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ABSTRACT

Transformers often struggle with length generalization, meaning they fail to gener-
alize to sequences longer than those encountered during training. While arithmetic
tasks are commonly used to study length generalization, certain tasks are consid-
ered notoriously difficult, e.g., multi-operand addition (requiring generalization
over both the number of operands and their lengths) and multiplication (requiring
generalization over both operand lengths). In this work, we achieve approximately
2–3× length generalization on both tasks, which is the first such achievement in
arithmetic Transformers. We design task-specific scratchpads enabling the model
to focus on a fixed number of tokens per each next-token prediction step, and apply
multi-level versions of Position Coupling (Cho et al., 2024; McLeish et al., 2024) to
let Transformers know the right position to attend to. On the theory side, we prove
that a 1-layer Transformer using our method can solve multi-operand addition, up
to operand length and operand count that are exponential in embedding dimension.1
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Figure 1: Unlocking Length Generalization on Multi-Operand Addition Task. We present
median exact-match accuracies for 6-layer 8-head decoder-only Transformers trained on multi-
operand additions of 2–10 operands, each having 1–10 digits (red boxes represent the scope of
trained lengths). We compare three state-of-the-art position embedding (PE) methods for length
generalization: NoPE (Kazemnejad et al., 2023), FIRE (Li et al., 2024), and Position Coupling (Cho
et al., 2024; McLeish et al., 2024). With a proper scratchpad enabling Transformers to do extrinsic
multi-step reasoning (described in Section 4), all three PE methods can extend their generalization
scope (blue area of heatmaps). Remarkably, with our proposed multi-level Position Coupling with
scratchpad, we achieve a significant length generalization superior to all other methods.

∗Authors contributed equally to this paper.
1All our experiments are reproducible with the codes in github.com/HanseulJo/position-coupling
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1 INTRODUCTION

Transformer-based language models (Vaswani et al., 2017) have become a cornerstone of modern deep
learning in recent years (Chowdhery et al., 2023; Gemini et al., 2023; OpenAI, 2023; Thoppilan et al.,
2022). Despite their seemingly limitless capabilities, they often struggle with a critical limitation
known as the length generalization problem, meaning that the model does not perform well on
input sequences longer than those encountered during training (Anil et al., 2022; Deletang et al.,
2023; Press et al., 2022; Wu et al., 2023; Zhang et al., 2023). Length generalization has recently
dragged the attention of many researchers because of the following two aspects: (1) the failure in
length generalization corroborates the models’ fundamental limitation that they may not genuinely
understand the task-solving algorithm but may rely on short-cut learning that is only applicable
to sequences of trained lengths; (2) improving length generalization can automatically extend the
applicability of the models in both memory-efficient and computation-efficient way.

As manageable and intriguing test beds, arithmetic and algorithmic tasks are commonly used to study
the capabilities (including length generalization) of Transformers (Cho et al., 2024; Fan et al., 2024;
Kazemnejad et al., 2023; Kim et al., 2021; Lee et al., 2024; McLeish et al., 2024; Nogueira et al.,
2021; Qian et al., 2023; Sabbaghi et al., 2024; Zhou et al., 2024a;b). In this paper, we mainly focus on
arithmetic tasks, specifically integer addition and multiplication. While humans can easily generalize
to longer examples of these tasks, recent works have shown that Transformers often struggle in length
generalization, and various approaches (Cho et al., 2024; McLeish et al., 2024) have been proposed
to help Transformers learn the true underlying mechanisms that solve addition and multiplication.

While recent work has made significant progress on the addition task, the scope has largely been
limited to cases of two operands. Similarly, studies on multiplication have achieved length gener-
alization for just one operand, while the other is kept fixed at a small length. Notably, as far as we
know, no research has demonstrated significant generalization in terms of the number of operands for
the addition task; e.g., training on problems with up to four operands and successfully extending to
problems with more than four. Likewise, for multiplication, none has achieved length generalization
for both operands simultaneously (e.g., see Figure 5 of McLeish et al. (2024)).

In this paper, we address these challenges by proposing a nontrivial combination of two techniques:
scratchpad (Nye et al., 2021) and Position Coupling (Cho et al., 2024; McLeish et al., 2024). By
equipping decoder-only Transformers with a scratchpad (an appended sequence that contains multi-
step reasoning) and integrating a bi-level extension of Position Coupling, we demonstrate that
Transformers can learn to solve multi-operand addition, generalizing in terms of both the number
of operands and their lengths. Similarly, for multiplication, we employ a scratchpad and a tri-level
Position Coupling to train Transformers that length-generalize in terms of both operand lengths.

Admittedly, the two key components—scratchpads and Position Coupling—are not entirely new, and
they have been adopted in existing approaches to improve length generalization in arithmetic tasks.
Here, our key contribution is to combine them in a complementary way that empowers Transformers
to solve the tasks that were considered very challenging. We use scratchpads to eliminate the need to
attend to an increasing number of positions as the number of operands increases. By spelling out
the intermediate outcomes on scratchpads, it now suffices for the model to attend to only a constant
number of tokens at each inference step. Position Coupling then offers the model information about
the “right” position to attend to, thereby assisting the model to quickly learn the correct inference
mechanism from data.

1.1 SUMMARY OF CONTRIBUTIONS

• We first tackle the multi-operand addition task (Section 4). By devising and employing a scratchpad
with bi-level Position Coupling, we achieve a significant length generalization not only in the
length of each operand but also in greater numbers of operands. Our model substantially improves
the generalization performance (with median exact-match accuracy ≥ 90.0%) for the integer
addition task involving up to 30 operands of lengths up to 30, even though it was trained on
samples with a maximum of 10 digits and 10 operands. In contrast, models trained with either
NoPE (Kazemnejad et al., 2023) or FIRE (Li et al., 2024) completely fail to solve for 13 operands
of length 13, even with the help of the same scratchpad (Figure 1).

• By refining the scratchpad and employing tri-level Position Coupling, we achieve a significant
length generalization for multiplication tasks where both operands can vary in length (Section 5).
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Our models are capable of multiplying (up to) 20-digit integers times (up to) 15-digit integers with
median exact-match accuracy ≥ 78.55%, even though it was trained on samples with a maximum
of 10 digits for each operand (Figure 9).

• We develop a theoretical construction of a small (1-layer, 4-head) Transformer model, equipped
with a scratchpad and bi-level Position Coupling, capable of solving multi-operand addition
(Theorem 4.1). Our construction can handle problems involving both exponentially long operands
and exponentially many operands. The scratchpad is crucial, as it enables this shallow architecture
to accurately predict the next tokens by ensuring that the model only needs to attend to constant
number of tokens at each inference step, which we also verify in trained Transformers (Figure 7).

2 PRELIMINARIES

We use next-token prediction (NTP) with decoder-only Transformers to solve every task. Each task
can be represented as a set of sequences of the form “[query]=[response]”, where the goal
is to correctly infer the response sequence from a given query sequence via NTP, starting from a
sequence “[query]=”. Since we are mostly studying length generalization on arithmetic tasks,
we treat a single digit (between 0–9) as a single token, but there are other non-digit tokens such
as ‘+’, ‘×’ (or interchangeably ‘*’), ‘=’, ‘→’ (or interchangeably ‘>’), and special tokens like
beginning-/end-of-sequence (BOS/EOS) and padding (PAD) tokens.2 Moreover, because of the
deterministic nature of arithmetic/algorithmic tasks, we only use greedy decoding for every NTP step.
In the following subsections, we provide an explanation of the background underlying our approach.
For additional related works on length generalization, we refer the readers to Appendix A.

2.1 RELATED WORKS

Position Embedding Methods for Length Generalization. Various position embedding (PE)
methods have been explored to enhance the Transformers’ length generalization capability. Kazem-
nejad et al. (2023) claim that, in some downstream tasks, a decoder-only model without PE (NoPE)
can achieve a length generalization performance comparable to those of widely-used PE techniques
including ALiBi (Press et al., 2022), Rotary (Su et al., 2024), and T5’s Relative PE (Raffel et al.,
2020). However, it is still a promising research direction to enhance length generalizability of
Transformers with a more appropriate choice of PEs (Jelassi et al., 2023; Ruoss et al., 2023; Shen
et al., 2023; Zhou et al., 2024b).

Position Coupling. Independent works by Cho et al. (2024) and McLeish et al. (2024) propose
Position Coupling (also called Abacus), a structured position ID assignment rule—established on a
learned absolute PE (Gehring et al., 2017)—that captures the inherent positional symmetry of the
target task. In this approach, tokens in an input sequence are grouped and each group of tokens is
assigned a sequence of consecutive integers as position IDs. For example, in the integer addition
task, the identical position IDs are assigned to the digits at the same significance across numbers in
both the query (i.e., operands) and the response (or, answer). During training, the starting position
ID is randomized to mitigate the problem of encountering unseen position IDs for longer sequences.
At test time, the starting position ID is arbitrarily fixed (e.g., 1). Position Coupling demonstrates a
remarkable length generalization performance on several arithmetic and algorithmic tasks such as
two-operand addition and N -digit × 2-digit multiplication.

Scratchpad. To enhance the reasoning capabilities of Transformer models, several heuristic-driven
methods for data formatting have been introduced. One such technique is scratchpad (Nye et al.,
2021), an auxiliary intermediate sequence of tokens before arriving at the final answer. Training the
model with a scratchpad allows the model to store and refer to intermediate task-solving states when
predicting subsequent tokens. This approach has been shown to enhance both in-distribution and
out-of-distribution performance in tasks such as integer addition and code execution (Anil et al., 2022;
Nye et al., 2021). Zhou et al. (2024a) further validate these findings in the parity task, explaining that
the effectiveness of the scratchpad lies in its ability to simplify next-token prediction.

3 WARM-UP: LENGTH GENERALIZATION ON PARITY TASK

Before moving on to our findings about addition and multiplication tasks, we begin with a warm-up
example: the parity task. Given a binary sequence as a query, the goal of the parity task is to output 1

2If possible, we ignore the details about the BOS/EOS/PAD tokens for a simple presentation.
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if the query contains an odd number of 1’s, and 0 otherwise. Despite its simple description, it is well
known that Transformers struggle with achieving length generalization for the parity task (Anil et al.,
2022; Deletang et al., 2023; Hahn & Rofin, 2024; Kazemnejad et al., 2023; Zhou et al., 2024a). In
this section, we will demonstrate an enhanced length generalization performance on the parity task
by applying Position Coupling on top of the input sequence with a properly designed scratchpad.

3.1 METHOD: SCRATCHPAD & POSITION COUPLING

0 1 0 1 0 1 1 0=

Intermediate Step

Simple Algorithm

+

Scratchpad

Query

Figure 2: An illustration of a scratchpad for a parity problem (with a query 0101).

We follow the scratchpad format proposed by Anil et al. (2022). Figure 2 illustrates an example of an
input sequence consisting of a 4-bit parity problem (with query 0101) and its scratchpad (0110).
The idea of this scratchpad is to record every intermediate parity state as a given binary query is
processed starting from the leftmost token. That is, the k-th bit in the scratchpad is the parity of the
subsequence containing the first k bits of the query. Then, the final rightmost token of the scratchpad
is the desired answer for the parity task. Recording the process of solving the parity task is beneficial
in the following two points:

1. It makes the task-solving algorithm simpler. The first token in the scratchpad is just a copy of the
first token in the query sequence. Also, we do not need to directly solve the intermediate parity
task at once in order to infer the k-th (k > 1) intermediate token in the scratchpad; instead, it is
enough to focus on the k-th token of the query and the (k − 1)-th token in the scratchpad, and
then sum them up modulo 2 (see Figure 2).

2. It is straightforward to apply Position Coupling onto the input sequence with the scratchpad. The
scratchpad generates a natural positional correspondence between the query and the response.
Thus, we can assign the same position ID to the k-th query token and k-th scratchpad token, for
example, 234512345 in the example depicted in Figure 2.

To sum up, such a scratchpad simplifies the task by allowing the model to perform step-by-step
reasoning without need of attending to a linearly increasing number of query tokens until it generates
the answer, while Position Coupling (applied on top of the scratchpad) can explicitly let the model
know “where it should focus on” to perform every step of the reasoning. We thus can expect a
synergetic effect of such combination, and our experiments do align with this expectation.

3.2 EXPERIMENTS & DISCUSSION
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Figure 3: Parity task. We report the accuracies only for the answer token (i.e., the token before EOS)
(light area: 95% confidence intervals). The gray region indicates the query lengths in our training
data. A complete failure is indicated by the accuracy ≃50%: a random guess between 0 and 1.

To test the efficacy of the combination of scratchpad and Position Coupling, we compare its perfor-
mance against six other configurations: models trained with NoPE, RoPE, and FIRE, each tested with
and without the scratchpad. The result is presented in Figure 3. Please refer to Table 1 for detailed
experimental details.

