
Supplementary Materials for the Submission:
Trust Your Robots! Predictive Uncertainty Estimation
of Neural Networks with Sparse Gaussian Processes

Jongseok Lee1,2 Jianxiang Feng1,3 Matthias Humt1,3 Marcus G. Müller1,4 Rudolph Triebel1,3
1Institute of Robotics and Mechatronics, German Aerospace Center (DLR)

2High Performance Humanoid Technologies, Karlsruhe Institute of Technology (KIT)
3Chair of Computer Vision and Artificial Intelligence, Technical University of Munich (TUM)

4Autonomous Systems Laboratory, ETH Zürich (ETHZ)

Abstract: This document is a supplementary material for the paper titled "Trust
Your Robots! Predictive Uncertainty Estimation of Neural Networks with Sparse
Gaussian Processes" [1]. This supplementary document provides (a) background
materials, (b) derivation of theory and proofs (supporting the claims of the paper),
(c) algorithmic overview, (d) implementation details of the experiments, and (e)
further discussions and limitations of the method.
Video: https://www.youtube.com/watch?v=vu2TnDEqDRk
Code: https://github.com/DLR-RM/moegplib

Keywords: Robotic Introspection, Bayesian Deep Learning, Gaussian Processes

1 Overview

This document is the appendix to the submission "Trust Your Robots! Predictive Uncertainty
Estimation of Neural Networks with Sparse Gaussian Processes". To recap the main paper, we focus
on the problem of uncertainty estimation in deep neural network (DNN) predictions for robotic
systems. As the robots are real-time systems with limited computations on-board (e.g. a Micro Aerial
Vehicle - MAV), we aim to provide a solution, which is (i) sampling-free, i.e. a method that do not
require combining several predictions of DNNs for a single test input, and (ii) improve the reliability
of uncertainty estimates using the formulation of Gaussian Processes (GPs) with the Neural Tangent
Kernel (NTK). To this end, we propose to combine DNNs with scalable GPs for the quantification of
the predictive uncertainty in DNN predictions.

An overview of this document is as follows.

Background (section 2): Our submission builds on several concepts from different sub-fields of
machine learning and robotics. These include Bayesian Neural Networks (section 2.1), Gaussian
processes (section 2.2), the kernel methods for clustering (section 2.4), active learning (section 2.3)
and model compression (section 2.5). For the interested readers, we provide a short background
section.

Derivations of Theory and Proofs (section 3): In the main paper, we have briefly outlined the theory
behind our approach - DNNs can be cast as a mixtures of Gaussian Process experts (MoE-GPs). In
sections 3.1, 3.2 and 3.3, we provide our derivations, results, and their discussions, which constitute
the main theoretic contributions of the paper. Meanwhile, sections 3.4 and 3.5 also describe some
examples, on how the Neural Linear Models (NLMs) and their equivalent GPs can estimate the
predictive uncertainty of neural networks.

Algorithmic overview (section 4): We provide both the learning and the prediction algorithms for
an overview, which helps to understand the proposed methodology.

Implementation Details (section 5): We provide the implementation details about our experiments.
Notably, the implementation details of the baselines are outlined in sections 5.1 and 5.2. We also

5th Conference on Robot Learning (CoRL 2021), London, UK.

https://www.youtube.com/watch?v=vu2TnDEqDRk
https://github.com/DLR-RM/moegplib

discuss about the pitfalls of the used measure - the Negative Log Likelihood (NLL). Then, we describe
per experiments, the implementation details and additional results of the proposed method.

Discussions and Limitations (section 6): In our real-world experiments with a MAV and a Jetson
TX2, we find several interesting points for discussion, and also limitations of our approach. Section 6
outlines these, and further discuss the potential future directions of research.

For the appendix to be self-contained, we re-introduce the notations and some of the concepts from
the main paper. The code and the video are further provided as supplementary materials.

2 Background

In this section, we introduce several related concepts to our work. As a background material, we
provide a short recap on the related concepts of machine learning and robotics.

2.1 Bayesian Neural Networks

Bayesian framework of a Neural Network (so called Bayesian Neural Network [2]) offers proba-
bilistic interpretation of a DNN by inferring a distribution over the models weights or parameters.
In other words, given an input-target pair (x,y) the posterior distribution over the space of param-
eters p(θ|x,y), which represents the model’s uncertainty, are being modeled by assuming a prior
distribution over the parameters p(θ):

p(θ|x,y) =
p(y|x,θ)p(θ)

p(y|x,θ)
. (1)

We note that equation 1 is an application of Bayes rule. Also, in Bayesian Neural Networks, a DNN is
represented as probability distributions p(θ|x,y) as oppose to the single, most likely set of parameters
(called the point estimates). The normalization constant in equation 1 is called the model evidence
p(y|θ). Typically conjugate priors do not exist for complex models such as DNNs. This is due to the
non-linearity of DNNs with respect to the parameters. The integral of the model evidence is also not
computational tractable as the size of the data and number of parameters grows:

p(y|x) =

∫
p(y|x,θ)p(θ)dθ. (2)

To tackle the intractability, several approximate Bayesian inference methods such as variational
inference, sampling methods and Laplace approximation exists [2].

