrix and the degree matrix, respectively, and B = diag(b)
is a learnable diagonal matrix with non-negative elements.

The diagonal element of B is initialized as bu = 1/Duu, ensuring nodes with the same degree
start with the same bias. For isomorphic nodes u ∼ v, we have bu = bv throughout training; for
u ̸∼ v, training yields bu ̸= bv . This initialization preserves permutation equivariance of Ψ+(A,X),
as shown in Proposition 5.5. Adding B to A introduces node-specific flexibility, enabling A+B and
D +B to adapt to graphs. This enhances node distinguishability by allowing structurally equivalent
but feature different nodes to play distinct roles. For two non-isomorphic nodes u, v that u ̸∼ v, if
su ∼ sv but X(u) ̸= X(v), introducing different biases bu ̸= bv breaks structure symmetry and
reduces eigenvalue multiplicity. Intuitively, B modifies the self-loop strength, altering information
flow from the node itself. We later provide theoretical justification that this increases the number of
distinct eigenvalues.
Theorem 5.1 (Increased Distinct Eigenvalues). Given a graph G with the adjacency matrix A, and
the degree matrix D, we have:

dΩD(A) ≥ dÃ

5
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This indicates that the lower bound of the number of distinguishable nodes for spectral GNNs
using ΩD is greater than or equal to that for those using Ã, according to Theorem 4.3.

5.2 SHIFTS EIGENVALUES FROM ZERO

The presence of zero eigenvalues can hinder node distinguishability. To mitigate this, we design a
graph matrix transformation that shifts eigenvalues away from zero:

ΩS(A) = I.

Several approaches exist for designing ΩS ; we choose the identity matrix because adding it to any
matrix shifts the eigenvalues while preserving the eigenvectors. This ensures minimal alteration to
the original matrix.

Adding term ϵΩS to any matrix C can reduce the number of zero eigenvalues. As all eigenvalues
of C add the same scalar ϵ, distinct eigenvalues remain distinct after addition. As all eigenvectors of
C stays the same, so the number of non-zero frequency component of node feature stays the same.

5.3 INCREASE FREQUENCY COMPONENTS

We can increase the number of non-zero frequency component to the node distinguishability of
spectral GNNs. Given a node feature matrix X , we design a matrix ΩF that adapts to X to increase
the frequency components:

ΩF (X) =

h∑
i=1

X:iX
⊤
:i

∥X:i∥2F
◦A (4)

where ◦ denotes the Hadamard product.
By dividing by the Frobenius norm ∥X:i∥2F , features with larger magnitudes don’t dominate the

transformation. The Hadamard product with the adjacency matrix A preserves the graph’s original
structure. We prove in theory that for any symmetric matrix C, adding ϵΩF (X) can increase non-zero
frequency components.
Theorem 5.2 (Non-Decreasing Frequency Components). For a real symmetric matrix C ∈ Rn×n

with orthonormal basis {ur}r∈[n]. Under Condition 5.3, the following holds for index i ∈ [h]:

∥X̃(C+ϵΩF )
:i ∥0 > ∥X̃(C)

:i ∥0
where ϵ is a non-zero constant.
Condition 5.3 (Non-zero feature projections). Let C ∈ Rn×n be a real symmetric matrix with
orthonormal eigenbasis {ur}nr=1. There exist two column node feature vectors X:i and X:l with
i, l ∈ [h] and i ̸= l such that u⊤

k X:i ̸= 0, u⊤
k X:l ̸= 0, and u⊤

j X:l ̸= 0 for some indices k, j ∈ [n].

Condition 5.3 are naturally satisfied in most real-world graph datasets. This condition requires
that node features have non-zero projections onto certain eigenvectors of the graph matrix. Nat-
ural heterogeneity in node features makes it likely that different nodes will have diverse nonzero
projections onto eigenvectors, even with sparse features. Additionally, while feature correlation
exists, real-world graph typically varies a lot along certain dimensions, satisfying our non-zero
projection condition. Therefore, incorporating ΩF (X) ensures that the number of non-zero frequency
components of node features is increased in real-world graphs.

In summary, each component of Ω(A,X) either increases the number of distinct eigenvalues or
the number of non-zero frequency components of the node features in the eigenbasis of the graph
matrix. By Theorem 4.3, this leads to a higher lower bound on the number of distinguishable nodes,
thereby enhancing node distinguishability. We show properties of our design Ω(A,X) as below.
Theorem 5.4. For a graph G, the learnable matrix Ω(A,X) is commutative with Aut(G) and
preserves edge connectivity.

As Ω(A,X) satisfies desirable properties, it ensures that the augmented spectral GNNs Ψ+(A,X)
with AdaSpec remains permutation equivariant.
Proposition 5.5. When fW is permutation equivariant, spectral GNNs Ψ+(A,X) augmented with
AdaSpec is permutation equivariant.

Theorem 5.4 and Proposition 5.5 ensures that for spectral GNNs Ψ+(A,X), reordering the graph
nodes results in a corresponding reordering of node embeddings. AdaSpec can be combined with any
spectral GNNs to enhance their node distinguishability.
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5.4 TIME COMPLEXITY ANALYSIS

The time complexity of classic spectral GNNs Ψ(M,X) and Ψ+(A,X) augmented with AdaSpec is
in the same order in both forward and backward propagation. ΩF (X) in AdaSpec will increase the
pre-computing time, but it needs to be computed only once. We list the time complexity in Table 1.

The time complexity can be analyzed in two main phases: pre-computation and forward/backward
propagation. During pre-computation, graph matrix normalization requires O(|V|+ |E|) operations
such as graph adjacency matrix normalization. ΩF (X) in Ψ+(A,X) requires an additional O(h(|V|+
|E|)) where computation is efficiently limited to non-zero entries in the adjacency matrix. Thus, the
one-off pre-computing of Ψ+(A,X) scales linearly in the size of graph and node feature dimension.

For forward and backward propagation, the feature transformation step fW (X) incurs a com-
plexity of O(|W |h), while graph convolution gΘ requires O(KT |E|) operations when Tk(M) is
computed recursively, such as in ChebNet, JacobiConv. Although Ψ+(A,X) requires additional
computation of Ω(A,X) during each forward pass and gradient calculation for matrix B during
backpropagation at a cost of O(|V|+ |E|), this does not change the overall asymptotic complexity.

6 EXPERIMENTS

We design our experiments to investigate the following research questions: (1) Q1: To what extent
does AdaSpec generate task-adaptive graph matrices that enhance node distinguishability in spectral
GNNs? (2) Q2: What is the contribution of each component within AdaSpec to overall performance?
(3) Q3: How does AdaSpec affect the spectral properties of the graph matrix, particularly in terms
of increasing the number of distinct eigenvalues? (4) Q4: What is the computational overhead
introduced by integrating AdaSpec into spectral GNNs during training?