We observe that, without the scratchpad, all three PE methods generalize well to in-distribution
samples but struggle with out-of-distribution queries. Their performance sharply drops to 50%
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accuracy for query lengths slightly exceeding the training samples, indicating no better than random
guessing. When the scratchpad is employed, NoPE and FIRE demonstrate improved performance,
achieving strong generalization up to 35-bit queries. However, when a scratchpad is combined with
Position Coupling, the model demonstrates outstanding length extrapolation, achieving near-perfect
generalization on queries up to 100 bits. From these observations, we conclude that for the parity task,
(1) the scratchpad helps length generalization, albeit not significantly, and (2) the combination of the
scratchpad with Position Coupling substantially boosts the model’s length extrapolation capability.

4 LENGTH GENERALIZATION ON MULTI-OPERAND ADDITION TASK

In the previous section, we demonstrated the potential of integrating the scratchpad with Position
Coupling for better length generalization. We now aim to evaluate the effectiveness of this approach
on a more challenging task. Specifically, we address the problem of achieving length generalization
in the integer addition task, where operand length and count can both get longer at test time. Indeed,
there has already been a length extrapolation result on additions with more than two operands: e.g.,
the “triple addition” task presented by Cho et al. (2024). However, their approach still requires the
number of operands to be fixed (e.g., 3), leaving the challenge of generalizing the problem setting
to varying operand counts as an open question. Here, we demonstrate that it can be overcome by
employing a scratchpad in conjunction with a carefully designed multi-level Position Coupling.

4.1 METHOD: SCRATCHPAD & BI-LEVEL POSITION COUPLING

Token : 057+048+096=000>750>501>102
PosID1: 432143214321234123412341234
PosID2: 111122223331111222233334444

Figure 4: An example input sequence equipped with scratchpad and bi-level Position Coupling. The
original example was “57+48+96=201”: the query is inside a blue box and the response is inside
a red box. All numbers in the scratchpad (i.e., intermediate steps) are reversed; all numbers in the
whole sequence are minimally zero-padded to match their length.

Scratchpad for Multi-operand Addition. Similar to the parity task, we store the intermediate
cumulative sums in the scratchpad. It makes the algorithm of solving the multi-operand addition task
easier. This is because a model can obtain the k-th intermediate cumulative sum by adding exactly
two numbers: the most recently generated ((k−1)-th) intermediate sum and the k-th number/operand
in the query. As a minor detail, we start the scratchpad with zeros in order to make the task-solving
rule more clear and consistent.3

Bi-Level Position coupling. Now we motivate the usage of the bi-level Position Coupling: each
token has two levels of position IDs, whose couplings happen only in each level.4 As observed
in prior works, adding two numbers can be successfully done by coupling the digits of the same
significance in every number by assigning the identical position ID. The resulting position IDs (level
1) are as in PosID1 in Figure 4. However, this is not enough because we want to know which
specific numbers we should add together, while the numbers are not very distinguishable solely with
level-1 position IDs. Our mitigation is to add another level of position IDs5 that can distinguish
properly between numbers. Combining the idea of Position Coupling again, we naturally couple
two numbers of the same order in query and response: the resulting position IDs (level 2) is as in
PosID2 in Figure 4. In short, the model will choose which numbers it should add based on level-2
position IDs, and perform two-operand addition with the help of level-1 position IDs. Lastly, when
we implement multi-level position IDs for each token, we use separate PE modules for different levels
of position IDs to map them to PE vectors, and then add them all to the token embedding vector.

3This is not a must. We empirically observed that directly starting the scratchpad with the (zero-padded,
reversed) first operand does not hurt the performance of moderate-sized models. We choose to start the
scratchpads with all zeros for the sake of simplicity in our theoretical construction, later presented in Section 4.4.
In fact, for multiplication (Section 5) we adopt a scratchpad that does not start with all zeros.

4It means that even if a token has a position ID p at level 1 and another token has the same position ID p at
level 2, these two tokens are not necessarily coupled by these position IDs.

5It is worth mentioning that multi-level position ID has already been studied (He et al., 2024; Zhang et al.,
2024). The implementation detail is very different because their approaches involve relative PEs.
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Input Formats. There are additional design choices regarding the input sequence format: zero-
padding and number reversing. We apply zero-padding to every number in both query and response
to ensure that the length of every number is identical to the maximum possible length of the final
answer, depending on the operand count. For example, if we add 11 operands of length at most
n ≥ 2, the final answer can have a length n+ 2 (because 99× 11 = 1089), so we match the length
of the numbers to be n+ 2 with zero-padding. In addition, we reverse all numbers in the scratchpad
(i.e., intermediate cumulative sums). This is a quite natural choice since even humans do additions
starting from the least significant digit (Lee et al., 2024; Nogueira et al., 2021).

4.2 EXPERIMENTAL SETUP

Given two integers a ≤ b, we denote by [a : b] := {a, a+ 1, · · · , b} a set of consecutive integers.

Data Sampling. For the sake of simplicity of notation, we denote a training set by SA(n,m),
consisting of addition problems where each operand can have at most n digits and the operand count
can range from 2 to m. The dataset consists of two equally sized chunks. In the first chunk, for each
sample, the number of operands is uniformly sampled from [2 : m], and the length of each operand is
independently sampled from [1 : n]; this means that the operands within a single sample can differ in
length. Then, based on the chosen lengths (e.g., 4), each of the operands are uniformly randomly
generated (e.g., from [1000 : 9999]). In the second chunk, for each sample, the number of operands
is still uniformly sampled from [2 : m], but this time, the lengths of all operands are identical. The
operand length is sampled from [1 : n], and all operands are randomly chosen to be of the chosen
length. We use SA(10, 10) with size 500,000 as the baseline training set.

We also denote a test set by TA(n,m), consisting of a single component. In each sample, both the
number of operands and the length of each operand are fixed specifically at m and n, respectively.
For model evaluation, we draw a 30× 29 grid heatmap and assess the performance of the model on
the test set TA(i, j) of size 1,000 for every entry (i, j) ∈ [1 : 30]× [2 : 30].

Model and Training. Our baseline model is a 6-layer 8-head decoder-only Transformer with
embedding dimension 1024 (with approximately 63M parameters), trained from scratch. We do not
incorporate weight decay or dropout. Further details can be found in Table 2.

Random Offset of Position IDs During Training. An important detail about the training procedure
is that we randomly choose offsets (for each level of position IDs) and add them to every position ID
in each training sample. This is to promote learning all the position embedding vectors as evenly as
possible, and this training-time random assignment of position IDs is already used in prior works
for similar reasons (Cho et al., 2024; McLeish et al., 2024; Ruoss et al., 2023). As Cho et al.
(2024) and McLeish et al. (2024) did, we pre-define the maximum position IDs (for each level) as
hyperparameters, which naturally determine maximum testable ranges of operand lengths and count.
See Table 2 for our choice of the maximum position IDs.

4.3 EXPERIMENTAL RESULTS

Position Coupling and Scratchpad Together Enable Powerful Length Generalization. We
trained models using 3 different PE methods—Position Coupling, NoPE, and FIRE—both with and
without scratchpad. The implementation details of Position Coupling differ by the presence/absence
of scratchpad: if we use scratchpads, we apply the bi-level Position Coupling explained in Section 4.1;
if not, we use a simple single-level Position Coupling that matches the position IDs for digits at the
same significance in all numbers, which is also used for “triple addition” task in Cho et al. (2024).
The results are showcased in Figure 1. We measure the exact-match accuracy for correct inference
of the whole response, including scratchpad if it is used. The top 3 heatmaps in the figure, which
are the results without scratchpads, indicate that these models can only generalize to in-distribution
samples and exhibit near-zero exact-match accuracy on out-of-distribution samples. Next, when
either NoPE or FIRE is combined with the scratchpad, the models show a slight improvement in
terms of generalizable operand lengths and counts. They barely solve problems involving 13 numbers,
each 12 digits long. In contrast, the combination of the scratchpad and Position Coupling enables
much stronger length generalization, achieving non-trivial accuracy even on test samples involving
30 numbers, each with 30 digits. We emphasize that such problems are extremely difficult, as the
model must accurately predict a total of 1023 consecutive tokens to solve the problem.
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Effect of Trained Length. We compare the models trained on different lengths: SA(7, 7),
SA(10, 10), and SA(13, 13). The results are presented in Figure 5. As expected, the model’s
ability to generalize to longer sequences improves as the training data covers a wider range of lengths.
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Figure 5: Comparison of training lengths in the integer addition task. We report exact-match
accuracies (median over at least 4 runs) for the addition task. The red box indicates the training
distribution: from the left plot, we trained on SA(7, 7), SA(10, 10), and SA(13, 13).
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padding in input sequences.

Effect of Zero-padding. Figure 6 exhibits the exact-match
accuracies for models trained on input sequences with scratchpad
but without zero-padding in both the query and the response. Al-
though there is a moderate degradation in overall performance,
the models still generalize well with respect to an increased num-
ber of operands. Also, they maintain reasonable accuracy for
operand lengths below 25 digits. It implies that, although zero-
padding aids in enhancing length extrapolation capability, it is
not an absolute necessity.

Effect of Architecture. To study whether our approach can
be applied across various depth/width configurations, we explore
the performance as we vary the number of layers and heads.
Specifically, we tested configurations with 1, 2, 4, and 6 layers,
and 2, 4, and 8 heads, resulting in 12 distinct configurations. The
results are illustrated in Figure 10 (see Appendix C).

It turns out that 1-layer 2-head models perform the worst. While they could generalize across operand
counts, they immediately fail for longer digits. The remaining 11 configurations exhibit significantly
better performance than the 1-layer 2-head models. It is noteworthy that networks with only four heads
in total (1-layer 4-head or 2-layer 2-head) show surprisingly high accuracy, even outperforming our
baseline (6-layer 8-head). In particular, the 2-layer 2-head models achieve at least 90.0% exact-match
accuracy (median over 6 trials) across every combination (n,m) ∈ [1 : 30] × [2 : 30], whereas the
6-layer 8-head models achieve 67.8% or above. However, we do not observe an overall trend between
the accuracy and the number of layers/heads, as the optimal number of heads varied depending on
the number of layers, and vice versa. We suspect that this is due to the stochasticity of the training
process.

For broader ablation results including head/embedding dimensions, training set sizes, and input
formats, we refer the reader to Appendix C.

4.4 THEORETICAL ANALYSIS ON 1-LAYER TRANSFORMER

In this section, we explain the success of our approach by providing a theoretical analysis in Theo-
rem 4.1. Specifically, we construct a Transformer model (whose normalization layer is omitted for
simplicity) that is capable of solving the addition task involving both exponentially long operands and
exponentially large number of operands when our approach is applied. Furthermore, the constructed
model is a 1-layer 4-head Transformer, which supports the experimental results presented in Figure 10:
the 1-layer 4-head model succeeds, but the 1-layer 2-head model fails.

Theorem 4.1. With a proper input format, scratchpad, and Position Coupling, there exists a 1-layer
4-head decoder-only Transformer that solves the multi-operand integer addition task involving up
to m operands each with up to n digits. Here, a sufficient choice of the embedding dimension is
d = O(log2(m+ 1) + log2(n+ 1)).

7
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Theorem 4.1 says that a 1-layer 4-head model is enough to solve integer additions involving exponen-
tially many and exponentially long operands (in embedding dimension) when a proper scratchpad and
Position Coupling are applied. As being a sufficiency result, it implies that larger architectures (with
more layers and attention heads) can solve the same task as well. We put its detailed and constructive
proof in Appendix D. We also remark that our theorem extends Theorem 5.1 of Cho et al. (2024),
which can only handle addition problems with a fixed number of operands.

To illustrate our key idea, consider an example problem 057+048+096 = 000 → 750 → 501 → 102
(with the output reversed). First, consider the case without a scratchpad: 057 + 048+ 096 = 102. To
predict the least significant digit of the final answer, 1, the model must attend to the least significant
digits of all the operands, which are 7, 8, and 6, in the query sequence. In a scenario with m operands,
the model would need to attend to m digits. This property—the number of tokens the model has to
attend to increases with the number of operands—makes the construction difficult.

With a scratchpad, the process becomes a lot simpler. Instead of attending to every least significant
digit of all operands, the model only needs to attend to two tokens: e.g., 6 from 096 and 5 from 501.
Importantly, by utilizing the intermediate states stored in the scratchpad, the number of tokens the
model needs to attend to remains fixed, even if the number of operands gets larger.

Scrutinizing the Attention Patterns of Trained Transformer. Surprisingly, our insight into
the advantage of our scratchpad and its synergy with Position Coupling can be visually verified,
supporting the significance of our method and theoretical finding. We probe the attention matrices
of transformer models trained with a practical Adam optimizer. We visualize the lower-triangular
row-stochastic matrix softmax(QK⊤) as a heatmap in Figure 7. Thus, if you want to know the
distribution of softmax logits over key tokens for an NTP at the q-th query token, you should look at
q-th row of the heatmap; the brighter the point, the more the model attends to that key token position.

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=0000000000000>4524517550200>2320682551800>1505037481310>5441051604120>7293204862320>8879611023620>3187860179230>2733788745830>0611038186140>5884530917840>2460123244050

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=0000000000000>4524517550200>2320682551800>1505037481310>5441051604120>7293204862320>8879611023620>3187860179230>2733788745830>0611038186140>5884530917840>2460123244050

Attention Pattern of 1st layer, 3rd head
(Position Coupling + Scratchpad)

0.2

0.4

0.6

0.8

1.0

(a) 1-layer 4-head model trained with bi-level
Position Coupling and Scratchpad.