Once the posterior distribution over the weights have been estimated, the prediction of an output for
a new input data x∗ can be obtained by Bayesian Model Averaging or Full Bayesian Analysis by
marginalizing the predictions with the posterior distributions p(θ|x,y):

p(y∗|x∗,x,y) =

∫
p(y∗|x∗,θ)p(θ|x,y)dθ. (3)

Unfortunately, we again do not have a closed form solution for the integrals in equation 3 due to the
non-linearity in DNNs. To this end, many existing works resort to a technique called Monte Carlo
integration, which is a sampling based method to evaluate the integrals:

p(y∗|x∗,x,y) ≈
1
T

T∑
t=1

y∗(x∗,θs
t) for θs

t ∼ p(θ|x,y).

This step generates the samples θs
t from the posterior distribution p(θ|x,y), and combine the predic-

tions of many sampled DNNs, in order to compute the predictive uncertainty.

We stress a drawback of this Monte Carlo integration for obtaining the predictive uncertainty from
Bayesian Neural Networks. This is due to the sampling operations. Concretely, for a single test
input x∗, Bayesian Neural Networks require obtaining multiple predictions from the samples of the
posterior distribution. As this can be slow at test-time, we attempt to exploit GP regression, where

2

the evaluation of the predictive uncertainty is analytic, and does not require sampling. Lastly, in our
theory (section 3), we examine Bayesian Neural Networks with the Gaussian approximations to the
posterior distributions, in order to derive a mathematical relationship between DNNs and MoE-GPs.
We refer to the recent survey [3] for more comprehensive treatment.

2.2 Gaussian Processes

Gaussian processes [4], as one of the popular methods in Bayesian non-parametric modeling, provide
a principled probabilistic framework for doing inference in function space. To recap this concept, we
briefly introduce GPs for regression. Formally, a GP is defined as a collection of random variables
indexed by an index set. Any finite combination of these random variables follows a joint Gaussian
distribution, specified by a mean function m(·) and covariance function kθ(·, ·), where θ denotes the
hyperparameters.

Specifically, given a datasetD =
{
X,Y

}
=

{
(xi,yi)

}N

i=1
, where xi ∈ R

D,yi ∈ R
K are input and output,

respectively. Firstly we assume a Gaussian likelihood of yi given a latent function value fi: yi ∼
N(fi,σ0). According to the definition of GPs, when choosing the set of all possible inputs as the
index set, we can obtain a joint Gaussian distribution over any finite number of the latent function
values, e.g. on the given datasetD: f = [f (x1), ..., f (xn)] ∼ N(m(X),kθ(X,X)) . In other word, the
latent function over all possible inputs follow a GP specified by a mean and a covariance function:

f (xi) ∼ GP(m(xi),kθ(xi,x j)) (4)

In a Bayesian context, we want to capture the function space prior brought by the given dataset with
a GP and then infer the posterior distribution of the function value, which can be employed to obtain
the predictive distribution for a new test datum. Thanks to the conjugacy of Gaussian distributions,
all of the aforementioned distributions can be computed analytically. While the GP prior can be
learned on the given datasetD by performing maximum marginal log likelihood estimation over the
hyper-parameters θ of the covariance function, the analytical form of the posterior distribution over
the latent function for a new test datum x∗ can be expressed as:

p(f (x∗)|D) =N(kT
∗ (K +σ0I)−1y,k∗∗−k

T
∗ (K +σ0I)−1k∗) (5)

whereK = kθ(X,X), k∗ = kθ(X,x∗), k∗∗ = kθ(x∗,x∗), and y is assumed to be centered.

The equivalence between Bayesian linear regressions and GPs for regression from view point of
weight space and function space can be easily recognized by restricting the f (xi) to a linear function of
the input features f (xi) = φ(xi)Tw, where the weightsw ∼N(0,I). Given an observed datasetD, the
posterior distribution of the weights can be computed analytically according to the Bayes rule, which
is: w|D ∼ N(σ−1

0 A
−1φ(X)y,A−1), where A = σ−1

0 φ(X)φ(X)T + I . Because f (xi) = φ(xi)Tw,
the posterior distribution of latent function for a new test datum x∗ can be calculated analytically by
marginalizing over the weights:

p(f (x∗)|D) =

∫
p(f ∗|x∗,w)p(w|D)dw

=N(σ−1
0 φ(x∗)TA−1φ(X)y,φ(x∗)TA−1φ(x∗))

(6)

By comparing equation 5 and equation 6, with some algebraic operations [4], it can be shown that
these two distributions are equivalent to each other when the covariance function kθ(·, ·) is set to
φ(xi)

Tφ(xj). With this equivalence, we can infer the posterior function distribution of a Bayesian
linear regression with basis function φ(·) by doing GP inference with the corresponding covariance
function.

Besides its elegance of tractability and principledness, to put GPs into practice, there are still two
main hurdles to overcome. The first one is its scalability to large dataset, and the second one is
the expressivity of the covariance function. For the former, the inverse operation on the covariance
matrix in equation 5 induces O(n3) computation and O(n2) storage complexities, where n is the size
of dataset. This significantly limits the scalability of GPs on large scale datasets nowadays when
disregarding other approximation techniques and sparse variants. When it comes to the second critical

3

issue, there has been some argument [5] stating that the local kernels such as radial basis function
(RBF) kernel are struggling to discover effective representations for high dimensional data, which
impedes the applicability on a variety of tasks today. As alternatives, neural tangent kernel (NTK)[6]
and neural network kernel [7] are promising by complementing GPs with the strong representation
learning capacity of DNNs. We also note that in mixtures of GP experts, the data noise term is in
practice, learned independently for each data partition.