Experimental Setup. We conduct experiments on eighteen benchmark datasets for node classifica-
tion to verify the effectiveness of AdaSpec. Datasets includes: six small heterophilic graphs (Texas,
Wisconsin, Actor, Chameleon, Squirrel, Cornell), five large heterophilic graphs (Roman_Empire,
Amazon_Ratings, Minesweeper, Tolokers, Questions) and seven homophilic graphs (Citeseer,
Pubmed, Cora, Computers, Photo, Coauthor-CS, Coauthor-Physics). Statistics of datasets, details
about the baselines, and the setting of hyperparameters are included in Appendix B. For each dataset,
we follow (Chien et al., 2021; He et al., 2022a) and use sparse splitting that nodes are randomly
divided into training/validation/testing with ratios of 2.5%/2.5%/95%, respectively. Notably, for
Citeseer, Pubmed, and Cora datasets, 20 nodes per class are for training, 500 nodes for validation,
and 1,000 nodes for testing.

We chose five popular spectral GNNs as our baselines: ChebNet (Defferrard et al., 2016),
GPRGNN (Chien et al., 2021), BernNet (He et al., 2021), JacobiConv (Wang & Zhang, 2022), and
ChebNetII (He et al., 2022a), and compare their performances augmented with AdaSpec and with
fixed graph matrix across all datasets. For each spectral GNN, we use GNN (O) to denote the original
model and GNN (M) to denote the spectral GNNs augmented by AdaSpec, with ∆ ↑ indicating the
performance improvement.

Effectiveness of AdaSpec. We present the node classification performance with and without the
AdaSpec on all small heterophilic datasets and a subset of large heterophilic datasets in Table 2.
The Minesweeper and Question datasets are particularly challenging to classify, as their label
informativeness (i.e., the mutual information between the labels of the central node and its neighbors)
is zero (Platonov et al., 2023). The complete experimental results are in Table 9 (Appendix). Results
on homophilic graphs are shown in Table 3 .

Spectral GNNs Parameter Count Pre-computing Complexity Forward/Backward Complexity

Ψ(M,X) 1 +K O(|V|+ |E|) O(KT |E|+ |V||W |)
Ψ+(A,X) 1 +K + |V| O(h(|V|+ |E|)) O(KT |E|+ |V||W |)

Table 1: Time complexity comparison of GNNs with and without AdaSpec. V and E denotes the
node and edge set respectively. h is the node feature dimension. T is the node class number. K is the
polynomial order of spectral GNNs.
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Model Texas Wisconsin Actor Chameleon Squirrel Cornell Minesweeper Questions
ChebNet(O) 38.67±9.31 32.92±7.38 25.15±0.69 29.32±4.13 24.23±3.24 31.33±7.51 86.29±0.2 55.13±0.54

ChebNet(M) 51.16±8.56 33.83±9.38 25.38±0.67 29.73±3.3 23.2±3.94 33.47±7.92 86.7±0.23 55.2±1.52

∆ ↑ +12.49 +0.91 +0.23 +0.41 -1.03 +2.14 +0.41 +0.07
ChebNetII(O) 56.24±1.39 51.5±5.63 29.89±0.68 35.26±3.66 37.19±0.66 39.54±6.88 78.35±0.14 64.13±0.95

ChebNetII(M) 56.76±3.12 52.0±7.75 30.43±1.23 35.62±3.52 36.88±0.69 39.94±7.05 79.1±0.09 65.54±0.7

∆ ↑ +0.52 +0.5 +0.54 +0.36 -0.31 +0.4 +0.75 +1.41
JacobiConv(O) 55.09±5.95 49.0±10.51 32.15±0.77 34.29±3.82 29.29±1.99 38.96±8.79 87.34±0.12 64.72±0.38

JacobiConv(M) 57.4±3.93 52.33±8.88 32.52±0.75 38.16±1.18 31.35±1.68 41.62±10.06 89.13±0.1 65.8±0.18

∆ ↑ +2.31 +3.33 +0.37 +3.87 +2.06 +2.66 +1.79 +1.08

GPRGNN(O) 48.15±4.74 44.25±5.92 30.39±1.24 32.5±2.92 27.7±3.88 34.39±6.88 87.15±0.49 53.14±0.27

GPRGNN(M) 58.27±4.97 53.25±7.21 30.4±1.51 32.82±4.76 27.3±6.03±4.77 36.13±7.52 88.58±0.18 58.19±0.36

∆ ↑ +10.12 +9.0 +0.01 +0.32 -0.4 +1.74 +1.43 +5.05
BernNet(O) 56.19±7.52 49.38±5.75 30.5±1.18 35.35±3.46 33.41±3.42 36.82±10.64 76.54±0.23 64.86±0.37

BernNet(M) 58.9±4.11 51.96±7.84 30.61±0.67 39.61±1.55 34.46±3.52 40.23±5.66 76.95±0.21 65.2±0.31

∆ ↑ +2.71 +2.58 +0.11 +4.26 +1.05 +3.41 +0.41 +0.34

Table 2: Performance of spectral GNNs with/without AdaSpec on heterophilic datasets. ROC AUC is
reported on Minesweeper, Questions. Testing accuracy is reported on other datasets. High accuracy
and ROC AUC indicate good performance.

Model Citeseer Pubmed Cora Computers Photo Coauthor-CS Coauthor-Physics
ChebNet(O) 69.21±0.87 75.29±2.34 80.45±1.09 82.64±1.76 91.77±0.32 90.95±0.34 95.03±0.11

ChebNet(M) 68.52±0.86 77.38±1.45 82.26±0.84 85.14±0.89 92.34±0.41 91.54±0.22 94.93±0.09

∆ ↑ -0.69 +2.09 +1.81 +2.5 +0.57 +0.59 -0.1
ChebNetII(O) 69.93±1.15 78.42±1.48 81.64±0.86 84.96±0.97 92.71±0.46 93.08±0.27 95.23±0.1

ChebNetII(M) 69.54±0.9 78.59±1.52 81.97±0.86 84.79±0.83 92.58±0.31 93.11±0.25 95.26±0.11

∆ ↑ -0.39 +0.17 +0.33 -0.17 -0.13 +0.03 +0.03
JacobiConv(O) 70.8±0.7 79.43±1.45 77.15±0.96 85.39±0.95 92.79±0.38 93.33±0.23 95.32±0.15

JacobiConv(M) 70.91±0.66 79.65±1.25 83.52±0.69 84.92±0.92 92.83±0.36 93.27±0.25 95.43±0.11

∆ ↑ +0.11 +0.22 +6.37 -0.47 +0.04 -0.06 +0.11
GPRGNN(O) 70.02±0.7 79.24±1.1 82.24±0.86 84.09±0.81 92.43±0.24 92.99±0.22 95.28±0.04

GPRGNN(M) 70.4±0.41 79.6±0.97 82.19±0.79 84.28±0.86 92.53±0.38 93.33±0.29 95.32±0.15

∆ ↑ +0.38 +0.36 -0.05 +0.19 +0.1 +0.34 +0.04
BernNet(O) 69.12±0.96 78.9±1.04 81.9±0.8 85.15±1.14 92.63±0.29 93.11±0.23 95.3±0.17

BernNet(M) 69.45±0.64 79.07±1.03 82.5±0.78 85.18±0.77 92.58±0.36 93.07±0.29 95.32±0.15

∆ ↑ +0.33 +0.17 +0.6 +0.03 -0.05 -0.04 +0.02

Table 3: Test accuracy of spectral GNNs with/without AdaSpec on homophilic datasets. High
accuracy indicates good performance.