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=2460123244050

$0020557154254+
0060995705978+

0050294444819+
0082214196394+

0018622522482+
0030517145861+

0066509518025+
0055768185559+

0031339427788+
0070372053725+

0017232855757=
2460123244050

Attention Pattern of 6th layer, 1st head
(FIRE, no Scratchpad)

0.2

0.4

0.6

0.8

1.0

(b) 6-layer 8-head model trained with FIRE
but no scratchpad.

Figure 7: Extracted attention matrices from certain attention heads of trained Transformers on an
addition dataset SA(10, 10). We ran forward passes on 1,000 test samples from TA(11, 11) and
obtained average attention matrices. The softmax values below 0.01 are clipped out (black cells). We
compared with the model without Position Coupling nor scratchpad to demonstrate that, without
scratchpad, a model often try to “look at” every relevant positions at once, even without help of
Position Coupling. We put more examples of attention patterns in Appendix E.

Now first look at the attention pattern extracted from a model trained with our scratchpad and bi-level
Position Coupling (Figure 7a). Since the scratchpad takes up about half of the total input sequence
length, we may focus on the bottom half of the heatmap. The attention pattern tells us that, for most
of the NTP step, each attention head focuses on at most a fixed number of previous tokens: one on the
short anti-diagonal line (which corresponds to the token in the query sequence) and one on the long
diagonal line (which corresponds to the token in scratchpad). This observation is strikingly similar to
our theoretical construction of the attention pattern.

On the other hand, let us move on to the attention pattern extracted from a model trained with FIRE
but without scratchpad (Figure 7b). In this case, the length of the response is the same scale as a
single operand, so you may focus on the last few rows of the heatmap. Unlike the previous case, and
as we expected, the eleven anti-diagonal lines in the attention pattern reveal that the model actually
focuses on as many previous token positions as the number of operands every time it performs NTP!
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5 LENGTH GENERALIZATION ON INTEGER MULTIPLICATION TASK

Achieving length generalization for multiplication when both multiplier and multiplicand can vary in
length has long been recognized as a challenging problem. To our knowledge, prior works on the
multiplication task (Duan & Shi, 2023; Fan et al., 2024; Jelassi et al., 2023; McLeish et al., 2024)
have never successfully addressed this issue. In this section, we demonstrate the combination of
Position Coupling and the scratchpad can serve as a powerful solution to this obstacle.

5.1 METHOD: TWO-STAGE SCRATCHPAD & TRI-LEVEL POSITION COUPLING

37
* 925

185 00185
074 00925

+333 34225
34225

(a)

Token : 37*925=581+470+333=58100>52900>52243
PosID1: 320000123412341234000000000000000000
PosID2: 000321111122223333111111222222333333
PosID3: 000000123423453456123456123456123456

(b)

Figure 8: (a) A usual computation of integer multiplication, displaying the decomposition of multipli-
cation task into two stages. (b) An example input sequence with a two-stage scratchpad and tri-level
Position Coupling. The original example was “37×925=34225”: the query is inside a blue box and
the response is inside a red box. All numbers in the scratchpad are reversed; all numbers in the whole
sequence are minimally zero-padded to match the lengths of numbers in the same stage.

Different from the addition tasks, every digit of the first operand interacts with every digit of the
second operand. This makes it difficult to come up with a single-stage cumulative scratchpad. To
achieve strong length generalization in multiplication, we take a step beyond the simple cumulative
scratchpads. We propose a two-stage scratchpad, motivated by an observation that the usual (human)
computation of integer multiplication can be decomposed into two stages: (i) a series of M -digit
× 1-digit multiplications and (ii) a (linearly shifted variant of) multi-operand addition. Figure 8b
illustrates a concrete example of our two-stage scratchpad and tri-level position ID assignment rule,
and Figure 8a explains the intuitive motivation of the scratchpad. Note that we concatenate two stages
of scratchpad with a ‘=’ token, which the model is required to infer as well as other digit/symbol
tokens. For simplicity, let us write two operands as A (with M digits) and B (with N digits).

Stage 1: M -digit×1-digit Multiplications. The first stage of the scratchpad consists of N numbers:
the first number is the product between A and the least significant digit (LSD) of B, the second
number is the product between A and the second LSD of B, and so on. We reverse all the N
numbers, zero-pad them to match the length, and concatenate them in order with ‘+’ tokens in
between. Regarding the position ID assignment, observe that it is natural to (i) couple a k-th LSD
of A with k-th LSDs in every number of the scratchpad stage 1 and to (ii) couple the k-th LSD in
B with every digit in the k-th number of the scratchpad stage 1. This is reflected to PosID1 and
PosID2 in Figure 8b, until the second ‘=’ token.

Stage 2: (Modified) Multi-Operand Addition. The second stage is basically the same as a familiar
multi-operand addition, with a slight difference in that we shift the operands to the left one by one as
we add them sequentially. It can be done by viewing the LSD of the k-th number in stage 1 (i.e., the
leftmost digit, as it is already reversed) as the k-th LSD when solving stage 2. This is semantically
equivalent to converting “581+470+333” in the stage 1 into “58100+04700+00333”. Because
of this, we introduce a totally new level of position ID (level-3) that reflects this change of viewpoint
on digit significance. Luckily, we can reuse the level-2 position IDs since they only distinguish
the numbers. As a result, we expect the model to utilize level-3 and 2 of position IDs to solve the
second stage. In this spirit, the position ID assignment rule is similar to that introduced in Section 4.1,
reflected to PosID2 and PosID3 in Figure 8b. Lastly, we fill in unnecessary slots with 0’s.

5.2 EXPERIMENTAL SETUP

Data Sampling. We denote the training set by SM (n,m), consisting of multiplication problems
where the first operand can have up to n digits and the second operand can have up to m digits.
Specifically, the length of the first operand is uniformly selected from [1 : n]. The first operand is
then randomly generated based on the chosen length. The second operand is chosen in a similar way,
but its length is selected from [1 : m]. We use SM (10, 10) as the baseline training set.
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The test set TM (n,m) is constructed in a similar manner, with the primary difference being that
the lengths of both operands are strictly fixed at n and m. For evaluation, we create a 30 × 30
grid heatmap and assess the performance of the model on the test set TM (i, j) for every entry
(i, j) ∈ [1 : 30]× [1 : 30].

Model and Training. We employ the same baseline architecture as in Section 4 (Refer to Table 3).

5.3 EXPERIMENTAL RESULTS

We evaluate models trained with 3 different position embedding methods, both with and without
the scratchpad, and present the results in Figure 9. For models using Position Coupling without
the scratchpad, we adopted a similar position ID assignment scheme proposed for solving N -
digit × 2-digit multiplication in Cho et al. (2024). When the scratchpad is not applied, which
corresponds to the top 3 plots, none of the models manage to generalize, even on in-distribution
samples. When NoPE or FIRE is employed in conjunction with the scratchpad, the models show
limited length generalization, achieving non-trivial accuracy on multiplication between two 12-digit
integers. However, the combination of Position Coupling and the scratchpad again dominates others.

Interestingly, Position Coupling without the scratchpad shows weak length generalization when one
of the operands is short. This should not come as a surprise, as Cho et al. (2024) already demonstrate
that a model trained with Position Coupling alone can generalize to N -digit × 2-digit multiplication
task: models trained on N ≤ 40 can generalize to N ≥ 100.
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Figure 9: Comparison of methods in the multiplication task. We report exact-match accuracies
for the multiplication task, with results taken as the median over 4 seeds for each method. Each axis
represents the length of each operand. The red box indicates the training distribution, SM (10, 10).

6 CONCLUSION

While length generalization in arithmetic Transformers has drawn a lot of attention, especially on
operand length for the addition, the ability to generalize on operand counts is considered a difficult
challenge and has not been explored yet. To address this challenge, we propose a combination of
two techniques: scratchpad and Position Coupling. We show that a Transformer trained on problems
involving 1–10 digit integers with 1–10 operands can solve addition tasks with up to 30 operands,
each being as long as 30 digits. We also theoretically construct a 1-layer Transformer model capable
of adding exponentially many operands with exponentially long integers when our approach is
applied. Finally, we demonstrate the effectiveness of our approach for length generalization in the
multiplication task, where both operand lengths can vary.

Limitation. One limitation of our approach is that it is only applicable to tasks whose structure is
well-defined and can be effectively encoded by scratchpad and Position Coupling. This leaves us
with two directions for future work. The first direction is to establish a clear principle for employing
scratchpad and Position Coupling when the task structure is known, as the current design choice
heavily relies on intuition. The second is to extend our method to the cases where the task structure is
implicit or even entirely unknown.
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A ADDITIONAL RELATED WORKS

A.1 LENGTH GENERALIZATION IN ARITHMETIC/ALGORITHMIC TRANSFORMERS

Several works (Anil et al., 2022; Deletang et al., 2023; Nogueira et al., 2021) have scrutinized the
Transformer’s lack of ability to length generalize across algorithmic reasoning tasks. Here, we
list the studies investigating and enhancing the length extrapolation capability of Transformers for
arithmetic/algorithmic tasks.

Addition Tasks. We first begin by exploring studies focused on encoder-only Transformers. Ruoss
et al. (2023) introduce Randomized Position Encodings to address the problem of the appearance
of unseen position indices in longer sequences. Additionally, Jelassi et al. (2023) demonstrate that
the RPE method enables generalization to 15-digit addition problems when the model is trained on
problems up to 5 digits.

We next move on to the studies considering decoder-only Transformers. Kazemnejad et al. (2023)
investigate the effect of PE methods on length generalization performance, arguing that NoPE
outperforms several popular PE methods such as ALiBi (Press et al., 2022), RoPE (Su et al., 2024),
APE (Vaswani et al., 2017), and T5’s Relative PE (Raffel et al., 2020). Meanwhile, Shen et al. (2023)
propose the use of a scratchpad and random spacing, which facilitate generalization to 12-digit
problems when trained on up to 10-digit problems. Zhou et al. (2024a) introduce the technique of
“index-hinting”, which inserts appropriate position markers in the sequence. Zhou et al. (2024b)
integrate several existing techniques—FIRE (Li et al., 2024), index-hinting (Zhou et al., 2024a), and
Randomized PE (Ruoss et al., 2023)—achieving generalization to 100-digit problems while training
exclusively on samples with fewer than 40 digits. Furthermore, Cho et al. (2024) and McLeish et al.
(2024) independently introduce Position Coupling (also called “Abacus”), demonstrating state-of-
the-art performance in the literature by generalizing to 100-digit problems after training on samples
with up to 20 digits. We lastly remark there is a recent attempt to solve addition by utilizing a looped
transformer (Fan et al., 2024).

Multiplication Tasks. Most studies on multiplication focus on problems where one operand has a
fixed digit length. Jelassi et al. (2023) investigate N -digit×3-digit multiplication but observe length
generalization only when train set priming is applied, which involves adding a few long samples
in the train set. Cho et al. (2024) present the effectiveness of Position Coupling in N -digit×2-digit
multiplication, achieving generalization to N ≥ 100 after training on samples with N ≤ 40. Fan et al.
(2024) showcase the length generalization capability of looped Transformers to 16-digit problems
from training up to 11 digits, where the numbers are encoded in binary format and the length of the
first operand is up to 2.

McLeish et al. (2024) train their models on multiplication tasks where both operand lengths can
vary. They employ the “Abacus” embedding without padding or a scratchpad, and report near-perfect
in-distribution accuracy but near-zero accuracy on out-of-distribution multiplication problems. A
notable point is the success on in-distribution samples, whereas our results under a similar setting,
shown in Figure 9 (upper rightmost plot), exhibit a completely different trend. We suspect that this
discrepancy arises from differences in their architectural implementation details6 compared to ours,
such as the recurrent layers (i.e., looped Transofrmers), input injection technique, noise injection into
the input embedding, and additional feed-forward layer between the last transformer block and the
linear read-out layer.

There is also a body of literature focused on length generalization in algorithmic tasks. We highlight
a few key contributions. Zhou et al. (2024a) introduce the concept of RASP-L, suggesting the
conjecture of the Transformer’s ability to length-generalize may depend on whether the task can be
expressed in the RASP-L language. Additionally, Awasthi & Gupta (2023) create an auxiliary task
associated with sorting, resulting in substantial length generalization improvements through multitask
learning.

6github.com/mcleish7/arithmetic
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A.2 CHAIN-OF-THOUGHTS PROMPTING

While the main focus of this work is on training the model with a scratchpad, chain-of-thoughts
(CoT) prompting—showing a series of intermediate natural language reasoning steps before reaching
the answer—is also extensively studied to enhance the reasoning ability of Transformers (Kojima
et al., 2022; Suzgun et al., 2022; Wei et al., 2022). Similar to the spirit of scratchpad, CoT allows the
model to decompose complex problems into several intermediate steps, which has demonstrated its
importance in tasks that require arithmetic and reasoning.