2.3 Active Learning

Contrasting to passive learning, active learning aims to utilize the training data as efficiently as
possible, by actively selecting those data points that are the most informative for the learner. The
motivation behind this paradigm arises in the some cases of supervised learning, where the data
labeling process is time-consuming or resource-intensive. On the other hand, it can be beneficial to
use as few data examples as possible to train the model if more is unnecessary, especially for those
models whose efficiency is heavily affected by the amount of training data such as GPs. While there
are different scenarios for active learning depending on the storage type of available data at hand,
for brevity and conciseness, we focus on the pool-based scenario, where a pool of unlabeled data is
available, to recap this concept. We refer to Settles [8] for more details about active learning.

To formulate the problem, we assume there are two datasets generated from the same data distribution,
one is with labelsD =

{
X,Y

}
=

{
(xi,yi)

}N

i=1
, another one is without labelsU = {X}, where xi ∈ R

D,
yi ∈ R

K and |L| � |U|. In supervised learning, we start from training a model for f : RD→ RK on L.
Then the model queries the elements inU and ask an oracle to label them. These queried data points
will be added to the L and used to re-train the model to improve the performance. In order to collect
the most informative data points, which can improve the performance most after being incorporated
into training, there is an acquisition function a : RD→ R used to weigh the utility score of each data
point. To put it another way, the core problem of active learning lays in how to select the data point
in the unlabeled pool set efficiently, which is:

x∗ = argmaxx∈Ua(x). (7)

There is a diverse set of choices for the acquisition function according to the model used and
computation resources available, raging from output/model uncertainty sampling, expected error
reduction, data density weighting and etc [9]. The motivations from different query strategies differ in
different ways to access the utility of a data point with respect to the model, e.g. while output/model
uncertainty sampling focus more on information theoretic aspect, expected error reduction starts from
insights of statistical analysis and density weighting takes into account the density of data.

In our case, uncertainty sampling is employed within our GP formulation. Since a GP is a probabilistic
approach and is able to produce predictive distribution of the output of interest, which is a Gaussian.
With the clear probabilistic interpretation, we directly use the output variance or entropy as the
acquisition function to select the most informative data points from the poolU, in order to achieve a
satisfactory performance with as few data points as possible.

2.4 Kernel Methods for Clustering

To motivate kernelized Principal Component Analysis (PCA), recall the standard PCA setting. Given
data X = {xi}

N
i=1 and its covariance matrix Σ = 1

N
∑N

i=1xix
T
i , PCA performs an eigendecomposition

of Σ. Ranking the eigenvectors by the magnitude of their eigenvalues one can perform dimensionality
reduction through the removal of low-variance dimensions and subsequent projection of X onto the
remaining principal components.

In clustering, linearly separating D̄ points in D < D̄ dimension can be difficult while it is trivial in
D ≥ N dimensions. Simply lifting xi ∈ R

D to RD̄ using a function Φ : RD → RD̄ creates linearly
independent vectors with diagonal covariance on which PCA cannot be applied.

Instead, using the kernel K = k(xi,x j) = Φ(xi)T Φ(x j) one can perform PCA in the potentially
infinite-dimensional Φ(x)-space (e.g. using a Gaussian kernel) without ever actually having to
evaluate the inner product (see Kernel trick). While this means one cannot obtain the eigenvectors

4

ofK explicitly, the projection of all input points within X, onto those eigenvectors can be obtained,
making it easier to separate and cluster the data.

In relation to our paper, we employ the kernel PCA with NTK, and apply K-means clustering within
the low dimensional space. This results in a gating function which divides and assigns data points to
the individual GP experts.

2.5 Model Compression

Model compression techniques aim at reducing either or both of computational and memory require-
ments of DNNs. This gets especially relevant on resource constrained systems like mobile devices
and robots.

There is a multitude of approaches of which we will briefly discuss four as identified by [10]. The first
is parameter pruning which involves the identification of redundant or uncritical model parameters and
their removal. The most common approach is to remove network weights with small magnitude after
training [11]. Memory requirements are reduced proportional to the amount of pruned parameters but
computational requirements and therefore latency during inference remains constant as the resulting
parameter matrices, while becoming sparse, remain full-rank. Pruned networks can be re-trained after
pruning to improve performance though convergence is delayed. Lower parameter counts help to
combat overfitting and can increase generalization capabilities [12]. Instead of the removal of small
weights, pruning can also be achieved through hashed binning of similar weights.

We then briefly discuss other class of methods for model compression. Contrary to pruning, parameter
quantization retains all weights but reduces the memory footprint and often also computational cost
on compatible hardware through half-precision floating point representations. While reductions from
32 to 16 bits [13] are common practice, 8 bits [14] and even binary representations are explored
[15], though penalties in model performance seem to be unavoidable. Quantization can be employed
during training or afterwards.

While pruning produces sparse but full-rank parameter matrices, low-rank factorization techniques
[16, 17] try to produce dense low-rank representations through matrix factorization like singular value
decomposition [18]. It is applied on a layer-wise basis and thus cannot exploit model-wide parameter
redundancy. Constraints can already be imposed during model design and training. Structural weight
matrices enforce symmetries in weight space [19] while compact filters reuse negated or rotated
convolutional filters or replace large filters with concatenation of multiple smaller ones [20, 21].
Sparsity can be encouraged through regularization terms during training [22, 23].

Finally, knowledge distillation employs large high-performance teacher networks to train small
student networks which try to mimic the teachers output distribution [24, 25]. Distillation from
ensembles of teachers is also possible [26].