From Tables 2 and 3, we observe the following: (1) AdaSpec significantly improves performance
on heterophilic graphs compared to homophilic graphs. There is an average accuracy improvement
of 1.89% on small heterophilic graphs, an average ROC AUC improvement of 1.27% on large
heterophilic graphs, and an average accuracy improvement of 0.43% on homophilic graphs. (2)
AdaSpec shows greater performance improvement on small-sized graphs compared to large-sized
graphs. The average node classification accuracy improvement on small graphs (Texas, Wisconsin,
Cornell) is 3.45%, whereas the improvement on larger graphs (Chameleon, Squirrel) is 0.46%.

The main performance improvement stems from AdaSpec’s ability to increase node distinguisha-
bility in spectral GNNs. By refining the graph structure representation, AdaSpec enables the model
to better separate nodes with similar features or structures. In homophilic graphs, low-frequency
components are sufficient for smooth features, so adding more may hurt. Heterophilic graphs require
richer spectral patterns, and AdaSpec help by increasing useful frequency components. In small
graphs, changes in graph matrix can reveal critical structure. In large graphs, existing structure
dominates, changes in graph matrix are less effective.

Component-wise Analysis. We report ChebNet performance augmented with AdaSpec across
multiple datasets and conduct an ablation study to isolate the effects of each component. Results
in Table 4 show: (1) Full components: Combining all three components consistently yields the best
performance. (2) Structure-dominated graphs (e.g., Chameleon, Cora): ΩD outperforms ΩS . (3)
Feature-dominated graphs (e.g., Texas, Roman_Empire): ΩS outperforms ΩD. (4) Frequency com-
ponents: Increasing non-zero frequency components via ΩF (X) improves performance, even when
used alone. Each component within AdaSpec independently improves node distinguishability. When
combined, these mechanisms complement each other, leading to the strongest overall performance.
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AdaSpec Texas Chameleon Roman Empire Amazon Ratings Citeseer Cora

ΩD(A) 40.75 26.71 22.70 40.75 68.27 81.53
ΩS(A) 44.51 23.27 54.04 35.28 52.29 55.63
ΩF (X) 26.24 28.22 54.12 37.16 29.49 65.49
Ω(A,X) 51.16 29.73 54.55 40.92 68.52 82.26

Table 4: Test accuracy of ChebNet with different components of AdaSpec across datasets that
Ω(A,X) contains all three components.

Increased Distinct Eigenvalue Number. We compare the number of distinct eigenvalues between
the original normalized adjacency matrix Ã and the modified matrix ΩD(A) from AdaSpec when
using ChebNet. Due to the computational cost of full eigendecomposition, we conduct this analysis on
small-scale homophilic and heterophilic datasets. As shown in Table 5, ΩD(A) consistently increases
the number of distinct eigenvalues, supporting Theorem 5.1. Standard normalized adjacency matrix
Ã and its self-loop version Â are specific cases of the component ΩD(A) in AdaSpec by setting
B = 0 and B = 1 respectively. We introduces richer structural information in spectral GNNs by
making B learnable matrix (updated via gradient descent) in AdaSpec. The increased number of
distinct eigenvalues directly enhances the model’s ability to differentiate non-isomorphic nodes.

Dataset Texas Wisconsin Chameleon Squirrel Cornell Citeseer Cora

|V| 183 251 890 2,223 183 3,327 2,708
dÃ 113 178 845 2,213 122 2,508 2,395
dΩD(A) 181 229 888 2,221 144 3,227 2,645
△ ↑ 68 51 43 8 22 719 250

Table 5: Number of distinct eigenvalues of the graph matrix. |V| denotes the number of nodes in
graphs. dÃ and dΩD(A) are numbers of distinct eigenvalues of Ã and ΩD(A) in AdaSpec respectively.

Time Complexity of AdaSpec. We evaluate the training efficiency of ChebNet with and without
AdaSpec across multiple datasets. For each dataset, we conduct ten independent runs. We report the
average training time per run and the pre-computing time of Ψ+(A,X) in Table 6. The results show
that AdaSpec introduces minimal overhead and can even accelerate convergence on large heterophilic
graphs (e.g., Roman_Empire, Amazon_Ratings). When increase graph size from Amazon_Ratings to
Coauthor-Physics, the pre-computation time rises from 0.03s to 12.44s, which is consistent with our
time complexity analysis in Section 5.4. By incorporating structural and feature bias into the node
representation, AdaSpec enables faster convergence and more efficient training.

Datasets Roman
_Empire

Amazon
_Ratings Tolokers Minesweeper Questions Computers Photo Coauthor

-CS
Coauthor
-Physics

ChebNet (O) 1.93 1.91 1.76 1.28 2.53 4.73 3.4 3.67 4.54
ChebNet (S) 1.88 1.35 2.51 2.18 3.05 5.32 4.83 4.11 4.60

∆ ↑ -0.05 -0.56 0.75 0.9 0.52 0.59 1.43 0.44 0.06

Pre-Computing 0.26 0.03 0.44 0.08 0.56 1.83 0.9 4.1 12.44

Table 6: Average training and pre-computing time (in seconds) for ChebNet with and without
AdaSpec on large heterophilic and homophilic datasets. Pre-computing is for ΩF (X) in AdaSpec.

7 CONCLUSION AND LIMITATIONS

This work analyzes node distinguishability of spectral GNNs and shows it is governed by the interplay
between the graph matrix and node features. Specifically, by the number of distinct eigenvalues and
nonzero frequency components in the graph matrix’s eigenbasis. We propose AdaSpec, a plug-in
module that enhances the node distinguishability of spectral GNNs, offering theoretical guarantees
and empirical gains.