In an attempt to understand the success of CoT, Feng et al. (2023) investigate the expressivity of CoT.
They prove that the autoregressive Transformers of constant size can solve basic arithmetic/equation
tasks, while finite-depth Transformer models cannot directly produce correct answers to these tasks
unless their size grows super-polynomially with input length. In arithmetic tasks, their experiments
reveal that models trained with CoT-formatted data can generalize to different numbers of operands,
but the generalization leap is limited to 3 (from 15 to 18).
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B EXPERIMENTAL DETAILS

We modify and customize the codebase from Kazemnejad et al. (2023) for all our experiments.7 This
codebase includes a custom implementation of a decoder-only T5 model (Raffel et al., 2020) built
upon PyTorch (Paszke et al., 2019) and HuggingFace (Wolf et al., 2019), which incorporates several
positional encoding methods.

We implemented a custom RMSNorm module (Zhang & Sennrich, 2019) and various normalization
layer positioning schemes (e.g., PreNorm (Xiong et al., 2020), PostNorm (Vaswani et al., 2017)) to
follow the implementation details outlined by Cho et al. (2024); Zhou et al. (2024b).

Below, we provide detailed settings of experiments.

Table 1: Hyperparameter summary for the parity task (Figure 3).

Hyperparameter Value
Architecture Decoder-only Transformer
Number of Layers 6
Number of Attention Heads 8
Embedding Dimension 512
Dimension per Head 64
Hidden Width of Feed-forward Layer 2048
Activation Function of Feed-forward Layer GEGLU (Shazeer, 2020)
Normalization Layer RMSNorm (Zhang & Sennrich, 2019)
Normalization Layer Position PreNorm and PostNorm
Trainable Parameter Count 25M

Training Steps 50,000
Batch Size 20
Optimizer Adam (Kingma & Ba, 2015)
Learning Rate (LR) 0.00003
LR Warm-up Linear (From 0 to LR), 1% of total steps
LR Cool-down Cosine Decay (From LR to 0.1LR)
Maximum Position ID (max_pos) 101

Training Dataset Size 10,000
Evaluation Dataset Size 10,000 per query length

Device NVIDIA RTX A6000 48GB
Training Time ≤ 3 hours

7github.com/McGill-NLP/length-generalization
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Table 2: Hyperparameter summary for the addition task (Figure 1).

Hyperparameter Value
Architecture Decoder-only Transformer
Number of Layers 6
Number of Attention Heads 8
Embedding Dimension 1024
Dimension per Head 128
Hidden Width of Feed-forward Layer 2048
Activation Function of Feed-forward Layer GEGLU (Shazeer, 2020)
Normalization Layer RMSNorm (Zhang & Sennrich, 2019)
Normalization Layer Position PreNorm and PostNorm
Trainable Parameter Count 63M

Training Steps 50,000
Batch Size 400
Optimizer Adam (Kingma & Ba, 2015)
Learning Rate (LR) 0.00003
LR Warm-up Linear (From 0 to LR), 1% of total steps
LR Cool-down Cosine Decay (From LR to 0.1LR)
Maximum Position ID 1 (max_pos_1) 40
Maximum Position ID 2 (max_pos_2) 40

Training Dataset Size 500,000
Evaluation Dataset Size 1,000 per operand length/count

Device NVIDIA RTX A6000 48GB
Training Time ≤ 12 hours

Table 3: Hyperparameter summary for the multiplication task (Figure 9).

Hyperparameter Value
Architecture Decoder-only Transformer
Number of Layers 6
Number of Attention Heads 8
Embedding Dimension 1024
Dimension per Head 128
Hidden Width of Feed-forward Layer 2048
Activation Function of Feed-forward Layer GEGLU (Shazeer, 2020)
Normalization Layer RMSNorm (Zhang & Sennrich, 2019)
Normalization Layer Position PreNorm and PostNorm
Trainable Parameter Count 63M

Training Steps 50,000
Batch Size 200
Optimizer Adam (Kingma & Ba, 2015)
Learning Rate (LR) 0.00005
LR Warm-up Linear (From 0 to LR), 1% of total steps
LR Cool-down Cosine Decay (From LR to 0.1LR)
Maximum Position ID 1 (max_pos_1) 64
Maximum Position ID 2 (max_pos_2) 32
Maximum Position ID 3 (max_pos_3) 64

Training Dataset Size 500000
Evaluation Dataset Size 1000 per length combination of first/second operands

Device NVIDIA RTX A6000 48GB
Training Time ≤ 12 hours
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C ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide additional experimental results not discussed in the main section.

We first present the results of experiments investigating how changes in model architecture (the
number of layers and attention heads) affect task performance. We explore 12 different configurations.
The heatmaps below represent the performance across different operand numbers and lengths, with
blue regions indicating higher accuracy and red regions indicating lower accuracy.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of Operands

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Le
ng

th
 o

f E
ac

h 
Op

er
an

d

1L2H (6 runs)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of Operands

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Le
ng

th
 o

f E
ac

h 
Op

er
an

d

1L4H (6 runs)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of Operands

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Le
ng

th
 o

f E
ac

h 
Op

er
an

d

1L8H (6 runs)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of Operands

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Le
ng

th
 o

f E
ac

h 
Op

er
an

d

2L2H (6 runs)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of Operands

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Le
ng

th
 o

f E
ac

h 
Op

er
an

d

2L4H (6 runs)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of Operands

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Le
ng

th
 o

f E
ac

h 
Op

er
an

d

2L8H (6 runs)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of Operands

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Le
ng

th
 o

f E
ac

h 
Op

er
an

d

4L2H (6 runs)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of Operands

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Le
ng

th
 o

f E
ac

h 
Op

er
an

d

4L4H (6 runs)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of Operands

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Le
ng

th
 o

f E
ac

h 
Op

er
an

d

4L8H (6 runs)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of Operands

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Le
ng

th
 o

f E
ac

h 
Op

er
an

d

6L2H (6 runs)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of Operands

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Le
ng

th
 o

f E
ac

h 
Op

er
an

d

6L4H (6 runs)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of Operands

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Le
ng

th
 o

f E
ac

h 
Op

er
an

d

6L8H (6 runs)

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

Figure 10: Comparison of architectures in the integer addition task. We report exact-match
accuracies for the addition task, with results taken as the median over 6 seeds for each method. The
x-axis corresponds to the number of operands, and the y-axis indicates the length of operands. The
red box indicates the trained scope SA(10, 10).
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One might be concerned why 1L8H models perform worse than 1L4H models. To address this
concern, we conduct experiments by controlling the total number of head dimensions. In Figure 10,
since we fix the total number of head dimensions within a layer by 1024, each head in 1L4H models
has 256 dimensions while each head in 1L8H models has only 128 dimensions. To make a fair
comparison, we decoupled the embedding dimension from the head dimension, fixing the embedding
dimension by 1024 for this setup only. The results are presented in Figure 11. We observe that the
performance of 1L8H models improves when the dimension per head is increased to 256, while
the performance of 1L4H models degrades when the dimension per head is decreased to 128. We
conclude that the inferior performance of 1L8H models in Figure 10 is due to the reduced dimension
per head. These findings suggest that a larger dimension per head is crucial for achieving strong
performance in shallow models.
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Figure 11: Comparison of head dimensions in the integer addition task. We report exact-match
accuracies for the addition task, with results taken as the median over 8 seeds for each configuration.
The x-axis corresponds to the number of operands, and the y-axis indicates the length of operands.
The red box indicates the trained scope SA(10, 10).

Next, we provide ablation results on varying embedding dimensions. We trained 1L4H models, each
with embedding dimensions of 64, 128, 256, and 512 (with dimensions per head of 16, 32, 64, and
128, respectively). The results are illustrated in Figure 12. We observe that there is a significant
performance gap between these configurations. While models with small embedding dimensions
have sufficient expressive capacity for solving the task (Theorem 4.1), we believe larger embedding
dimensions are crucial for enabling more effective optimization.

We now present the results of an ablation study on the training set size. Our baseline training data
size is 500K, and we vary the size to 20K, 100K, 2M, and 10M. We fix the architecture as a 6-layer
8-head model with an embedding dimension of 1024. The results are illustrated in Figure 13. We
observe that the training set size has no significant impact on the model’s performance.
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Figure 12: Comparison of embedding dimensions in the integer addition task. We report
exact-match accuracies for the addition task, with results taken as the median over 8 seeds for each
configuration. The x-axis corresponds to the number of operands, and the y-axis indicates the length
of operands. The red box indicates the trained scope SA(10, 10).
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Figure 13: Comparison of training set size in the integer addition task. We report exact-match
accuracies for the addition task, with results taken as the median over 8 seeds for each configuration.
The x-axis corresponds to the number of operands, and the y-axis indicates the length of operands.
The red box indicates the trained scope SA(10, 10).

22



Published as a conference paper at ICLR 2025

We lastly investigate the impact of input sequence formatting. We considered three factors: (1)
reversed or plain query, (2) reversed or plain response, and (3) zero-padding or no zero-padding.
We exclude the case where a reversed query and a plain response are used together, resulting in a
total of 6 configurations. Note that our baseline format consists of a plain query, reversed response,
and zero-padding. We fix the architecture as a 6-layer 8-head model with an embedding dimension
of 1024. The results are illustrated in Figure 14. To clarify, the top 3 figures correspond to the
zero-padding setting, while the bottom 3 figures correspond to the no zero-padding setting. From
left to right, the figures represent: plain query with reversed response, reversed query with reversed
response, and plain query with plain response.
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Figure 14: Comparison of the input formats in the integer addition task. We report exact-match
accuracies for the addition task, with results taken as the median over 8 seeds for each configuration.
The x-axis corresponds to the number of operands, and the y-axis indicates the length of operands.
The red box indicates the trained scope SA(10, 10).
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D FORMAL CONSTRUCTION OF MULTI-OPERAND ADDITION TRANSFORMER

In this section, we prove Theorem 4.1 by formally constructing a 1-layer 4-head Transformer model
capable of solving multi-operand addition problems. The framework of the proof mostly follows the
proof by Cho et al. (2024). For the sake of readability, we restate the theorem statement.
Theorem 4.1. With a proper input format, scratchpad, and Position Coupling, there exists a 1-layer
4-head decoder-only Transformer that solves the multi-operand integer addition task involving up
to m operands each with up to n digits. Here, a sufficient choice of the embedding dimension is
d = O(log2(m+ 1) + log2(n+ 1)).

D.1 NOTATION

Let edi represent the i-th standard basis vector of Rd. Define Im as the identity matrix of size m×m.
The vectors 0p and 1p are p-dimensional vectors filled with zeros and ones, respectively. Let 0m×n

denote the m× n zero matrix. For n ∈ N, we use [n] to denote the set {1, ..., n}. For any matrix A,
we use Ai• and A•j to refer to the i-th row and j-th column of A, respectively.

Define an ordered vocabulary V = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9,+,=,→, $). The special token ‘$’
represents both the beginning-of-sequence (BOS) token and the end-of-sequence (EOS) token. While
BOS and EOS tokens do not have to be identical, we use a single symbol for simplicity. Let Vk

represent the k-th element of V .

D.2 ARCHITECTURE

We adopt the same architecture as explained in the appendix of Cho et al. (2024). We direct the reader
to Appendix D of their work for architectural specifications. In summary, we use a decoder-only
Transformer with softmax operation, but omit the normalization layer for simplicity. Note that,
since our construction involves a single-layer model, we omit the superscripts (l) in the parameter
matrices/vectors and the size of dimensions d(l)QK,h and d

(l)
V,h for simplicity.

D.3 INPUT SEQUENCE

We aim to construct a decoder-only Transformer model capable of solving the addition a1 + a2 +
· · ·+ am = b of m operands whose lengths are at most n, where we regard every single digit as a
single token. We employ the same input format illustrated in Figure 4. Now, we describe how to
transform this addition problem into the input sequence I, which will be fed to the Transformer.

We begin by introducing the scratchpad. Let bj :=
∑j

i=1 ai (for ∀j ∈ [m]) and b0 = 0, representing
the cumulative sum up to the j-th operand; thus, bm = b. As in the experimental setup, the scratchpad
contains every intermediate result ({bi}mi=0) that arises during the addition process, with each result
separated by an arrow (→).

Next, we apply zero-padding to every number in {ai}mi=1 and {bi}mi=0 so that they have the equal
length, ℓ, which is determined by the maximum (possible) length among them. We set ℓ = n +
1 + ⌊log10 m⌋ since the result of adding m numbers each with n digits can have a length at most
1 + ⌊log10((10n − 1)m)⌋ ≤ 1 + n+ ⌊log10 m⌋.

Also, we reverse the digits within each number in the response sequence ({bi}mi=0), while keeping
the numbers in the query ({ai}mi=1) in their original order, which is consistent with the experimental
setup.

To recap, the input sequence I can be formally written as σ1σ2 · · ·σN ∈ VN of length N =
(2m+ 1)(ℓ+ 1) consisting of the following parts:

1. BOS token σ1 = ‘$’;
2. i-th operand Ai = σ(i−1)(ℓ+1)+2 · · ·σi(ℓ+1) where σj ∈ {0, . . . , 9} (for i ∈ [m], zero-padded

ai);
3. i-th addition symbol σi(ℓ+1)+1 = ‘+’ (for i ∈ [m− 1]);
4. equality symbol σm(ℓ+1)+1 = ‘=’;
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5. placeholder zeros B0 = σm(ℓ+1)+2 · · ·σ(m+1)(ℓ+1) = 00 · · · 0 (zero-padded b0);

6. i-th arrow symbol σ(m+i)(ℓ+1)+1 = ‘→’ (for i ∈ [m]);

7. i-th (reversed) intermediate step Bi = σ(m+i)(ℓ+1)+2 · · ·σ(m+i+1)(ℓ+1) where σj ∈ {0, . . . , 9}
(for i ∈ [m], reversed & zero-padded bi).