We note that many techniques can be used in tandem to achieve even stronger levels of compression
[27]. As an example, the popular ResNet-50 model with a memory requirement of 95 MB and 3.8
billion FLOPs per inference can be compressed to 75% of its size and 50% of its computation time
without loss in performance [10].

In relation to our method, we employ the pruning methods to reduce the size of NTK, which is a
tangent to the Jacobians of DNNs. In particular, we consider the approaches in Microsoft Neural
Network Intelligence library 1.

3 On theory: derivations, main results and proofs

In the main paper, we have outlined our main idea, i.e. projecting the NLMs to function space in order
to obtain MoE-GPs, which divides the input space into smaller local regimes, where the individual GP
experts learn and make predictions. In this section, we describe the theoretical contributions of our
paper, which focuses on establishing the mathematical relationships between DNNs and MoE-GPs.

Before explaining our contributions, we stress the relevance of the theoretical work within the context
of the paper. First, as we derive our theory in this section, several insights behind our method are
revealed. These include various design choices that motivates the individual components of our

1Link: https://github.com/microsoft/nni

5

algorithm. Second, the theory provides a foundation to the related algorithms. Concretely, we argue
that the proposed practical algorithm is only one way of exploiting the derived theory in practice. We
hope that such theoretic foundations can help the community to build on our work for developing more
effective uncertainty quantification techniques. Lastly, there has been several works that established
the relationships between DNNs and GPs [28, 29, 30, 6]. In this sense, our work extends the prior
work towards better understandings of DNNs.

We depict an overview of this section in figure 1, which summarizes our results and the derived proof
paths. We build up the concepts in sections 3.1 and 3.2, and describe the main results in section 3.3.
In addition, we provide derivations and discussions on how NLMs and MoE-GPs can estimate the
predictive uncertainty of DNNs, in sections 3.4 and 3.5.

3.1 Mixtures of Neural Network Experts

Consider again a supervised learning task on a data set consisting of input-output pairsD =
{
X,Y

}
={

(xi,yi)
}N

i=1
, where xi ∈ R

D, yi ∈ R
K . Whenever possible, we drop the indices i for simplicity.

Defining a neural network as a θ ∈ RP parametrized function fθ : RD → RK that maps the inputs
X to the outputs Y, learning seeks to obtain an empirical risk minimizer of the loss function, i.e.
minθ 1

|D|

∑
(x,y)∈DL(fθ(x),y) + δ

2θ
Tθ where δ is an L2 regularizer. Here, a mini-batch B ⊂D is

often used instead to find a local maximum-a-posteriori (MAP) solution θ̂. Importantly, we assume a
twice differentiable and strictly convex loss function L and piece-wise linear activations in fθ. For
example, this includes square loss or cross entropy loss with RELU, which are often used in modern
DNNs. 2

Now, a Mixture of Expert (MoE) consists of M experts defined as learners F =
{
fθ1 , · · · , fθM

}
, and a

gating function g : RD→ ∆M−1 that maps any input x to g(x) = [g1(x), · · · ,gM(x)] [31]. Each expert
of the MoE learns and predicts within a subset of the input domain, and a gating function generates
these subsets. We depict an example on the right side of figure 1 (Lemma 2.1), where the experts are
GPs. Here, the gating function divides the input space X and assigns each datum x to an individual
GP expert. We denote such models as MoE-GP [32, 33], and further also define a MoE-DNN, where
each the experts are DNNs [34, 35] (refer to the left side of figure 1 in Lemma 2.1). Importantly, for
MoE-DNNs, we assume a gating function: gm(x) = 1 in just one coordinate for each input [36] where
the subscripts m = 1,2, · · ·M denote the mth expert. For the partitioned dataD = {D1,D2, · · ·DM} the
training minimizes an individual loss function: minθm

1
|Dm |

∑
(x,y)∈DmL(fθm(x),y) + δ

2θ
T
mθm. For a

clear exposition, we distinct the notation of ground truth y with y =
∑M

m=1 gm(x) fθm(x) to represent
the prediction in the remaining texts.

3.2 Laplace Approximation for Individual Experts

Next, consider a Bayesian treatment of MoE-DNNs with a prior on the parameters of the individual
DNN experts p(θm), and also their posterior distributions given the data p(θm | Dm) ∀m. Concretely,
we employ the Laplace Approximation [37] to compute the posterior probabilities of the DNNs
experts, which can be obtained by taking the second-order Taylor series expansion of the log posterior.
Using a Gaussian prior with precision δm, we obtain:

log p(θm | Dm) ≈ log p(θ̂m | Dm) +
1
2

(θm− θ̂m)T (Hm +δmI)(θm− θ̂m),

where the first-order term vanishes as the gradient of the log posterior ∇ log p(θm | Dm) is close to
zero at θ̂m. Taking the exponential on both sides and approximating integrals by reverse engineering
densities, the weight posterior is approximately a Gaussian with mean θ̂m and covariance matrix
Σm = (Hm +δmI)−1 whereHm is the Hessian of log p(θm | Dm) [37, 2].

Unfortunately, working with Hm is difficult, as it is not in general positive semi-definite (PSD).
Fortunately, when using standard loss and piece-wise linear activations, a good approximation ofHm
is given by Gauss-Newton Matrix[38]:

2Our theories are for any DNN architecture that satisfies the given assumption. Only feedforward network
shown in figure 1, but our approach also applies to convolution, and recurrent neural networks

6

Proposition 2.1

Lemma 2.1 Proposition 2.2 & Lemma 2.2

...
...