While effective, our approach is limited to spectral GNNs and provides only a lower bound on
distinguishability. The design of AdaSpec is tailored to certain data distributions and may not gener-
alize universally. Future work could explore more generalizable graph matrix designs, applications to
dynamic graphs, and integration with advanced spectral GNNs for broader applicability.
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ETHICS STATEMENT

This work presents a theoretical analysis and algorithmic contribution to spectral GNNs for node
classification tasks. The research does not involve human subjects, collection of personal data, or
direct interaction with individuals. All experiments are conducted on publicly available benchmark
datasets that have been widely used in the graph learning community. The proposed AdaSpec is
a general-purpose technique for improving node distinguishability in spectral GNNs and does not
target specific populations or applications that could raise fairness or discrimination concerns.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have made every effort to document our methods and
experimental setup comprehensively. The main paper provides a complete description of the proposed
AdaSpec, including its theoretical derivation and integration with existing GNN architectures. Full
proofs for our theoretical claims are provided in Appendix A. All experiments were conducted using
publicly available benchmark datasets. Experimental settings, including datasets, preprocessing steps,
model architectures, and hyperparameters, are described in detail in the main text and Appendix B.
The complete source code, including the implementation of AdaSpec and the scripts to run all
experiments, will be released upon acceptance, enabling full reproduction of reported results.
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APPENDIX

A PROOFS

Detailed proofs of theorems and propositions are provided.

Theorem 4.3. For X ̸= 0n×n, there exist a spectral GNN Ψ(M,X) that can distinguish at least
min(dM , ∥X̃(M)∥0) nodes on graph.

Proof. (1) fW .
The rank of a matrix corresponds to the dimension of its column space. When fW is MLP, which

can approximate any function, there exist a parameter W ′ so that fW ′ is injective function, and
rank(fW ′(X)) = rank(X).

(2) gΘ(M).
For K order polynomial function on symmetric graph matrix g(M), we can represent it as

g(M) =
∑

k=0 αkM
k. We conduct eigendecomposition M = UΛUT , thus, g(M) = Ug(Λ)UT ,

where g(λi) =
∑K

k=0 αkλ
k
i . Rank(g(M)) equals the number of non-zeros in g(Λ). When α0 ̸= 0,

we have Rank(g(M) = n as I is full rank matrix. Therefore, there exist a parameter Θ′ that θ′0 ̸= 0,
such that rank(gΘ′(M)) = n ≥ rank(M).

(3) Rank and eigenvalues.
As gΘ′(M) is a full rank matrix, so rank(gΘ′(M)) ≥ rank(M) ≥ dM .
As eigenvectors of M are linearly independent, if X has r non-zero frequency components, then

there at least r linearly independent directions to represent X in eigenbasis of M , i.e., rank(X) ≥
∥X̃(M)∥0.

Thus, for spectral GNN Ψ in Equation (1), there exist a parameter Θ′,W ′ that

rank(Ψ(M,X))

= rank(gΘ′(M)fW ′(X))

≥ min(rank(gΘ′(M)), rank(fW ′(X)))

≥ min(dM , rank(X))

≥ min(dM , ∥X̃(M)∥0)

(5)

If rank(Ψ(M,X)) ≥ r, it means that at least r rows in embeddings Ψ(M,X) are linearly
independent. Thus, Ψ(M,X) can distinguish r nodes in graph.

In summary, there exist a spectral GNN that can distinguish at least min(dM , ∥X̃(M)∥0) on graph.

Theorem 5.1 (Increased Distinct Eigenvalues). Given a graph G with the adjacency matrix A, and
the degree matrix D, we have:

dΩD(A) ≥ dÃ

Proof. We denote M1 = D−1/2AD−1/2 and M2 = (D +B)−1/2(A+B)(D +B)−1/2. Then we
rove that the characteristic polynomial of M2 has more distinct coefficients than the characteristic
polynomial of M1.
(1)Determinants

The determinant of M1 is:

det(M1 − λI) = det(D−1/2AD−1/2 − λI)

= det
(
D−1/2

(
AD−1/2 − λD1/2

))
= det

(
D−1/2 (A− λD)D−1/2

)
= det

(
D−1/2

)
det (A− λD) det

(
D−1/2

)

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

thus, det(M1 − λI) and det (A− λD) share same roots and det
(
D−1/2

)
is a constant that does not

affect roots.
We denote the characteristic polynomial of M1 as

P1(λ) = det (A− λD)

The determinant of M2 is:

det(M2 − λI)

= det((D +B)−
1
2 (A+B)(D +B)−

1
2 − λI)

= det
(
(D +B)

− 1
2

(
(A+B) (D +B)

− 1
2 − λ (D +B)

1/2
))

= det
(
(D +B)

− 1
2 ((A+B)− λ (D +B)) (D +B)

− 1
2

)
= det

(
(D +B)

− 1
2

)
det ((A+B)− λ (D +B)) det

(
(D +B)

− 1
2

)
thus, det(M2 − λI) and det ((A+B)− λ (D +B)) share same root.

We denote the characteristic polynomial of M2 as

P2(λ) = det ((A+B)− λ (D +B))

We show that P2(λ) has more distinct coefficients than P1(λ), implying M2 has more distinct
eigenvalues.

(2)Expansion of Determinants For any square matrix A and diagnoal matrix D, we expand the
the determinant for A− λD using the Leibniz formula:

det(A− λD) =
∑
σ∈Sn

sgn(σ)
n∏

i=1

(aiσ(i) − λdiδiσ(i))

where σ is a permutation of {1, . . . , n}, and Sn is the symmetric group, sgn(•) is the sign function
of permutations in Sn, which returns +1 or −1 for even and odd permutations respectively.

We expand the determinant for P1(λ) and P2(λ) using Leibniz formula:

P1(λ) =
∑
σ

sgn(σ)
∏

(aiσ(i) − λdiδiσ(i))

P2(λ) =
∑
σ

sgn(σ)
∏

(aiσ(i) + biδiσ(i) − λ(di + bi)δiσ(i))

We focus on the diagonal terms when i = σ(i):

In P1(λ) : aii − λdi

In P2(λ) : (aii + bi)− λ(di + bi)

• In P1(λ), (aii − λd) and (ajj − λd) have the same coefficient of λ.

• In P2(λ), (aii + bi − λ(d+ bi)) and (ajj + bj − λ(d+ bj)) can have different coefficients
of λ.

That is, in P1(λ), term (aii − λdi) is repeated for vertices with the same degree. In P2(λ), due to
the distinct bi, terms (aii+ bi−λ(di+ bi)) can be different even if di = dj , resulting in a polynomial
with more distinct coefficients.

We express this as follows:

In P1(λ), the coefficient of λk (for 0 ≤ k ≤ n) has the form:

c1k =
∑

f1(d1, . . . , dn, a11, . . . , ann)

In P2(λ), the corresponding coefficient has the form:
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c2k =
∑

f2(d1 + b1, . . . , dn + bn, a11 + b1, . . . , ann + bn)

Where f1 and f2 are functions resulting from the determinant expansion.
As analyzed above, the function f2 can produce more unique coefficients than f1.
More unique coefficients in characteristic polynomial implies more unique eigenvalues of the

matrix. Thus, we prove matrix (D + B)−1/2(A + B)(D + B)−1/2 has more unique eigenvalues
than matrix D−1/2AD−1/2, i.e., dΩ(A) ≥ dÃ

Theorem A.1 (First-order Perturbation Theorem (Stewart, 1990)). When a system described by a
matrix A ∈ Rn×n of no repeated eigenvalues is slightly altered by a small perturbation ζ ∈ Rn×n

and the new new system can be represented as A′ = A+ ϵζ, where ϵ is a non-zero constant. A has
eigenvalues {λi}i∈[n] and eigenvectors {ui}i∈[n]. A′ has eigenvalues {λ′

i}i∈[n] and eigenvectors
{u′

i}i∈[n].