We call σ1 · · ·σm(ℓ+1) by the query sequence, and σm(ℓ+1)+2 · · · by the response sequence. We
note that during the inference process, the response sequence might be incomplete (i.e., N <
(2m+ 1)(ℓ+ 1)), as each digit in these components will be inferred one by one using the next-token
prediction mechanism. However, in this section on formal construction, we focus on the training
setup, where we infer all the digits of the response sequence simultaneously in a single forward pass
via next-token prediction. Specifically, we aim to use an input sequence I = σ1 · · ·σN to produce
an output sequence O = σ′

1 · · ·σ′
N , where σ′

m(ℓ+1)+1 · · ·σ
′
N−1 is identical to σm(ℓ+1)+2 · · ·σN and

σ′
N = ‘$’ (EOS).

We summarize this process with an example. Given an addition problem 57 + 48 + 96 = 201,
the transformed input sequence I becomes $057 + 048 + 096 = 000 → 750 → 501 → 102, with
m = 3, n = 2, ℓ = 3, and N = 28. The goal is to generate an output sequence O that ends with
000 → 750 → 501 → 102$.

D.4 ENCODING FUNCTION

We now define the encoding function, which maps the input sequence I ∈ VN to the initial embedding
matrix X(0) ∈ Rd×N . In this representation, each column corresponds to the embedding vector of an
individual token. The embedding matrix X(0) is constructed by concatenating the token embedding
matrix and the position embedding (PE) matrix. We note that this construction can also be interpreted
as the element-wise sum of these two different embedding matrices.

An example of the embedding matrix is presented in Table 4. The first 19 rows correspond to the
token embedding matrix, while the subsequent (2P1 + 2P2) rows represent the PE matrix. We will
use this example throughout this appendix to visualize our construction with tables.

D.4.1 TOKEN EMBEDDING

The token embedding consists of 19 dimensions, which we will refer to by the following names for
clarity:

1=NUM, 2=IS_BOS, 3=FULL_ONES, 4=PRE_SUM, 5=PRE_CARRY,
6=PRE_ARROW, 7=PRE_EOS, {8,. . . ,17}=SUM, 18=ARROW, and 19=EOS.

To enhance readability, we will refer to each dimension by its corresponding name rather than by its
index.

Initially, the last 16 dimensions are set to zero, while the first three dimensions are filled with their
corresponding values. Below, we explain how the values for NUM, IS_BOS, and FULL_ONES are
determined:

Dimension 1 (NUM). If the token is a digit (0, . . . , 9), we fill the dimension NUM by the token’s
value. Otherwise, for tokens +, =, →, and $, we put zero.

Dimension 2 (IS_BOS). If the token is the BOS token (‘$’), we put 1 to the dimension IS_BOS.
Otherwise, we put zero.

Dimension 3 (FULL_ONES). The dimension FULL_ONES is set to 1 for every token.

D.4.2 COUPLED POSITION IDS AND POSITION EMBEDDING

In this section, we explain how the PE vector is determined for each token. As in our experiment, we
first assign two position IDs p1(k) and p2(k) for each token σk. Then, we map each position ID to a

25



Published as a conference paper at ICLR 2025

Table 4: Example initial encoding. We consider $057 + 048 + 096 = 000 → 750 → 501 → 102
as an input sequence and the position ID offsets are chosen by 4 (for the first PE module) and
2 (for the second PE module). We denote dimensions for PE vectors as POS_1={20,. . . ,P1 +
19}, POS_1_NEXT={P1 + 20,. . . ,2P1 + 19}, POS_2={2P1 + 20,. . . ,2P1 + P2 + 19}, and
POS_2_NEXT={2P1 + P2 + 20,. . . ,2P1 + 2P2 + 19}. The vectors of the form vD

k are defined
in Equation (3). The gray cells will be filled in later.

I $ 0 5 7 + 0 4 8 + 0 9 6 = · · ·
p1(·) 0 7 6 5 4 7 6 5 4 7 6 5 4 · · ·
p2(·) 0 2 2 2 2 3 3 3 3 4 4 4 2 · · ·

1: NUM 0 0 5 7 0 0 4 8 0 0 9 6 0
2: IS_BOS 1 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 1 1 1 1 1 1 1 1 1 1 1 1 1
4: PRE_SUM 0 0 0 0 0 0 0 0 0 0 0 0 0
5: PRE_CARRY 0 0 0 0 0 0 0 0 0 0 0 0 0
6: PRE_ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0
7: PRE_EOS 0 0 0 0 0 0 0 0 0 0 0 0 0
8-17: SUM 010 010 010 010 010 010 010 010 010 010 010 010 010

18: ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0
19: EOS 0 0 0 0 0 0 0 0 0 0 0 0 0
POS_1 0P1 vP1

7 vP1
6 vP1

5 vP1
4 vP1

7 vP1
6 vP1

5 vP1
4 vP1

7 vP1
6 vP1

5 vP1
4

POS_1_NEXT 0P1 vP1
8 vP1

7 vP1
6 vP1

5 vP1
8 vP1

7 vP1
6 vP1

5 vP1
8 vP1

7 vP1
6 vP1

5

POS_2 0P2 vP2
2 vP2

2 vP2
2 vP2

2 vP2
3 vP2

3 vP2
3 vP2

3 vP2
4 vP2

4 vP2
4 vP2

2

POS_2_NEXT 0P2 vP2
3 vP2

3 vP2
3 vP2

3 vP2
4 vP2

4 vP2
4 vP2

4 vP2
5 vP2

5 vP2
5 vP2

3

I 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2
p1(·) 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7
p2(·) 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5

1: NUM 0 0 0 0 7 5 0 0 5 0 1 0 1 0 2
2: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4: PRE_SUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5: PRE_CARRY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6: PRE_ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7: PRE_EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8-17: SUM 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010

18: ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19: EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
POS_1 vP1

5 vP1
6 vP1

7 vP1
4 vP1

5 vP1
6 vP1

7 vP1
4 vP1

5 vP1
6 vP1

7 vP1
4 vP1

5 vP1
6 vP1

7

POS_1_NEXT vP1
6 vP1

7 vP1
8 vP1

5 vP1
6 vP1

7 vP1
8 vP1

5 vP1
6 vP1

7 vP1
8 vP1

5 vP1
6 vP1

7 vP1
8

POS_2 vP2
2 vP2

2 vP2
2 vP2

3 vP2
3 vP2

3 vP2
3 vP2

4 vP2
4 vP2

4 vP2
4 vP2

5 vP2
5 vP2

5 vP2
5

POS_2_NEXT vP2
3 vP2

3 vP2
3 vP2

4 vP2
4 vP2

4 vP2
4 vP2

5 vP2
5 vP2

5 vP2
5 vP2

6 vP2
6 vP2

6 vP2
6

PE vector: from pi(k) we map a 2Pi-dimensional vector (i = 1, 2). We use two different embedding
modules to map position IDs and then concatenate them.

We begin by assigning two position IDs to each token. We introduce two hyperparameters,
max_pos1(≥ ℓ + 1) and max_pos2(≥ m + 1), which set the maximum possible position ID for
the first and the second PE modules, respectively. Then, we select a position offset for each module:
s1 ∈ [max_pos1 − ℓ] and s2 ∈ [max_pos2 −m]. The position IDs, p1(k) from the first PE module
and p2(k) from the second PE module, are assigned to each token σk in the input sequence I as
follows:

p1(k)=


0, k=1, (corresponding to ‘$’ token)
s1+{i(ℓ+1)+1} − k, k=(i−1)(ℓ+1)+2, . . . , i(ℓ+1)+1 for i ∈ [m],

s1−{(m+i−1)(ℓ+1)+1}+k, k=(m+i−1)(ℓ+1)+1, . . . , (m+i)(ℓ+1) for i ∈ [m+1],

(1)
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and

p2(k) =



0, k = 1, (corresponding to ‘$’ token)

s2 +

⌊
k − 2

ℓ+ 1

⌋
, k = 2, . . . ,m(ℓ+ 1),

s2 +

⌊
k −m(ℓ+ 1)− 1

ℓ+ 1

⌋
, k = m(ℓ+ 1) + 1, . . . , (2m+ 1)(ℓ+ 1).

(2)

Due to the complexity of the formal expressions, we encourage readers to refer to the dimensions
POS_1 and POS_2 in Table 4 for concrete examples.

Next, we explain the design of the PE vector for each position ID. We define b
(D,k)
i as the i-th (from

left) digit of D-digit binary representation of k − 1. The vector vD
k (k ∈ [2D]) is defined as:

vD
k =

[
(−1)b

(D,k)
i

]D
i=1

∈ RD. (3)

This can be interpreted as a vertex of D-dimensional hypercube [−1, 1]D. Importantly, for k ̸= l,∥∥vD
k

∥∥2 = D,
〈
vD
k ,vD

l

〉
≤ D − 2 (4)

hold. This property will later be utilized in the construction of the attention layer.

We set a PE vector for the level-1 position ID p1(i) = 0 (indicating a BOS token) as 02P1
. For cases

where p1(i) > 0, the level-1 PE vector is defined as: vP1

p1(i)

vP1

p1(i)+1

 ∈ R2P1 , (5)

but we use vP1
1 instead of vP1

p1(i)+1 when p1(i) = 2P1 .

Similarly, the second PE module is defined such that the PE vector is set to 02P2
if p2(i) = 0;

otherwise, it is defined as:  vP2

p2(i)

vP2

p2(i)+1

 ∈ R2P2 , (6)

but we use vP2
1 instead of vP2

p2(i)+1 when p2(i) = 2P2 .

Recall that the format vD
k can represent 2D distinct directions. So, we can set the hyperparameters

for maximum position IDs as max_pos1 ≤ 2P1 and max_pos2 ≤ 2P2 . Also, recall that ℓ + 1 ≤
max_pos1, m + 1 ≤ max_pos2, and ℓ = n + 1 + ⌊log10 m⌋. Thus, it suffices to choose P1 ≥
log2 (n+ 1 + ⌊log10 m⌋) and P2 ≥ log2(m+ 1). Since d = 2(P1 + P2) + 19, a sufficient choice
of embedding dimension is

d = 2 ⌈log2 (n+ 1 + ⌊log10 m⌋)⌉+ 2 ⌈log2(m+ 1)⌉+ 19

= O (log2(n+ 1) + log2(m+ 1)) .

In the next section, we present the construction of the model and demonstrate its capability to solve
the multiple operand addition problem when the above conditions are met.

D.5 TRANSFORMER BLOCK: CAUSAL ATTENTION LAYER

We now introduce the construction of the Transformer block, which utilizes 4 attention heads. The
output from these heads are recorded to the dimensions PRE_SUM, PRE_CARRY, PRE_ARROW, and
PRE_EOS. The feed-forward layer will then process these 4 dimensions and store the results in
dimensions SUM and EOS. Finally, the linear readout at the final layer uses these outputs to predict
the next token in the sequence.
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D.5.1 ATTENTION HEAD 1: DIGIT-WISE ADDITION WITHOUT CARRIES

The goal of the first attention head is to perform digit-wise addition between two single-digit integers
and store the result in the dimension PRE_SUM. Recall that bj , defined as

∑j
i=1 ai, can be computed

by adding aj to bj−1. This means that to predict a digit in bj , the model needs to attend to two tokens:
the first token (placed in aj) which is in the query sequence, and the second token (placed in bj−1)
which is in the response sequence. Thus, we aim to design the query weight matrix Q1 and the key
weight matrix K1 that generates an attention pattern satisfying this requirement.

Let P = P1 + P2 and recall that d = 2P + 19. Let the dimension of the first attention head be
dQK,1 = P + 1. We define the query matrix Q1 and the key matrix K1 as follows:

Q1 =

 0P1×19 0P1×P1

√
α1IP1

0P1×P2
0P1×P2

0P2×19 0P2×P1
0P2×P1

√
α1IP2

0P2×P2√
α1P (e19FULL_ONES)

⊤ 01×P1
01×P1

01×P2
01×P2

 ∈ RdQK,1×d, (7)

K1 =

 0P1×19
√
α1IP1

0P1×P1
0P1×P2

0P1×P2

0P2×19 0P2×P1 0P2×P1 0P2×P2

√
α1IP2√

α1P (e19IS_BOS)
⊤ 01×P1

01×P1
01×P2

01×P2

 ∈ RdQK,1×d, (8)

where α1 is a scaling factor, which we can choose to be arbitrarily large. Also, let dV,1 = 1 and
define

V1 = 3(edNUM)
⊤ ∈ RdV,1×d, (9)

U1 = edPRE_SUM ∈ Rd×dV,1 . (10)

For better understanding, we explain the structure of Q1X
(0) ∈ RdQK,1×N . The block

√
α1IP1

in the first row of Q1 extracts the dimensions POS_1_NEXT from X(0), and scales them by
√
α1.