GP M

GP 3

GP 2 GP 1NN 1NN 2

NN 3

NN M

...

NN 1NN 2

NN 3

NN M
Local Neural

Network Experts
Local GP

with NTK

Mixtures of experts

with NN
Mixtures of experts

with GP-NTK

Mixtures of experts

with neural networks (NN)
Neural Networks

Figure 1: Illustration of the main results and their derivations. First we demonstrate a connection
between the local neural network, and the linear models (or Gaussian Processes with Neural Tangent
Kernel in function space view). Building upon, a connection between the mixtures of experts with
neural networks and Gaussian Processes is established assuming a hard gating function. Lastly,
when we assume that all neural experts are equivalent, the mixtures model can be thought as a single
neural network, thereby, connecting the networks to the mixtures of experts with Gaussian Processes.
Lemma 2.2 quantifies the influence of this assumption on GPs.

Hm ≈
1
|Dm|

∑
(x,y)∈Dm

J fm (x)THLm (x,y)J fm (x), where

J fm (x) =
∂ fθm (x)
∂θT

m
, HLm (x,y) =

∂2L(fθm (x),y)
∂ fθm (x)T∂ fθm (x)

, RLm (x,y) =
∂L(fθm (x),y)
∂ fθm (x)

, (8)

are the Jacobian of fθm (x) wrt. parameters θm, the Hessian of loss function L(x,y) wrt. fθm (x), and
a residual vectorRLm ∈ R

K respectively. Notice thatHLm(x,y) ∈ RK×K , J fm(x) ∈ RK×P and hence
Hm ∈ R

P×P. The result of these steps turn a mixture of DNN experts into a mixture of Bayesian
Neural Network experts, where the parameters are represented using Gaussian distributions.

3.3 Neural Networks as Mixtures of Gaussian Process Experts

So far, we have defined MoE-DNNs with a hard gating function, and then showed how their parameters
posterior can be approximated with a Gaussian rather than the point estimates θ̂m for all m. This step
results in a MoE model, where the experts are Bayesian Neural Networks. Having these essentials,
we make the following statement (a specific instance of Khan et al. [29], which is in turn, based on
the NLMs [39]).

Proposition. 2.1 (Local Duality): Let the posterior for each Deep Neural Network expert
p(θm|Dm) approximated with a Gaussian distribution: p(θm|Dm) ∼ N(θ̂m,Σm). Define a trans-
formed data-set D̃m =

{
Xm,Ỹm

}
with pseudo output datum Ỹm =

{
ỹm,1, ỹm,2, · · · ỹm,Nm

}
such that

ỹm, jm := J fm (x)θ̂m−HLm (x,y)−1RLm (x,y) for jm = 1,2, · · · ,Nm. Then, ỹm = J fm (x)θm + εm where
εm ∼ N(0,HLm(x,y)−1) and θ ∼ N(0, δ−1

m I) is a neural linear model that has equivalent posterior
p(θm|D̃m) ∼ N(θ̂m,Σm) ∀m.

Proof. The proof sketch is as follows. To show the local equivalence between the Laplace approxi-
mated DNN experts posterior and that of a neural linear model, we first reformulate the DNN experts
posterior p(θm|Dm) with so-called the information form or natural parameters of Multivariate Normal
Distribution (MND). Then, we demonstrate that the posterior of the individual mth linear model can
also be reformulated to match the given DNN experts posterior.

7

As said, we reformulate the generalized Gauss Newton (GGN) approximated posterior distribution
for individual experts as:

p(θm|Dm) ∼ N(θ̂m,Σm)

=
1

√
(2π)p|Σm|

exp
(
−

1
2

(θm− θ̂m)T Σ−1
m (θm− θ̂m)

)
,

= exp
(
a+ηTθm−

1
2
θT

mΛθm

)
.

(9)

where a is the normalizing constant. In this formulation, MND is parameterized in the canonical form
with the information vector η = Σ−1

m θ̂m, and matrix Λ = Σ−1
m , instead of the mean and the covariance

matrix (θ̂m,Σm). In the following, for better readability, we denote J fm(xm,i), RLm(xm,i,ym,i),
HLm(xm,i,ym,i) by J fm ,i, RLm,i , HLm ,i, respectively. The information vector and matrix can be
expressed with the gradients and the Hessian:

Σ−1
m =H +δmI ≈

Nm∑
i=1

J fm
T
,iHLm ,iJ fm ,i +δmI . (10)

Σ−1
m θ̂m = −

(
J fm

TRLm +δmθ̂m
)
+Σ−1

m θ̂m,

=

Nm∑
i=1

[
−J fm

T
,iRLm,i +J fm

T
,iHLm ,iJ fm ,iθ̂m

]
,

(11)

In above equations, we use the stationary assumption in Laplace Approximation, i.e. the loss is close
to zero (−

(
J fm

TRLm +δmθ̂m
)
≈ 0), and added Σ−1

m θ̂m on both sides. Again, we assume a Gaussian
prior for the network parameters. Then, substituting this formulation of the information vector and
matrix (equations 11, 10) into the given posterior distribution (equation 9) results in:

p(θm|Dm)

∝ exp(−
1
2
θT

m

 Nm∑
i=1

J fm
T
,iHLm ,iJ fm ,i +δmI

θm +θT
m

Nm∑
i=1

[
−J fm

T
,iRLm,i +J fm

T
,iHLm ,iJ fm ,iθ̂m

]
),

∝ exp
(
−
δm

2
θT

mθm

) Nm∏
i=1

exp(−
1
2
θT

mJ fm
T
,iHLm ,iJ fm

T
,iθm +θT

mJ fm
T
,i

[
HLm ,iJ fm ,iθ̂m−RLm,i

]
).