Relations between eigenvalues and eigenvectors of A,A′ are:

λ′
i = λi + ϵδλi = u⊤

i ζui +O(ϵ2)

u′
i = ui + ϵ

∑
j ̸=i

u⊤
j ζui

λi − λj
uj +O(ϵ2)

Theorem 5.2 (Non-Decreasing Frequency Components). For a real symmetric matrix C ∈ Rn×n

with orthonormal basis {ur}r∈[n]. Under Condition 5.3, the following holds for index i ∈ [h]:

∥X̃(C+ϵΩF )
:i ∥0 > ∥X̃(C)

:i ∥0
where ϵ is a non-zero constant.

Proof. Since C is a real symmetric matrix, it can be diagonalized

C = UΛUT

where U = [u1, . . . , un] is orthonormal eigenvectors and Λ = diag(λ1, . . . , λn) is the diagonal
matrix of eigenvalues.

We denote {λ̃i}i∈[n] and {ũi}i∈[n] eigenvalues and eigenvectors of C + ϵΩF .
According to Theorem A.1, we have

ũj = uj + ϵ
∑
k ̸=j

u⊤
k ΩFuj

λj − λk
uk +O(ϵ2)

Then,

ũ⊤
j X:i = u⊤

j X:i + ϵ
∑
k ̸=j

u⊤
k ΩFuj

λj − λk
ukX:i +O(ϵ2)

(1) for {j|uT
j X:i ̸= 0}

The leading term uT
j X:i ̸= 0 ensures that ũ⊤

j X:i ̸= 0.
It indicates that non-zero components of X:i in eigenspace of C is still non-zero components in

eigenspace of C + ϵΩF .
(2) for {j|uT

j X:i = 0}
we have

ũ⊤
j X:i = ϵ

∑
k ̸=j

u⊤
k ΩFuj

λj − λk
ukX:i +O(ϵ2)

= ϵ
∑
j ̸=i

[

h∑
l=1

(u⊤
k X:l)(X

⊤
:l uj)

∥X:l∥2F (λj − λk)
]u⊤

k X:i +O(ϵ2)
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When there exist k that uT
kX:i ̸= 0 and there exist l that u⊤

k X:l ̸= 0, u⊤
j X:l ̸= 0. Thus,

(u⊤
k X:l)(X

⊤
:l uj) ̸= 0 and ũ⊤

k X:i ̸= 0.
It indicates that the zero-components of X:i in eigenspace of C becomes non-zero components in

eigenspace of C + ϵΩF .
In summary, when perturbing matrix C with ϵΩF , the non-zero frequency component

∥X̃(C+ϵΩF )
:i ∥0 > ∥X̃(C)

:i ∥0.

Theorem 5.4. For a graph G, the learnable matrix Ω(A,X) is commutative with Aut(G) and
preserves edge connectivity.

Proof. (1) Ω(A,X) commutes with Aut(G).
For any permutation matrix P ∈ Aut(G), we have PAP = A, P−1 = P⊤ and PDP⊤ = D.
Therefore:

P (D +B)P⊤ = PDP⊤ + PBP⊤ = D +B

P (D +B)−1/2P⊤ = (D +B)−1/2

For two isomorphic nodes u ∼ v, they will have same node labels. Each element in B is updated
by gradient, when u ∼ v, the gradient of bu and bv are the same. As we initial all bu = 1

n , we will
get bu = bv . Thus, PBP⊤ = B.

For ΩD(A) = (D +B)−1/2(A+B)(D +B)−1/2

PΩD(A)P⊤

= P (D +B)−1/2(A+B)(D +B)−1/2P⊤

= P (D +B)−1/2A(D +B)−1/2P⊤

+ P (D +B)−1/2B(D +B)−1/2P⊤

= (D +B)−1/2PAP⊤(D +B)−1/2

+ (D +B)−1/2PBP⊤(D +B)−1/2

= (D +B)−1/2A(D +B)−1/2

+ (D +B)−1/2B(D +B)−1/2

= (D +B)−1/2(A+B)(D +B)−1/2

= ΩD(A)

Obviously, for ΩS(A) = I , we have PIP⊤ = I , i.e., PΩS(A)P⊤ = ΩS(A).

For ΩF (X) =
∑h

i=1
X:iX

⊤
:i

∥X:i∥2
F
◦A, we have

PΩF (X)P⊤

= P

(
X:iX

⊤
:i

∥X:i∥2F
◦A
)
P⊤

=
(PX:i)(PX:i)

⊤

∥X:i∥2F
◦A

=
X:iX

⊤
:i

∥X:i∥2F
◦A

= ΩF (X)

As each term in Ω(A,X) commutes with Aut(G), putting them together, we have

PΩ(A,X)P⊤ = Ω(A,X)
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(2) Ω(A,X) preserves edge connectivity.

For ΩD(A) = (D +B)−1/2(A+B)(D +B)−1/2, B is a diagonal matrix and A represents the
edge connectivity, (D +B)−1/2(A+B)(D +B)−1/2 ensures that all original edges are scaled but
not removed.

For ΩS(D) = I , it adds self-loops but does not affect the existing edges.

For ΩF (X) =
∑h

i=1
X:iX

⊤
:i

∥X:i∥2
F
◦A, the Hadamard product ◦A ensures that only weights of existing

edges are modified (no new edges are added), the edge connectivity is preserved.
In summary, Ω(A,X) commutes with Aut(G) and preserves edge connectivity.

Proposition 5.5. When fW is permutation equivariant, spectral GNNs Ψ+(A,X) augmented with
AdaSpec is permutation equivariant.

Proof. The spectrum GNNs in Equation (2) has the format Ψ+(A,X) = gΘ(Ω(A,X))fW (X). We
denote M = Ω(A,X) to simplify the analysis.

It has been proved in Theorem 5.4 that M = Ω(A,X) is commutative with Aut(G) and preserves
edge connectivity.

(1) Permuted Graph.
Let π ∈ Sym(V) be a permutation of the nodes. Applying π to G results in a permuted graph

π(G), where both the adjacency matrix M and the feature matrix X are permuted:

π(M) = PπMP⊤
π

π(X) = PπX

where Pπ is the permutation matrix corresponding to π.
(2) Applying Ψ+ to the Permuted Graph π(G).