Similarly, the block
√
α1IP2

in the second row of Q1 selects the dimensions POS_2 from X(0)

and scales them by
√
α1. Lastly, the block

√
α1P (e19FULL_ONES)

⊤ in the third row of Q1 takes the
dimension FULL_ONES from X(0) and scales it by

√
α1P . Q1X

(0) is a concatenation of these three
matrices. The computation of K1X

(0) follows similar steps, but it operates on the dimensions POS_1,
POS_2_NEXT, and IS_BOS. For U1V1X

(0) ∈ Rd×N , it simply copies the dimension NUM, scales it
by 3, and shifts it to the dimension PRE_SUM. An example of Q1X

(0), K1X
(0), and U1V1X

(0) is
illustrated in Tables 5 to 7.

Table 5: Example of 1√
α1

Q1X
(0), continuing from Table 4.

I $ 0 5 7 + 0 4 8 + 0 9 6 = · · ·
1–P1: 0P1 vP1

8 vP1
7 vP1

6 vP1
5 vP1

8 vP1
7 vP1

6 vP1
5 vP1

8 vP1
7 vP1

6 vP1
5

(P1+1)–P : 0P2 vP2
2 vP2

2 vP2
2 vP2

2 vP2
3 vP2

3 vP2
3 vP2

3 vP2
4 vP2

4 vP2
4 vP2

2

P + 1:
√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

I 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2

1–P1: vP1
6 vP1

7 vP1
8 vP1

5 vP1
6 vP1

7 vP1
8 vP1

5 vP1
6 vP1

7 vP1
8 vP1

5 vP1
6 vP1

7 vP1
8

(P1+1)–P : vP2
2 vP2

2 vP2
2 vP2

3 vP2
3 vP2

3 vP2
3 vP2

4 vP2
4 vP2

4 vP2
4 vP2

5 vP2
5 vP2

5 vP2
5

P + 1:
√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P
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Table 6: Example of 1√
α1

K1X
(0), continuing from Table 4.

I $ 0 5 7 + 0 4 8 + 0 9 6 = · · ·
1–P1: 0P1 vP1

7 vP1
6 vP1

5 vP1
4 vP1

7 vP1
6 vP1

5 vP1
4 vP1

7 vP1
6 vP1

5 vP1
4

(P1+1)–(P1+P2): 0P2 vP2
3 vP2

3 vP2
3 vP2

3 vP2
4 vP2

4 vP2
4 vP2

4 vP2
5 vP2

5 vP2
5 vP2

3

P1 + P2 + 1:
√
P 0 0 0 0 0 0 0 0 0 0 0 0

I 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2

1–P1: vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7

(P1+1)–(P1+P2): vP2
3 vP2

3 vP2
3 vP2

4 vP2
4 vP2

4 vP2
4 vP2

5 vP2
5 vP2

5 vP2
5 vP2

6 vP2
6 vP2

6 vP2
6

P1 + P2 + 1: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7: Example of U1V1X
(0), continuing from Table 4.

I $ 0 5 7 + 0 4 8 + 0 9 6 = · · ·
1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0
2: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0
4: PRE_SUM 0 0 15 21 0 0 12 24 0 0 27 18 0
5: PRE_CARRY 0 0 0 0 0 0 0 0 0 0 0 0 0
6: PRE_ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0
7: PRE_EOS 0 0 0 0 0 0 0 0 0 0 0 0 0
8-17: SUM 010 010 010 010 010 010 010 010 010 010 010 010 010

18: ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0
19: EOS 0 0 0 0 0 0 0 0 0 0 0 0 0
20–end: 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P

I 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2
1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: PRE_SUM 0 0 0 0 21 15 0 0 15 0 3 0 3 0 6
5: PRE_CARRY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6: PRE_ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7: PRE_EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8-17: SUM 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010

18: ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19: EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20–end: 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P

Now, we consider the attention score matrix C1 := (K1X
(0))⊤Q1X

(0) and the attention matrix
A1 := softmax(C1) ∈ RN×N (including the causal masking operation inside softmax). To
understand the structure A1, we first focus on the entry [C1]ij , which can be expressed as following:

[C1]ij =


α1P if i = 1,

α1P else if
[
K1X

(0)
]
•i =

[
Q1X

(0)
]
•j ,

≤ α1(P − 2) otherwise.

In essence, [C1]ij equals α1P if and only if i = 1 or the key vector for σi is identical to the query
vector for σj . Otherwise, [C1]ij is less than α1P . Let xj denote the number of indices i (≤ j) that
satisfy [C1]ij = α1P . This allows that, with sufficiently large α1, we have

[A1]ij =


1/xj if i = 1,

0 else if i > j,

1/xj else if
[
K1X

(0)
]
•i =

[
Q1X

(0)
]
•j ,

0 otherwise.
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The output of the attention layer is computed by multiplying the matrix U1V1X
(0) with the matrix

A1. An example of U1V1X
(0)A1 is illustrated in Table 8.

Table 8: Example of U1V1X
(0)A1, continuing from Table 4. For simplicity, we omit the columns

corresponding to the tokens preceding the equal sign ‘=’, as they do not influence the next-token
prediction in the response.

I = 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2
1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: PRE_SUM 0 0 0 0 7 5 0 0 15 9 0 0 11 9 1 0
5: PRE_CARRY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6: PRE_ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7: PRE_EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8-17: SUM 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010

18: ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19: EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20–end: 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P

To clarify our example, consider the input sequence $057 + 048 + 096 = 000 → 750 → 501 →. At
this stage, the goal of the model is to predict ‘1’ as the next token, which corresponds to the least
significant digit (LSD) of the sum of 6 (the third token of 096) and 5 (the first token of 501). It is
important to note that the query vector for the last arrow token is identical to the key vectors for 6 and
5. This can be easily verified by comparing Table 5 and Table 6. As a result, the dimension PRE_SUM
of U1V1X

(0)A1 for the last arrow token can be obtained by computing 1
3 (0 + 18 + 15) = 11. Here,

the “3” in 1
3 originates from the number of tokens that the last arrow token attends to: BOS, 6, and 5,

and this is the reason why we design the matrix V1 with the scalar 3. The operation of extracting the
LSD from 11 will be handled in the subsequent feed-forward layer.

D.5.2 ATTENTION HEAD 2: CARRY DETECTION

The goal of the second attention head is to fill the dimension PRE_CARRY with the appropriate values.
To illustrate this, consider the partial input sequence $057 + 048 + 096 = 000 → 750 → 501 → 1.
To predict 0 as the next token, the model needs to (1) compute the sum of 9 (the second token of
096) and 0 (the second token of 501), and (2) detect the carry from the previous digit’s sum, which
was 6 + 5. The first attention head handles the first part, by making 1 (the last token of our example
input sequence) attend to 9 and 0. We aim to design the second attention head to handle the second
part. A key observation is that detecting the carry becomes possible when the model attends to 6 and
5, by verifying that 6 + 5− 1 ∈ {9, 10} (see Section E.4.2. of Cho et al. (2024) for more details).
Thus, the second attention head’s goal is to compute 6 + 5 and assign a value of 11 to the dimension
PRE_CARRY of the token 1.

Recall that P = P1 + P2 and d = 2P + 19. Let the dimension of the second attention head be
dQK,2 = P + 1. We define the query matrix Q2 and the key matrix K2 as follows:

Q2 =

 0P1×19
√
α2IP1

0P1×P1
0P1×P2

0P1×P2

0P2×19 0P2×P1
0P2×P1

√
α2IP2

0P2×P2√
α2P (e19FULL_ONES)

⊤ 01×P1
01×P1

01×P2
01×P2

 ∈ RdQK,2×d, (11)

K2 =

 0P1×19
√
α2IP1

0P1×P1
0P1×P2

0P1×P2

0P2×19 0P2×P1
0P2×P1

0P2×P2

√
α2IP2√

α2P (e19IS_BOS)
⊤ 01×P1

01×P1
01×P2

01×P2

 ∈ RdQK,2×d, (12)

where α2 is a scaling factor, which we can choose to be arbitrarily large. Also, let dV,2 = 1 and
define

V2 = 3(edNUM)
⊤ ∈ RdV,2×d, (13)

U2 = edPRE_CARRY ∈ Rd×dV,2 . (14)
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An example of Q2X
(0), K2X

(0), U2V2X
(0), and U2V2X

(0)A2 is illustrated in Tables 9 to 12.
Similar to the first attention head, with sufficiently large α2, the j-th token σj will only attend to the
BOS token and tokens whose key vectors match the query vector of σj . However, the tokens that
σj attends to differ from those in the first attention as the design of the query matrix Q2 and K2 is
slightly modified. By adjusting the placement of

√
α2IP1

and
√
α2IP2

in the Q2 and K2, we can
control which tokens are attended to.

Table 9: Example of 1√
α2

Q2X
(0), continuing from Table 4.

I $ 0 5 7 + 0 4 8 + 0 9 6 = · · ·
1–P1: 0P1 vP1

7 vP1
6 vP1

5 vP1
4 vP1

7 vP1
6 vP1

5 vP1
4 vP1

7 vP1
6 vP1

5 vP1
4

(P1+1)–P : 0P2 vP2
2 vP2

2 vP2
2 vP2

2 vP2
3 vP2

3 vP2
3 vP2

3 vP2
4 vP2

4 vP2
4 vP2

2

P + 1:
√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

I 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2

1–P1: vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7

(P1+1)–P : vP2
2 vP2

2 vP2
2 vP2

3 vP2
3 vP2

3 vP2
3 vP2

4 vP2
4 vP2

4 vP2
4 vP2

5 vP2
5 vP2

5 vP2
5

P + 1:
√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

Table 10: Example of 1√
α2

K2X
(0), continuing from Table 4.

I $ 0 5 7 + 0 4 8 + 0 9 6 = · · ·
1–P1: 0P1 vP1

7 vP1
6 vP1

5 vP1
4 vP1

7 vP1
6 vP1

5 vP1
4 vP1

7 vP1
6 vP1

5 vP1
4

(P1 + 1)–P : 0P2 vP2
3 vP2

3 vP2
3 vP2

3 vP2
4 vP2

4 vP2
4 vP2

4 vP2
5 vP2

5 vP2
5 vP2

3

P + 1:
√
P 0 0 0 0 0 0 0 0 0 0 0 0

I 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2

1–P1: vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7

(P1 + 1)–P : vP2
3 vP2

3 vP2
3 vP2

4 vP2
4 vP2

4 vP2
4 vP2

5 vP2
5 vP2

5 vP2
5 vP2

6 vP2
6 vP2

6 vP2
6

P + 1: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 11: Example of U2V2X
(0), continuing from Table 4.

I $ 0 5 7 + 0 4 8 + 0 9 6 = · · ·
1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0
2: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0
4: PRE_SUM 0 0 0 0 0 0 0 0 0 0 0 0 0
5: PRE_CARRY 0 0 15 21 0 0 12 24 0 0 27 18 0
6: PRE_ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0
7: PRE_EOS 0 0 0 0 0 0 0 0 0 0 0 0 0
8-17: SUM 010 010 010 010 010 010 010 010 010 010 010 010 010

18: ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0
19: EOS 0 0 0 0 0 0 0 0 0 0 0 0 0
20–end: 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P

I 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2
1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: PRE_SUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5: PRE_CARRY 0 0 0 0 21 15 0 0 15 0 3 0 3 0 6
6: PRE_ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7: PRE_EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8-17: SUM 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010

18: ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19: EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20–end: 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P

Table 12: Example of U2V2X
(0)A2, continuing from Table 4. For simplicity, we omit the columns

corresponding to the tokens preceding the equal sign ‘=’, as they do not influence the next-token
prediction in the response.

I = 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2
1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: PRE_SUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5: PRE_CARRY 0 0 0 0 0 7 5 0 0 15 9 0 0 11 9 1
6: PRE_ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7: PRE_EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8-17: SUM 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010

18: ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19: EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20–end: 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P

D.5.3 ATTENTION HEAD 3: ARROW DETECTION

The goal of the third attention head is to fill the dimension PRE_ARROW. We aim to put 1 if the next
token the model has to predict is the arrow (→), and otherwise, we will put strictly smaller values
(below 1/2).

Recall that d = 2P +19. Let the dimension of the first attention head be dQK,3 = P1 +1. We define
the query matrix Q3 and the key matrix K3 as follows:

Q3 =

(
0P1×19 0P1×P1

√
α3IP1

0P1×P2
0P1×P2√

α3P1(e
19
FULL_ONES)

⊤ 01×P1
01×P1

01×P2
01×P2

)
∈ RdQK,3×d, (15)

K3 =

(
0P1×19

√
α3IP1 0P1×P1 0P1×P2 0P1×P2√

α3P1(e
19
IS_BOS)

⊤ 01×P1
01×P1

01×P2
01×P2

)
∈ RdQK,3×d, (16)
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where α3 is a scaling factor, which we can choose to be arbitrarily large. Also, let dV,3 = 1 and
define

V1 = (edIS_BOS)
⊤ ∈ RdV,3×d, (17)

U1 = edPRE_ARROW ∈ Rd×dV,3 . (18)

An example of Q3X
(0), K3X

(0), U3V3X
(0), and U3V3X

(0)A3 is illustrated in Tables 13 to 16.
Similar to the first and the second attention head, with sufficiently large α3, the j-token σj will only
attend to the BOS token and tokens whose key vectors match the query vector of σj .