(12)

Now, we show that the posterior distribution of the neural linear model can also be written as equation
12, which would complete the proof. Expressing the posterior p(θm|D̃):

∝ N(θm|0, δ−1
m I)N(ỹm|J fmθm,HLm

−1),

∝ exp
(
−
δm

2
θT

mθm

) Nm∏
i=1

exp
(
−

1
2

(ỹm,i−J fm ,iθm)THLm ,i(ỹm,i−J fm ,iθm)
)
,

∝ exp
(
−
δm

2
θT

mθm

) Nm∏
i=1

exp
(
−

1
2
ỹT

m,iHLm ,iỹm,i +θT
mJ fm

T
,iHLm ,iỹm,i−

1
2
θT

mJ fm
T
,iHLm ,iJ fm ,iθm)

)
.

(13)

Now, we can substitute ỹm,i := J fm ,iθ̂m−HLm
−1
,i RLm,i into equation 13. We note that:

−
1
2
ỹT

m,iHLm ,iỹm,i = −
1
2

[J fm ,iθ̂m−HLm
−1
,i RLm,i]

T [HLm ,iJ fm ,iθ̂m−RLm,i], (14)

8

is constant w.r.t the random variables θm. Furthermore, we also obtain:

θT
mJ fm

T
,iHLm ,iỹm,i = θT

mJ fm
T
,iHLm ,i[J fm ,iθ̂m−HLm

−1
,i RLm,i]

= θT
mJ fm

T
,i

[
HLm ,iJ fm ,iθ̂m−RLm,i

]
.

(15)

Substituting equations 14 and 15 into equation 13 results in p(θm|D̃):

∝ exp
(
−
δm

2
θT

mθm

) Nm∏
i=1

exp
(
−

1
2
θT

mJ fm
T
,iHLm ,iJ fm

T
,iθm +θT

mJ fm
T
,i

[
HLm ,iJ fm ,iθ̂m−RLm,i

])
+ constant.

(16)

This completes the proof.

�

Remark. We remark that for each DNN expert with Laplace Approximation, there is a counterpart
linear model with features maps J fm (x) that has the same posterior distribution as the original DNN
expert. This is visualized in figure 1 in a function space view, mapping a linear model to a GP.

An alternative path to obtain the NLMs is a linearization trick of MacKay [39]. MacKay [39]
applies the first order tayler series to the output of neural network. Then, considering the Bayesian
formulation of linear models with Gaussian priors and the same Gaussian posterior distributions of
the original network (obtained using Laplace Approximation), MacKay [39] shows that the predictive
uncertainty can be obtained in a closed form solution, due to the conjugating properties of Gaussians
for linear models. An elegant work of Khan et al. [29] extends MacKay [39] by pointing out that
we can recover GPs from a neural network with Gaussian posterior distributions. Our proof here is
a specific instance of these two works - we project the same set-up within MoE models with a hard
gating function.

Now, we extend to consider MoEs with a hard gating function globally. Having the individual DNN
experts having an equivalent GPs (as stated in the previous proposition), we show similar derivation
step on how MoEs with DNNs have an equivalent posterior distribution with MoE-GPs.

Lemma. 2.1 (Global Duality) Let m Deep Neural Network experts form a hard mixture of experts
model such that y =

∑M
m=1 gm(x) fθm(x). We denote its Laplace Approximation based posterior as

p(θ|D). Under a transformation D̃ =
{
D̃1, · · · ,D̃m

}
, ỹ =

∑M
m=1 gm(x) f̃mθ

(x) is a mixture of experts

with linear regressor that has an equivalent posterior distribution p(θ|D̃).

Proof. The proof sketch is as follows. We first show that for both y and ỹ, the posterior distribution
can be factorized as a product of individual mth expert’s posterior distribution: p(θm|Dm) and
p(θm|D̃). Then, using the results of Lemma 1, we proof that for a hard mixture of experts, the
posterior distribution of two models are equivalent.

First, we express the likelihood of the MoE with DNNs as,

p(Y|X,θm) =

N∏
i

M∑
m=1

gm(xi)p(yi|xi,θm),

=

M∑
m=1

gm(x1)p(y1|x1,θm)
M∑

m=1

gm(x2)p(y2|x2,θm) · · ·
M∑

m=1

gm(xN)p(yN |xN ,θm).

(17)

Here, we have assumed i.i.d data. Without loss of generality, we assumed an ordered assignment
of data to individual experts, that is, i ∈ {1,2, · · ·N} is decomposed into i ∈ {i1, i2, · · · iM} where for
all m, im ∈ {1,2, · · ·Nm}. This means that each mth expert is responsible for data points im such that

9

gm(xim) = 1 for all im = 1,2, · · ·Nm. Otherwise, the gating network outputs zero by definition. As a
result, we can further decompose equation 17:

=

N1∏
i1

M∑
m=1

gm(xi1)p(yi1 |xi1 ,θm)
N2∏
i2

M∑
m=1

gm(xi2)p(yi2 |xi2 ,θm) · · ·
NM∏
iM

M∑
m=1

gm(xiM)p(yiM |xiM ,θm),

=

N1∏
i1

p(yi1 |xi1 ,θm)
N2∏
i2

p(yi2 |xi2 ,θm) · · ·
NM∏
iM

p(yiM |xiM ,θm)

=

M∏
m

Nm∏
im

p(yim |xim ,θm).