Ψ+(π(G)) = gΘ(π(M))fW (π(X))

=

(
K∑

k=0

θkTk(π(M))

)
fW (PπX)

(3) Term Tk(π(M)).
Since Tk is a polynomial basis and M = Ω(A,X) commutes with Pσ for all σ ∈ Aut(G), we

have:

Tk(π(M)) = PπTk(M)P⊤
π

Therefore:

gΘ(π(M)) =

K∑
k=0

θkTk(π(M)) =

K∑
k=0

θkPπTk(M)P⊤
π = PπgΘ(M)P⊤

π

(4) Term fW (π(X)).
As fW is permutation equivariant, we have

fW (π(X)) = PπfW (X)

Therefore,

Ψ+(π(G)) = PπgΘ(M)P⊤
π · PπfW (X) = PπgΘ(M)fW (X) = PπΨ

+(G)

Thus, a spectral GNN Ψ+(A,X) is permutation equivariant.
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Statistics Texas Wisconsin Cornell Actor Chameleon Squirrel
# Nodes 183 251 183 7,600 890 2,223
# Edges 295 466 280 26,752 27,168 131,436

# Features 1,703 1,703 1,703 932 2,325 2,089
# Classes 5 5 5 5 5 5

# Edge Homophily 0.11 0.21 0.3 0.22 0.24 0.22

Statistics of six small heterophilic datasets (Pei et al., 2020; Rozemberczki et al., 2021; Platonov
et al., 2023).

Statistics Roman_Empire Amazon_Ratings Tolokers Minesweeper Questions
# Nodes 22,662 24,492 11,758 10,000 48,921
# Edges 32,927 93,050 519,000 39,402 153,540

# Features 300 300 10 7 301
# Classes 18 5 2 2 2

# Edge Homophily 0.05 0.38 0.59 0.68 0.84

Statistics of five large heterophilic datasets Platonov et al. (2023).

Statistics Citeseer Pubmed Cora Computers Photo Coauthor-CS Coauthor-Physics
# Nodes 3,327 19,717 2,708 13,752 7,650 18,333 134,493
# Edges 4,676 44,327 5,278 491,722 238,162 163,788 495,924

# Features 3,703 500 1,433 767 745 6,805 8,415
# Classes 6 5 7 10 8 15 5

# Edge Homophily 0.74 0.8 0.81 0.78 0.83 0.81 0.93

Statistics of homophilic datasets, including three small datasets (Citeseer, Pubmed, Cora) and four
large datasets (Computers, Photo, Coauthor-CS, Coauthor-Physics) (Kipf & Welling, 2017; Zeng
et al., 2020; Shchur et al., 2018).

Table 7: Statistics of real-world datasets.

B EXPERIMENTAL SETTINGS AND RESULTS

We introduce statistical information of datasets, details of spectral GNNs, hyperparameter setting,
distribution of graph matrix spectrum and frequency components of node features of real-world
datasets and more experimental results in this section.

B.1 DATASETS

The statistical information of the datasets, including node numbers, edge number, feature dimensions,
node class numbers, edge homophilic ratios are summarized in in Table 7.

We use the directed clean version of Chameleon and Squirrel provided by (Platonov et al., 2023)
which removes repeated nodes in graphs. The large heterophilic dataset is proposed in (Platonov
et al., 2023). The datasets Tolokers, Minesweeper and Questions are classified as homophilic datasets
under the Hedge metric (Zhu et al., 2020), although they belong to heterophilic datasets according to
the adjusted homophily metric in (Platonov et al., 2023).

B.2 DATA DISTRIBUTION IN REAL-WORLD DATASETS

We show eigenvalues distributions of normalized graph adjacency matrix of real-world datasets
in Figure 3. Distributions of frequency components of node feature column vectors in eigenspace of
normalized graph adjacency matrix in Figure 4.

B.3 HYPERPARAMETER SETTINGS

All experiments are run on a GPU NVIDIA RTX A6000 with 48G memory.
Following (Platonov et al., 2023), we fix the hidden size of the MLP to 512 and set early stopping

with patience of 100 steps on five large heterophilic datasets (Roman_Empire, Amazon_Ratings,
Tolokers, Minesweeper, Questions). Following (Chien et al., 2021; He et al., 2021), we For all other
fix the hidden size of the MLP to 64 and set early stopping with patience of 200 steps on all other
datatsets. The maximum number of epochs is set to 1,000.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: Distributions of eigenvalues of real-world normalized graph adjacency matrix.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: Distributions of frequency components of real-world column node feature vectors in
eigenspace of normalized graph adjacency matrix.
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Datasets Hyperparameters GNNs Range

’Cora’, ’Citeseer’, ’Pubmed’,
’Chameleon’, ’Squirrel’, ’Actor’,
’Texas’, ’Cornell’, ’Wisconsin’

dropout in MLP All/JacobiConv 0.5, 0.7, 0.9
dropout after MLP All/JacobiConv 0.5, 0.7, 0.9

dropout in MLP JacobiConv 0.5, 0.7
dropout after MLP JacobiConv 0.5, 0.7
learning rate of Θ All 0.001, 0.01
learning rate of W All 0.01, 0.05
weight decay of Θ All 0.0, 0.0005
weight decay of W All 0.0, 0.0005

a JacobiConv −0.5, 0.5
b JacobiConv −0.5, 0.5

propagation parameter α JacobiConv 0.1, 0.9
propagation parameter α GPRGNN 0.1, 0.2, 0.9

’amazon_ratings’, ’minesweeper’,
’questions’, ’roman_empire’,
’tolokers’

dropout in MLP All 0.5
dropout after MLP All 0.5, 0.7
learning rate of Θ All 0.001, 0.01
learning rate of W All 0.01, 0.05
weight decay of Θ All 0.0, 0.0005
weight decay of W All 0.0, 0.0005

a JacobiConv −0.5, 0.5
b JacobiConv −0.5, 0.5

propagation parameter α JacobiConv 0.1, 1.0
propagation parameter α GPRGNN 0.0, 0.9

’computers’, ’photo’,
’coauthor-cs’, ’coauthor-physics’

dropout in MLP All 0.5, 0.7
dropout after MLP All 0.5, 0.7
learning rate of Θ All 0.001, 0.01
learning rate of W All 0.01, 0.05
weight decay of Θ All 0.0, 0.0005
weight decay of W All 0.0, 0.0005

a JacobiConv −0.5, 0.5
b JacobiConv −0.5, 0.5

propagation parameter α JacobiConv 0.1, 0.9
propagation parameter α GPRGNN 0.1, 0.2, 0.9

Table 8: Grid search ranges of hyperparameters. Dropout search ranges of JacobiConv is smaller than
other spectral GNNs as it contains too many hyperparameters, we have to reduce the search range to
guarantee that the searching process can be finished in accepted computing time.

We conduct a grid search for hyperparameters used during the training of spectral GNNs, including
learning rates, dropout rates, exponential decay parameters, propagating coefficient for GPRGNN and
JacobiConv, parameters a, b in JacobiConv. For different datasets, we use different grid search range,
The exact search ranges for different hyperparameters on different datasets are detailed in Table 8.