To enhance understanding, consider two input sequences I1 = $057 + 048 + 096 = 000 → 750 and
I2 = $057 + 048 + 096 = 000 → 75. We first analyze I1. By comparing Table 13 and Table 14,
we can observe that the token 0 (the last token in 750) only attends to the BOS token. Therefore, the
dimension PRE_ARROW of the token 0 will be set to 1 in the matrix U3V3X

(0)A3. Next, for I2, we
can see that the token 5 (the second token in 750) attends to the BOS token and four other tokens (0
from 057, 0 from 048, 0 from 096, 0 from 000). As a result, the dimension PRE_ARROW of the token
5 will be filled by 1/5, where the denominator 5 comes from the softmax operation.

Consequently, the model can decide to predict the arrow (→) as the next token if the dimension
PRE_ARROW in the matrix U3V3X

(0)A3 of the last token of the given input sequence is equal to 1.
Otherwise, for the case where the model should not predict the arrow as the next token, PRE_ARROW
is set to the value less than 1/2.

Table 13: Example of 1√
α3

Q3X
(0), continuing from Table 4.

I $ 0 5 7 + 0 4 8 + 0 9 6 = · · ·
1–P1: 0P1 vP1

8 vP1
7 vP1

6 vP1
5 vP1

8 vP1
7 vP1

6 vP1
5 vP1

8 vP1
7 vP1

6 vP1
5

P1 + 1:
√
P1

√
P1

√
P1

√
P1

√
P1

√
P1

√
P1

√
P1

√
P1

√
P1

√
P1

√
P1

√
P1

I 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2

1–P1: vP1
6 vP1

7 vP1
8 vP1

5 vP1
6 vP1

7 vP1
8 vP1

5 vP1
6 vP1

7 vP1
8 vP1

5 vP1
6 vP1

7 vP1
8

P1 + 1:
√
P1

√
P1

√
P1

√
P1

√
P1

√
P1

√
P1

√
P1

√
P1

√
P1

√
P1

√
P1

√
P1

√
P1

√
P1

Table 14: Example of 1√
α3

K3X
(0), continuing from Table 4.

I $ 0 5 7 + 0 4 8 + 0 9 6 = · · ·
1–P1: 0P1 vP1

7 vP1
6 vP1

5 vP1
4 vP1

7 vP1
6 vP1

5 vP1
4 vP1

7 vP1
6 vP1

5 vP1
4

P1 + 1:
√
P1 0 0 0 0 0 0 0 0 0 0 0 0

I 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2

1–P1: vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7

P1 + 1: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 15: Example of U3V3X
(0), continuing from Table 4.

I $ 0 5 7 + 0 4 8 + 0 9 6 = · · ·
1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0
2: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0
4: PRE_SUM 0 0 0 0 0 0 0 0 0 0 0 0 0
5: PRE_CARRY 0 0 0 0 0 0 0 0 0 0 0 0 0
6: PRE_ARROW 1 0 0 0 0 0 0 0 0 0 0 0 0
7: PRE_EOS 0 0 0 0 0 0 0 0 0 0 0 0 0
8-17: SUM 010 010 010 010 010 010 010 010 010 010 010 010 010

18: ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0
19: EOS 0 0 0 0 0 0 0 0 0 0 0 0 0
20–end: 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P

I 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2
1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: PRE_SUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5: PRE_CARRY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6: PRE_ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7: PRE_EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8-17: SUM 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010

18: ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19: EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20–end: 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P

Table 16: Example of U3V3X
(0)A3, continuing from Table 4. For simplicity, we omit the columns

corresponding to the tokens preceding the equal sign ‘=’, as they do not influence the next-token
prediction in the response.

I = 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2
1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: PRE_SUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5: PRE_CARRY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6: PRE_ARROW 1/4 1/4 1/4 1 1/5 1/5 1/5 1 1/6 1/6 1/6 1 1/7 1/7 1/7 1
7: PRE_EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8-17: SUM 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010

18: ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19: EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20–end: 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P

D.5.4 ATTENTION HEAD 4: EOS DETECTION

The goal of the fourth attention head is to fill the dimension PRE_EOS. We aim to put 1/2 if the next
token the model has to predict is the EOS token.

Recall that P = P1 + P2 and d = 2P + 19. Let the dimension of the second attention head be
dQK,4 = P + 1. We define the query matrix Q4 and the key matrix K4 as follows:

Q4 =

 0P1×19
√
α4IP1 0P1×P1 0P1×P2 0P1×P2

0P2×19 0P2×P1 0P2×P1

√
α4IP2 0P2×P2√

α4P (e19FULL_ONES)
⊤ 01×P1

01×P1
01×P2

01×P2

 ∈ RdQK,4×d, (19)

K4 =

 0P1×19
√
α4IP1 0P1×P1 0P1×P2 0P1×P2

0P2×19 0P2×P1 0P2×P1

√
α4IP2

0P2×P2√
α4P (e19IS_BOS)

⊤ 01×P1
01×P1

01×P2
01×P2

 ∈ RdQK,4×d. (20)

34



Published as a conference paper at ICLR 2025

where α4 is a scaling factor, which we can choose to be arbitrarily large. Also, let dV,4 = 1 and
define

V4 = (edIS_BOS)
⊤ ∈ RdV,4×d, (21)

U4 = edPRE_EOS ∈ Rd×dV,4 . (22)

An example of Q4X
(0), K4X

(0), U4V4X
(0), and U4V4X

(0)A4 is illustrated in Tables 17 to 20.
Like the previous attention heads, with sufficiently large α4, the j-token σj will only attend to the
BOS token and tokens whose key vectors match the query vector of σj .

As mentioned earlier, the fourth head aims to fill 1/2 in the dimension PRE_EOS if the model has
to predict the EOS token as the next token. However, it might not be very clear that such a token is
not uniquely defined, as multiple tokens in the matrix U4V4X

(0)A4 can have their PRE_EOS entry
filled with 1/2, as illustrated in Table 20. To clarify, we note that the final decision regarding
the EOS token is made by combining the outputs from both the third and the fourth attention
head (readers can check this in the subsequent feed-forward layer construction). This approach
enables the model to correctly determine whether the next token should be the EOS token or not, as
the token with PRE_ARROW and PRE_EOS set to 1 and 1/2 is uniquely identified. We also note that
PRE_EOS can only be either 1/2 or 1/3, which will be utilized in the feed-forward layer construction.

Table 17: Example of 1√
α4

Q4X
(0), continuing from Table 4.

I $ 0 5 7 + 0 4 8 + 0 9 6 = · · ·
1–P1: 0P1 vP1

7 vP1
6 vP1

5 vP1
4 vP1

7 vP1
6 vP1

5 vP1
4 vP1

7 vP1
6 vP1

5 vP1
4

(P1 + 1)–P : 0P2 vP2
2 vP2

2 vP2
2 vP2

2 vP2
3 vP2

3 vP2
3 vP2

3 vP2
4 vP2

4 vP2
4 vP2

2

P + 1:
√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

I 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2

1–P1: vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7

(P1 + 1)–P : vP2
2 vP2

2 vP2
2 vP2

3 vP2
3 vP2

3 vP2
3 vP2

4 vP2
4 vP2

4 vP2
4 vP2

5 vP2
5 vP2

5 vP2
5

P + 1:
√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

√
P

Table 18: Example of 1√
α4

K4X
(0), continuing from Table 4.

I $ 0 5 7 + 0 4 8 + 0 9 6 = · · ·
1–P1: 0P1 vP1

7 vP1
6 vP1

5 vP1
4 vP1

7 vP1
6 vP1

5 vP1
4 vP1

7 vP1
6 vP1

5 vP1
4

(P1 + 1)–P : 0P2 vP2
2 vP2

2 vP2
2 vP2

2 vP2
3 vP2

3 vP2
3 vP2

3 vP2
4 vP2

4 vP2
4 vP2

2

P + 1:
√
P 0 0 0 0 0 0 0 0 0 0 0 0

I 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2

1–P1: vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7

(P1 + 1)–P : vP2
2 vP2

2 vP2
2 vP2

3 vP2
3 vP2

3 vP2
3 vP2

4 vP2
4 vP2

4 vP2
4 vP2

5 vP2
5 vP2

5 vP2
5

P + 1: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 19: Example of U4V4X
(0), continuing from Table 4. For simplicity, we omit the columns

corresponding to the tokens preceding the equal sign ‘=’, as they do not influence the next-token
prediction in the response.

I $ 0 5 7 + 0 4 8 + 0 9 6 = · · ·
1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0
2: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0
4: PRE_SUM 0 0 0 0 0 0 0 0 0 0 0 0 0
5: PRE_CARRY 0 0 0 0 0 0 0 0 0 0 0 0 0
6: PRE_ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0
7: PRE_EOS 1 0 0 0 0 0 0 0 0 0 0 0 0
8-17: SUM 010 010 010 010 010 010 010 010 010 010 010 010 010

18: ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0
19: EOS 0 0 0 0 0 0 0 0 0 0 0 0 0
20–end: 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P

I 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2
1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: PRE_SUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5: PRE_CARRY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6: PRE_ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7: PRE_EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8-17: SUM 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010

18: ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19: EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20–end: 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P

Table 20: Example of U4V4X
(0)A4, continuing from Table 4. For simplicity, we omit the columns

corresponding to the tokens preceding the equal sign ‘=’, as they do not influence the next-token
prediction in the response.

I = 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2
1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: PRE_SUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5: PRE_CARRY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6: PRE_ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7: PRE_EOS 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/2 1/3 1/3 1/3 1/2 1/2 1/2 1/2
8-17: SUM 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010

18: ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19: EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20–end: 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P

D.5.5 RESIDUAL CONNECTION

We now consider the residual connection. The output of the attention layer can be expressed as
follows:

Y (1) = X(0) +
∑

h∈{1,2,3,4}

UhVhX
(0)Ah (23)

One can observe that the dimensions PRE_SUM, PRE_CARRY, PRE_ARROW, and PRE_EOS in X(0)

are empty, whereas these same dimensions in
∑

h∈{1,2,3,4} UhVhX
(0)Ah contain non-empty values.

Thus, the residual connection effectively “fills in the blanks” in the input embedding matrix. An
example of the output of residual connection is presented in Table 21. Again, we note that the
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error from the softmax operation can be made negligible by setting the scalars α1, α2, α3, and α4

sufficiently large.

Table 21: Example output of residual connection, Y (1), continuing from Tables 4, 8, 12, 16 and 20.
The orange rows correspond to the values computed through the attention layer. We omit the columns
corresponding to the tokens preceding the equal sign ‘=’, as they do not influence the next-token
prediction in the response. The gray rows will be filled during the subsequent feed-forward layer.

I = 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2
1: NUM 0 0 0 0 0 7 5 0 0 5 0 1 0 1 0 2
2: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4: PRE_SUM 0 0 0 0 7 5 0 0 15 9 0 0 11 9 1 0
5: PRE_CARRY 0 0 0 0 0 7 5 0 0 15 9 0 0 11 9 1
6: PRE_ARROW 1/4 1/4 1/4 1 1/5 1/5 1/5 1 1/6 1/6 1/6 1 1/7 1/7 1/7 1
7: PRE_EOS 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/2 1/3 1/3 1/3 1/2 1/2 1/2 1/2
8-17: SUM 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010

18: ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19: EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
POS_1 vP1

4 vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7

POS_1_NEXT vP1
5 vP1

6 vP1
7 vP1

8 vP1
5 vP1

6 vP1
7 vP1

8 vP1
5 vP1

6 vP1
7 vP1

8 vP1
5 vP1

6 vP1
7 vP1

8

POS_2 vP2
2 vP2

2 vP2
2 vP2

2 vP2
3 vP2

3 vP2
3 vP2

3 vP2
4 vP2

4 vP2
4 vP2

4 vP2
5 vP2

5 vP2
5 vP2

5

POS_2_NEXT vP2
3 vP2

3 vP2
3 vP2

3 vP2
4 vP2

4 vP2
4 vP2

4 vP2
5 vP2

5 vP2
5 vP2

5 vP2
6 vP2

6 vP2
6 vP2

6

D.6 TRANSFORMER BLOCK: TOKEN-WISE FEED-FORWARD LAYER

The goal of the feed-forward layer is to fill the dimensions SUM, ARROW, and EOS. While the
attention layer enables interactions between different tokens, the feed-forward layer operates solely
on the dimensions within each token. After processing, SUM specifies the number the model will
predict as the next token, while ARROW and EOS serve as flags of whether the next token should be
an arrow (→) or the EOS token ($), respectively. Based on the output of the feed-forward layer, the
next-token prediction is carried out in a subsequent linear readout process.