(18)

We now define the prior over the parameters θ by adopting the classical idea of automatic relevance
determination [28], which assumes a factorized Gaussian prior:

p(θ) =

M∏
m=1

N(θm|0,Am) whereAm = diag(δ1, δ2, · · · , δm). (19)

This follows our previous definition of prior for individual m expert parameters. Now, we write the
posterior distribution of mixtures of experts model:

p(θ|X,Y) ∝
M∏
m

Nm∏
im

p(yim |xim ,θm)
M∏

m=1

N(θm|0,Am),

∝

M∏
m

Nm∏
im

p(yim |xim ,θm)N(θm|0,Am),

∝

M∏
m

p(θm|D).

(20)

Similarly, we can also express equation 20 under the data transformation as:

p(θ|X,Ỹ) ∝
M∏
m

p(θm|D̃). (21)

This holds as the gating network and the input data X are kept the same, and the data transformation is
defined on transformed output by the Jacobians of neural networks. Now, as we have already showed
in Lemma 1 that individual experts have the equivalent posterior distribution, it also follows that
p(θ|X,Y) and p(θ|X,Ỹ) are equivalent. We note that hard gating network enables this step, making
it into a valid probability distribution under reverse engineering the densities.

This completes the proof. �

Remark. This Lemma states that if we assume a hard MoE where the experts are DNNs with
Gaussian posteriors (obtained using Laplace Approximation), there then exists a hard MoE with the
NLMs, which is dictated by the same gating function and has equal distribution of the parameters
given the data. This establishes the duality of the two models in Bayesian sense, where the models
are represented by the same probability distribution. Intuitively, such relationships can be obtained
as we take a hard gating function, making each DNN experts probabilistic-ally independent.

10

An important ramification of this result can be obtained in a well-known equivalence of weight space
and function space view. To explain, we can obtain stochastic processes:

ỹ =

M∑
m=1

gm(x) f̃GPm (x) + ε with (22)

f̃GPm (x) ∼ GP(0,
1
δm
J fm (x)TJ fm (x)), (23)

which is a MoE-GP with NTK, i.e. a tangent kernel with J fm (x). Consequently, the generative model
and the predictions N (̃y∗m,Σ̃m(x∗)) on the new test datum x∗ are given by:

[
ỹm

f̃GPm (x∗)

]
∼ N

(
0,

[
Km(X,X) +σ0,mI km(X,x∗)

km(x∗,X) km(x∗,x∗)

]
,

)

ỹ∗m(x∗) = kT
m,∗(Km +σ0,mI)−1ỹm,

Σ̃m(x∗) = km(x∗,x∗)−km,∗
T (Km +σ0,mI)−1km,∗+σ0,m,

(24)

respectively. Here, Km(X,X) =Km = 1
δm
J fm(x)TJ fm(x), and km(X,x∗) = km,∗. Also, data uncer-

tainty is captured by σ0,mI . Overall, with these steps, we show the duality of MoEs with DNNs and
MoE-GPs in a Bayesian sense. We note that if MoEs with DNNs and Gaussian approximations, we
can exploit their equivalent MoE-GPs without any approximation errors. Unfortunately, as MoEs
with DNNs may often not be used in practice, we expand our theoretic work to a single DNN.

Therefore, we now establish a connection between a DNN, and MoE-GP as shown in figure 1, in
order to increase the applicability of our theoretic results. To do so, we point out that a single trained
DNN can be treated as a MoE-DNN, if all the DNN experts are essentially the same DNNs and a
hard gating function is designed to strictly divide the input space amongst the experts, i.e. only one
local DNN expert per division.

Proposition. 2.2 (Equivalence in Input-Output Relationships) Let fθ be a deterministic deep neu-
ral network with the input-prediction set given by

{
(xi, fθ(xi))

}N

i=1
for all N data points. Define a

mixtures of experts model, with a hard gating function gm(xi) and the neural network experts fθm = fθ
for all m = 1, ..,M experts. Then, the mixtures of experts model have an equivalent input-prediction
set to the deterministic deep neural network, given by

{
(xi, fθ(xi))

}N

i=1
.

Proof. The proof follows by the definition of the given mixtures of neural network experts.

From the definition, we have a hard gating function that assigns only a single neural network experts
per local subset. This means we do not perform any weighted averaging over the predictions. For the
inputs xi, the predictions of the mixtures of neural network experts are given by:

yi =

M∑
m=1

gm(xi) fθm (xi), (25)

for all i and m. From our definition, we have fθm = fθ. Also, gm(xi) = 1 if xi belongs to the mth

expert. Otherwise, we have gm(xi) = 1. This results in
{
(xi,yi)

}N

i=1
=

{
(xi, fθ(xi))

}N

i=1
.

This completes the proof. �

Remark. Under these given conditions, the input-prediction relationships of above two models are
the same for both train and test data. This implies that (i) a single DNN can also be seen as a
hard MoE with GPs (see section 3.3 and illustration in figure 1), and (ii) we assume that the data
is stationary. We note that obtaining a hard MoE with DNNs, under the stated conditions, may not
necessarily involve a training step.