B.4 SPECTRAL GNNS

We provide the detailed description for spectral GNNs used in our experiments in the following.
For a graph with the adjacency matrix A, the degree matrix D, and the identity matrix I , we use

L̂ = I −D−1/2AD−1/2, L̃ = −D−1/2AD−1/2, Ã = D−1/2AD−1/2, and Ã′ = (D+ I)−1/2(A+
I)(D + I)−1/2 to denote the normalized Laplacian matrix, the shifted normalized Laplacian matrix,
the normalized adjacency, matrix and the normalized adjacency matrix with self-loops, respectively.

ChebNet (Defferrard et al., 2016): This model uses the Chebyshev basis to approximate a spectral
filter:

Ŷ =

K∑
k=0

θkTk(L̃)fW (X)
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where X is the raw feature matrix, Θ = [θ0, θ1, . . . , θK ] is the graph convolution parameter, W is the
feature transformation parameter and fW (X) is usually a 2-layer MLP. Tk(L̃) is the k-th Chebyshev
basis expanded on the shifted normalized graph Laplacian matrix L̃ and is recursively calculated:

T0(L̃) = I

T1(L̃) = L̃

Tk(L̃) = 2L̃Tk−1(L̃)− Tk−2(L̃)

ChebNetII (He et al., 2022a): The model is formulated as

Ŷ =
2

K + 2

K∑
k=0

K∑
j=0

θjTk(xj)Tk(L̃)fW (X),

where X is the input feature matrix, W is the feature transformation parameter, fW (X) is usually a
2-layer MLP, Tk(·) is the k-th Chebyshev basis expanded on ·, xj = cos ((j + 1/2)π/ (K + 1)) is
the j-th Chebyshev node, which is the root of the Chebyshev polynomials of the first kind with degree
K + 1, and θj is a learnable parameter. Graph convolution parameter in ChebNet is reparameterized
with Chebyshev nodes and learnable parameters θj .

JacobiNet (Wang & Zhang, 2022): This model uses the Jacobi basis to approximate a filter as:

Ŷ =

K∑
k=0

θkP
a,b
k (Ã)fW (X),

where X is the input feature matrix, Θ = [θ0, θ1, . . . , θK ] is the graph convolution parameter, W is
the feature transformation parameter and fW (X) is usually a 2-layer MLP. P a,b

k (Ã) is the Jacobi
basis on normalized graph adjacency matrix Ã and is recursively calculated as

P a,b
k (Ã) = I

P a,b
k (Ã) =

1− b

2
I +

a+ b+ 2

2
Ã

P a,b
k (Ã) = γkÃP a,b

k−1(Ã) + γ′
kP

a,b
k−1(Ã) + γ′′

kP
a,b
k−2(Ã)

where γk = (2k+a+b)(2k+a+b−1)
2k(k+a+b) , γ′

k = (2k+a+b−1)(a2−b2)
2k(k+a+b)(2k+a+b−2) , γ

′′
k = (k+1−1)(k+b−1)(2k+a+b)

k(k+a+b)(2k+a+b−2) . a

and b are hyperparameters. Usually, grid search is used to find the optimal a and b values.
GPRGNN (Chien et al., 2021): This model uses the monomial basis to approximate a filter:

Ŷ =

K∑
k=0

θkÃ
′kfW (X)

where X is the input feature matrix, Θ = [θ0, θ1, . . . , θK ] is the graph convolution parameter, W
is the feature transformation parameter and fW (X) is usually a 2-layer MLP. Ã′ is the normalized
adjacency matrix with self-loops.

BernNet (He et al., 2021): This model uses the Bernstein basis for approximation:

Ŷ =

K∑
k=0

θk
1

2K

(
K

k

)
(2I − L̂)K−kL̂kfW (X)

where X is the input feature matrix, Θ = [θ0, θ1, . . . , θK ] is the graph convolution parameter, W
is the feature transformation parameter and fW (X) is usually a 2-layer MLP. L̂ is the normalized
Laplacian matrix.
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Model Roman_Empire Amazon_Ratings Tolokers Minesweeper Questions
ChebNet(O) 47.15±0.42 39.79±0.29 70.1±0.25 86.29±0.2 55.13±0.54

cheb (M) 54.55±0.3 40.92±0.27 69.2±0.61 86.7±0.23 55.2±1.52

∆ ↑ +7.4 +1.13 -0.9 +0.41 +0.07
ChebNetII (O) 55.44±0.19 39.99±0.28 69.93±0.83 78.35±0.14 64.13±0.95

ChebNetII (M) 55.1±0.35 40.66±0.33 70.94±0.36 79.1±0.09 65.54±0.7

∆ ↑ -0.34 +0.67 +1.01 +0.75 +1.41
JacobiConv (O) 55.86±0.57 40.27±0.3 70.1±0.22 87.34±0.12 64.72±0.38

JacobiConv (M) 56.21±0.38 40.17±0.24 71.04±0.22 89.13±0.1 65.8±0.18

∆ ↑ +0.35 -0.1 +0.94 +1.79 +1.08
GPRGNN (O) 56.33±1.51 40.07±0.25 66.34±1.76 87.15±0.49 53.14±0.27

GPRGNN (M) 56.96±1.59 40.14±0.38 68.44±0.39 88.58±0.18 58.19±0.36

∆ ↑ +0.63 +0.07 +2.1 +1.43 +5.05
BernNet (O) 55.06±0.3 39.36±0.37 68.81±0.91 76.54±0.23 64.86±0.37

BernNet (M) 55.51±0.91 39.85±0.23 69.49±0.72 76.95±0.21 65.2±0.31

∆ ↑ +0.45 +0.49 +0.68 +0.41 +0.34

Table 9: Performance with/without AdaSpec on large heterophilic datasets (Roman_Empire, Ama-
zon_Ratings, Tolokers, Minesweeper, Questions ). Test accuracy is used as the metric for Roman-
Empire and Amazon-Ratings datasets and ROC AUC is reported on Minesweeper, Tolokers, Ques-
tions. High accuracy and ROC AUC indicate good performance.