We will construct 3 one-hidden-layer ReLU networks (FF11, FF21, FF31) that take inputs from dimensions
1 to 7. Each network will handle a specific output: SUM (8–17), ARROW (18), and EOS (19),
respectively. The goals of each network are as follows:

• FF11: If the model has to predict a digit (let’s say k ∈ {0, 1, . . . , 9}), it assigns the value of 1 to the
dimension 8 + k, which is the (k+ 1)-th dimension of SUM, while setting all other dimensions in
SUM to 0.

• FF21: If the model has to predict the arrow (→) as the next token, set ARROW by 1.

• FF31: If the model has to predict the EOS token as the next token, set EOS by 1.

By combining these three sub-networks, we can construct a single one-hidden-layer ReLU network
FF1, that takes inputs from dimensions 1 to 7 and outputs the proper values at dimensions 8 to 19.
We provide our example in Table 22.

D.6.1 SUBNETWORK 1: CONSTRUCTION FOR SUM (DIMENSION 8–17)

For FF11, we can apply the construction provided in Section E.5.1 of Cho et al. (2024). Below, we
provide an overview of their approach, and refer readers to Cho et al. (2024) for the underlying
principles.

Since the feed-forward layer processes tokens individually, we denote each column vector of Y (1) as
x ∈ Rd in a unified manner. We first define a linear function g : Rd → R as:

g(x) := xPRE_SUM +
xPRE_CARRY − xNUM

10
+ 0.21.
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Using g, we construct a one-hidden-layer ReLU network fk : R → R (k = 0, 1, . . . , 9) defined as

fk(x) = 2
[
ϕ(x− (k − 0.5))− ϕ(x− k)− ϕ(x− (k + 0.5)) + ϕ(x− (k + 1))

+ ϕ(x− (k + 9.5))− ϕ(x− (k + 10))− ϕ(x− (k + 10.5)) + ϕ(x− (k + 11))
]
.

Now, we construct FF11 as[
FF11(x)

]
SUM

= [f0 (g (x)) · · · f9 (g (x))]
⊤
.

We note that the construction of g slightly differs from the original formulation in Cho et al. (2024),
due to the difference in how value is stored in the PRE_CARRY. Specifically, we store the sum of digits
at the (previous) same significance level, whereas Cho et al. (2024) stores the result of additional
summation of the value in NUM to the sum of digits.

Intuitively, FF11 is designed to output a one-hot vector that acts as a flag indicating the digit which
the model has to predict as the next token. The difference between the value in the PRE_CARRY and
NUM takes a role of detecting whether a carry occurs from the previous digit, while fk identifies
whether x corresponds to k or k + 10. Certain constants, such as 0.21 and 0.5, are chosen to manage
numerical errors.

D.6.2 SUBNETWORK 2: CONSTRUCTION FOR ARROW (DIMENSION 18)

We will construct a subnetwork FF21 : Rd → Rd that outputs 1 in the dimension ARROW if the
dimension PRE_ARROW is set to 1; otherwise, outputs 0. As PRE_ARROW can have a value less than
1/2 if it is not 1, this can be easily achieved by constructing FF21 as

[FF21(x)]ARROW = 2ϕ(xPRE_ARROW − 1/2),

where x represents each column vector of Y (1).

D.6.3 SUBNETWORK 3: CONSTRUCTION FOR EOS (DIMENSION 19)

We will construct a subnetwork FF31 : Rd → Rd that outputs 1 in the dimension EOS if the dimension
PRE_ARROW is set to 1 and PRE_EOS is set to 1/2. We construct FF31 as

[FF31(x)]EOS := 2ϕ(xPRE_ARROW − 1/2) + 6ϕ(xPRE_EOS − 1/3)− 1,

where x represents each column vector of Y (1). Note that PRE_ARROW can take values of either 1
or less than 1/2, and PRE_EOS can be either 1/2 or 1/3. Therefore, the output of FF31 equals 1 only
when the dimension PRE_ARROW is set to 1 and PRE_EOS is set to 1/2. Importantly, this condition
uniquely identifies the token as the most significant digit of bm.

Table 22: Example of the output of the feed-forward layer. The yellow rows represent the values that
are generated during the feed-forward operation. We omit the columns corresponding to the tokens
preceding the equal token ‘=’, as they do not influence the next-token prediction.

I = 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2
1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: PRE_SUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5: PRE_CARRY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6: PRE_ARROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7: PRE_EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8-17: SUM e10

1 e10
1 e10

1 e10
1 e10

8 e10
6 e10

1 e10
1 e10

6 e10
1 e10

2 e10
1 e10

2 e10
1 e10

3 e10
1

18: ARROW 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
19: EOS 0 -1 -1 0 -1 -1 -1 0 -1 -1 -1 0 0 0 0 1
20–end: 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P
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D.6.4 RESIDUAL CONNECTION

Similar to the residual connection applied after the attention layer, the residual connection following
the feed-forward layer “fills in the blanks” of the matrix Y (1) with the output of each subnetwork as

X(1) = Y (1) + FF1(Y
(1)).

The example of X(1) is illustrated in Table 23.

Table 23: Example of after applying the residual connection, X(1), continuing from Table 22.

I = 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2
1: NUM 0 0 0 0 0 7 5 0 0 5 0 1 0 1 0 2
2: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4: PRE_SUM 0 0 0 0 7 5 0 0 15 9 0 0 11 9 1 0
5: PRE_CARRY 0 0 0 0 0 7 5 0 0 15 9 0 0 11 9 1
6: PRE_ARROW 1/4 1/4 1/4 1 1/5 1/5 1/5 1 1/6 1/6 1/6 1 1/7 1/7 1/7 1
7: PRE_EOS 1/2 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/2 1/2 1/2 1/2
8-17: SUM e10

1 e10
1 e10

1 e10
1 e10

8 e10
6 e10

1 e10
1 e10

6 e10
1 e10

2 e10
1 e10

2 e10
1 e10

3 e10
1

18: ARROW 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
19: EOS 0 -1 -1 0 -1 -1 -1 0 -1 -1 -1 0 0 0 0 1
POS_1 vP1

4 vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7 vP1

4 vP1
5 vP1

6 vP1
7

POS_1_NEXT vP1
5 vP1

6 vP1
7 vP1

8 vP1
5 vP1

6 vP1
7 vP1

8 vP1
5 vP1

6 vP1
7 vP1

8 vP1
5 vP1

6 vP1
7 vP1

8

POS_2 vP2
2 vP2

2 vP2
2 vP2

2 vP2
3 vP2

3 vP2
3 vP2

3 vP2
4 vP2

4 vP2
4 vP2

4 vP2
5 vP2

5 vP2
5 vP2

5

POS_2_NEXT vP2
3 vP2

3 vP2
3 vP2

3 vP2
4 vP2

4 vP2
4 vP2

4 vP2
5 vP2

5 vP2
5 vP2

5 vP2
6 vP2

6 vP2
6 vP2

6

D.7 DECODING FUNCTION

The final step is decoding: the model decides which token to predict as the next token based on the
embedding matrix. Specifically, with a weight matrix Wout ∈ R|V|×d, the model first compute the
multiplication between Wout ∈ R|V|×d and X(1). Then, the model takes a (token-wise) arg-max
operation for greedy decoding. Mathematically, the next-prediction at i-th token σi can be written as
follows:

ki := argmax
k∈[|V|]

{
ok : WoutX

(1)
•i =

[
o1 · · · o|V|

]⊤}
. (24)

The design of the weight matrix Wout ∈ R|V|×d is illustrated in Table 24, and the example of the
matrix WoutX

(1)
1 and the output sequence is presented in Tables 25 and 26, respectively.

Table 24: The transposed weight matrix W⊤
out of the linear readout in decoding function.

V 0 1 2 3 4 5 6 7 8 9 + = → $

1–7: NUM-PRE_EOS 07 07 07 07 07 07 07 07 07 07 07 07 07 07

8: SUM1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
9: SUM2 0 1 0 0 0 0 0 0 0 0 0 0 0 0
10: SUM3 0 0 1 0 0 0 0 0 0 0 0 0 0 0
11: SUM4 0 0 0 1 0 0 0 0 0 0 0 0 0 0
12: SUM5 0 0 0 0 1 0 0 0 0 0 0 0 0 0
13: SUM6 0 0 0 0 0 1 0 0 0 0 0 0 0 0
14: SUM7 0 0 0 0 0 0 1 0 0 0 0 0 0 0
15: SUM8 0 0 0 0 0 0 0 1 0 0 0 0 0 0
16: SUM9 0 0 0 0 0 0 0 0 1 0 0 0 0 0
17: SUM10 0 0 0 0 0 0 0 0 0 1 0 0 0 0
18: ARROW 0 0 0 0 0 0 0 0 0 0 0 0 10 0
19: EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 100
20–end: POSITIONS 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P
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Table 25: Example output of linear readout, WoutX
(1), continuing from Tables 23 and 24. The

yellow cells represent the maximum value of each column.

I = 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2
0 1 1 1 1 0 0 1 1 0 1 0 1 0 1 0 1
1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
→ 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10
$ 0 -100 -100 0 -100 -100 -100 0 -100 -100 -100 0 0 0 0 100

Table 26: Example output sequence O, continuing from Table 25.

I = 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2
O 0 0 0 → 7 5 0 → 5 0 1 → 1 0 2 $
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E MORE ATTENTION PATTERNS OF TRAINED TRANSFORMERS

Continuing from the discussion in Section 4.4 on the attention patterns due to the (non-)existence of
scratchpad, we showcase more examples of the attention matrices softmax(QK⊤ +Λ) of actually
trained Transformers (where Λ is a causal mask).

E.1 ATTENTION PATTERNS WITH SCRATCHPAD

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=0000000000000>4524517550200>2320682551800>1505037481310>5441051604120>7293204862320>8879611023620>3187860179230>2733788745830>0611038186140>5884530917840>2460123244050

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=0000000000000>4524517550200>2320682551800>1505037481310>5441051604120>7293204862320>8879611023620>3187860179230>2733788745830>0611038186140>5884530917840>2460123244050

Attention Pattern of layer 6, head 3
(NoPE + Scratchpad)

0.2

0.4

0.6

0.8

1.0

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=0000000000000>4524517550200>2320682551800>1505037481310>5441051604120>7293204862320>8879611023620>3187860179230>2733788745830>0611038186140>5884530917840>2460123244050

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=0000000000000>4524517550200>2320682551800>1505037481310>5441051604120>7293204862320>8879611023620>3187860179230>2733788745830>0611038186140>5884530917840>2460123244050

Attention Pattern of layer 6, head 5
(NoPE + Scratchpad)

0.2

0.4

0.6

0.8

1.0

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=0000000000000>4524517550200>2320682551800>1505037481310>5441051604120>7293204862320>8879611023620>3187860179230>2733788745830>0611038186140>5884530917840>2460123244050

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=0000000000000>4524517550200>2320682551800>1505037481310>5441051604120>7293204862320>8879611023620>3187860179230>2733788745830>0611038186140>5884530917840>2460123244050

Attention Pattern of layer 6, head 6
(NoPE + Scratchpad)

0.2

0.4

0.6

0.8

1.0

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=0000000000000>4524517550200>2320682551800>1505037481310>5441051604120>7293204862320>8879611023620>3187860179230>2733788745830>0611038186140>5884530917840>2460123244050

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=0000000000000>4524517550200>2320682551800>1505037481310>5441051604120>7293204862320>8879611023620>3187860179230>2733788745830>0611038186140>5884530917840>2460123244050

Attention Pattern of layer 6, head 8
(NoPE + Scratchpad)
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1.0

Figure 15: Some attention patterns of 6-layer 8-head decoder-only Transformers trained with NoPE
and using the scratchpad.
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$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=0000000000000>4524517550200>2320682551800>1505037481310>5441051604120>7293204862320>8879611023620>3187860179230>2733788745830>0611038186140>5884530917840>2460123244050

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=0000000000000>4524517550200>2320682551800>1505037481310>5441051604120>7293204862320>8879611023620>3187860179230>2733788745830>0611038186140>5884530917840>2460123244050
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$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=0000000000000>4524517550200>2320682551800>1505037481310>5441051604120>7293204862320>8879611023620>3187860179230>2733788745830>0611038186140>5884530917840>2460123244050

$0020557154254+0060995705978+0050294444819+0082214196394+0018622522482+0030517145861+0066509518025+0055768185559+0031339427788+0070372053725+0017232855757=0000000000000>4524517550200>2320682551800>1505037481310>5441051604120>7293204862320>8879611023620>3187860179230>2733788745830>0611038186140>5884530917840>2460123244050

Attention Pattern of layer 6, head 5
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Figure 16: Some attention patterns of 6-layer 8-head decoder-only Transformers trained with FIRE
and using the scratchpad.
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Figure 17: Some attention patterns of 6-layer 8-head decoder-only Transformers trained with bi-level
Position Coupling and using the scratchpad.
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E.2 ATTENTION PATTERNS WITHOUT SCRATCHPAD
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Figure 18: Some attention patterns of 6-layer 8-head decoder-only Transformers trained with NoPE
but not using the scratchpad.
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Figure 19: Some attention patterns of 6-layer 8-head decoder-only Transformers trained with FIRE
but not using the scratchpad.
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Figure 20: Some attention patterns of 6-layer 8-head decoder-only Transformers trained with (single-
level) Position Coupling but not using the scratchpad.
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