Model Texas Wisconsin Actor Chameleon Squirrel Cornell
ChebNet(O) 38.67±9.31 32.92±7.38 25.15±0.69 29.32±4.13 24.23±3.24 31.33±7.51

ChebNet(M) 45.84±10.23 29.96±7.88 25.38±0.67 29.73±3.3 22.39±3.21 33.47±7.92

∆ ↑ +7.17 -2.96 +0.23 +0.41 -1.84 +2.14
ChebNetII(O) 56.24±1.39 51.5±5.63 29.89±0.68 35.26±3.66 37.19±0.66 39.54±6.88

ChebNetII(M) 56.71±5.72 52.0±7.75 30.43±1.23 34.99±3.03 36.88±0.69 36.76±9.31

∆ ↑ +0.47 +0.5 +0.54 -0.27 -0.31 -2.78
JacobiConv(O) 55.09±5.95 49.0±10.51 32.15±0.77 34.29±3.82 29.29±1.99 38.96±8.79

JacobiConv(M) 54.91±4.16 49.67±5.8 32.0±0.93 34.88±2.5 28.66±3.51 40.06±7.52

∆ ↑ -0.18 +0.67 -0.15 +0.59 -0.63 +1.1
GPRGNN(O) 48.15±4.74 44.25±5.92 30.39±1.24 32.5±2.92 27.7±3.88 34.39±6.88

GPRGNN(M) 54.68±10.81 40.46±9.0 30.39±1.57 31.93±3.08 27.3±6.03 34.51±5.43

∆ ↑ +6.53 -3.79 +0.0 -0.57 -0.4 +0.12
BernNet(O) 56.19±7.52 49.38±5.75 30.5±1.18 35.35±3.46 33.41±3.42 36.82±10.64

BernNet(M) 58.9±4.11 49.71±8.29 29.88±0.89 38.38±2.15 34.46±3.52 40.23±5.66

∆ ↑ +2.71 +0.33 -0.62 +3.03 +1.05 +3.41

Table 10: Test accuracy with/without AdaSpec of fixed hyperparameters α1 = 0.0001, α2 = 0.0001
on small heterophilic datasets. High accuracy indicates good performance.

B.5 FULL EXPERIMENTAL RESULTS ON LARGE HETEROPHILIC GRAPHS

We show our full experimental results on large heterophilic graphs in Table 9. There is an average
1.08% accuracy improvement on Roman_Empire, Amazon_Ratings and an average 1.1% ROC AUC
improvement on the rest datasets.

B.6 EXPERIMENTAL RESULTS WITH FIXED HYPERPARAMETERS

We use fixed hyperparameters for AdaSpec during experiments. More specific, for small heterophilic
datasets, we set α1 = 0.0001, α2 = 0.0001 and corresponding results are shown in Table 10. For
large heterophilic graphs, we set α1 = 0.001, α2 = 0.001 and corresponding results are shown
in Table 11. For homophilic graphs, we set α1 = 0.001, α2 = 0.001 and corresponding results are
shown in Table 12.

C THE USE OF LARGE LANGUAGE MODELS

Portions of the writing in this paper were polished with the assistance of large language models
(LLMs). LLMs were employed for tasks including sentence restructuring, grammar correction, and
language polishing. All ideas, technical content, and conclusions are original to the authors, and the
LLM did not contribute to the conceptual or experimental aspects of this work.
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Model Roman_Empire Amazon_Ratings Tolokers Minesweeper Questions
ChebNet(O) 47.15±0.42 39.79±0.29 70.1±0.25 86.29±0.2 55.13±0.54

ChebNet(M) 40.73±0.32 40.92±0.16 68.87±3.25 86.7±0.23 47.09±1.1

∆ ↑ -6.42 +1.13 -1.23 +0.41 -8.04
ChebNetII(O) 55.44±0.19 39.99±0.28 69.93±0.83 78.35±0.14 64.13±0.95

ChebNetII(M) 55.0±0.51 40.66±0.33 70.94±0.36 79.1±0.09 65.24±0.62

∆ ↑ -0.44 +0.67 +1.01 +0.75 +1.11
JacobiConv(O) 55.86±0.57 40.27±0.3 70.1±0.22 87.34±0.12 64.72±0.38

JacobiConv(M) 56.21±0.38 40.17±0.24 71.04±0.22 89.13±0.1 65.8±0.18

∆ ↑ +0.35 -0.1 +0.94 +1.79 +1.08
GPRGNN(O) 56.33±1.51 40.07±0.25 66.34±1.76 87.15±0.49 53.14±0.27

GPRGNN(M) 56.96±1.59 40.14±0.38 68.44±0.39 88.58±0.18 58.19±0.36

∆ ↑ +0.63 +0.07 +2.1 +1.43 +5.05
BernNet(O) 55.06±0.3 39.36±0.37 68.81±0.91 76.54±0.23 64.86±0.37

BernNet(M) 55.51±0.91 39.85±0.23 69.37±0.6 76.95±0.21 65.17±0.3

∆ ↑ +0.45 +0.49 +0.56 +0.41 +0.31

Table 11: Performance with/without AdaSpec of fixed hyperparameters α1 = 0.001, α2 = 0.001
on large heterophilic datasets. Test accuracy is used as the metric for Roman-Empire and Amazon-
Ratings datasets and ROC AUC is reported on Minesweeper, Tolokers, Questions. High accuracy and
ROC AUC indicate good performance.

Model Citeseer Pubmed Cora Computers Photo Coauthor-CS Coauthor-Physics
ChebNet(O) 69.21±0.87 75.29±2.34 80.45±1.09 82.64±1.76 91.77±0.32 90.95±0.34 95.03±0.11

ChebNet(M) 68.09±0.74 77.38±1.45 82.26±0.84 84.62±1.05 92.33±0.44 91.54±0.22 94.9±0.12

∆ ↑ -1.12 +2.09 +1.81 +1.98 +0.56 +0.59 -0.13
ChebNetII(O) 69.93±1.15 78.42±1.48 81.64±0.86 84.96±0.97 92.71±0.46 93.08±0.27 95.23±0.1

ChebNetII(M) 69.34±0.72 78.59±1.52 81.97±0.86 84.53± 1.25 92.48± 0.41 91.78±0.27 95.26±0.11

∆ ↑ -0.59 +0.17 +0.33 -0.87 -0.23 -1.3 +0.03
JacobiConv(O) 70.8±0.7 79.43±1.45 77.15±0.96 85.39±0.95 92.79±0.38 93.33±0.23 95.32±0.15

JacobiConv(M) 70.91±0.66 79.65±1.25 83.52±0.69 84.08±1.07 92.83±0.36 93.27±0.25 95.43±0.11

∆ ↑ +0.11 +0.22 +6.37 -1.32 +0.04 -0.06 +0.11
GPRGNN(O) 70.02±0.7 79.24±1.1 82.24±0.86 84.09±0.81 92.43±0.24 92.99±0.22 95.28±0.04

GPRGNN(M) 70.29±0.44 79.21±1.17 81.9±0.7 83.97±1.14 92.53±0.38 92.86±0.22 95.2±0.08

∆ ↑ +0.27 -0.03 -0.34 -0.12 +0.1 -0.13 -0.08
BernNet(O) 69.12±0.96 78.9±1.04 81.9±0.8 85.15±1.14 92.63±0.29 93.11±0.23 95.3±0.17

BernNet(M) 68.92±0.58 78.95±1.1 82.5±0.78 84.84±1.23 92.58±0.36 93.07±0.29 95.32±0.15

∆ ↑ -0.2 +0.05 +0.6 -0.31 -0.05 -0.04 +0.02

Table 12: Test accuracy with/without AdaSpec on homophilic datasets of fixed hyperparameters
α1 = 0.001, α2 = 0.001. High accuracy indicates good performance.
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