11

You can imagine training a single DNN on the entire dataset, and theoretically, this is the same as
having a hard MoE with the same trained DNNs for the predictions within training and test set. For
example, lets try to form an ensembles of DNNs with exactly the same network with respect to the
structure of the learner and the network parameters. Moreover, imagine a predictive model, where we
do not average the ensembles of DNNs for predictions, but pick only a single member of the ensemble
per input data. Intuitively, the input-prediction relationships are the same to a single DNN with the
same network parameters and structure.

What does then proposition 2 implies to the GP experts? So far, we have (i) shown the equivalence
between MoEs with DNNs and GPs previously, and (ii) established a connection between MoEs with
DNNs to a single DNNs. This is by introducing the specific conditions on the gating function, and
how MoEs with DNNs are formed. Considering the GP experts, the given extension from MoEs
with DNNs to a single DNN impliesK1 =K2 = · · · =KM for all M. This is because we have taken
a single DNN as the DNN experts within MoEs model, and brings an assumption that the data is
stationary. We note that the overall kernel matrix can model non-stationary process as it is still
possible to keep different hyper-parameters δm and σm. We present a formal statement about the
proposed approximation, when compared to a single DNN with Gaussian approximations, which has
a true equivalent GPs fGP.

Lemma. 2.2 (On Approximation Error) Let fGP(x) be a true stationary process such thatKm(·, ·) =
K(·, ·) ∀m. Then, our approximation to Ktrue(X,X) is K(xi,x j) = 1ci=c jK(xi,x j) where ci is
the expert assignment for xi, indicator function 1a=b = 1 when a = b and 0 otherwise. Then,
the approximation error of the MoE-GP kernel is ‖K(X,X)−Ktrue(X,X)‖2F =

∑
i jK(xi,x j)2 −∑M

m=1
∑

i j∈VmK(xi,x j)2.

Proof. Assume we have ordered sets of points as before, and assume the same kernel matrices
Km(·, ·) =K(·, ·) ∀m. Now, recall the definition of our gating network that gm(x) = 1 in just one
coordinate for each input, ∀m. The generative model, considering the entire data to experts are then:

y1
y2
...
yM

 = GP

0,

K1 0 0 0
0 K2 0 0

0 0
. . . 0

0 0 0 KM

.

This explains the resulting approximation, that K(xi,x j) = 1ci=c jK(xi,x j) where ci is the par-
tition for xi, 1a=b = 1 when a = b and 0 otherwise. In other words, assuming a MoE-DNN
with a single, equivalent DNN results in a block-diagonal approximation in the kernel matrix.
Decomposing the Frobenius norm, then results in ‖K(X,X)−Ktrue(X,X)‖2F =

∑
i jK(xi,x j)2 −∑M

m=1
∑

i j∈VmK(xi,x j)2.

This completes the proof. �

Remark. Here,
∑

i jK(xi,x j)2 is a constant while the term
∑M

m=1
∑

i j∈VmK(xi,x j)2 specifies that
less approximation error occurs when less correlated data points (or off-diagonal elements) are
assumed to be independent while strongly correlated points by NTK should be within the same GP
experts. In other words, the more block diagonal a true equivalent GP, the better MoE-GPs can
approximate it.

Intuitively, a MoE-DNN with Gaussian approximations and a MoE-GP have the equivalent posterior
distribution, where GPs have their kernel matrix defined by their counterpart DNN experts (Lemma
2.1). If we force a MoE-DNN to a single DNN with the stated conditions, the GP experts have
the kernel matrix, which is defined by the counterpart DNN experts that have the same posterior
distribution. This Lemma quantifies the result of this step, and as the GP experts have the same kernel
function, the given MoE-GP assumes stationary data.

We discussed the derivations and the results of our theoretic work, where a relationship has been
established between a DNN and MoE-GPs with NTK. In summary, we showed how a MoE-DNN
and a MoE-GPs are dual in Bayesian sense, and further established a connection to a single DNN.
With this, we have gained an insight of the proposed idea, i.e. the consequences of the resulting

12

approximations and the conditions on when the two models are equivalent. We note that the gained
insight has been explored in the design of our gating function from the main paper. Next, we provide
more theoretic justifications, and the key benefits that stems from the derived theory.

3.4 Theoretic Justifications and Key Benefits

Our proposed predictive model comprises of a DNN for accurate predictions, as well as a MoE-GP
with NTK for the predictive uncertainty. We first justify the resulting predictive model as follows.

Consider the square loss Lm = 1
2

(
ym− fθm (xm)

)2
so thatRLm (x) =σ−2

m (fθm (x)−ym) andHLm (x) =

σ−2
m I , the mapping betweenDm and D̃m are simply related by ỹ∗m = J fm (x∗)θ̂m− (fθm (x∗)−y∗) for

new predictions y∗ and ỹ∗m. Rearranging the terms simply give us: y∗ = ỹ∗m + fθm(x∗)−J fm(x∗)θ̂m.
Now, the variance will be the same for both y∗ and ỹm∗ due to other terms being a constant deter-
ministic variables. This justifies the use of a GP model for uncertainty estimates, on top of DNN
predictions. We show several more examples below from our experiments (section 3.5). Note that the
outputs of our GPs are transformed outputs ỹ∗m, which are parametrized by the DNNs via J fm(x∗)
and θ̂m. Thus, we can keep the DNN predictions fθ(x) and disregard the mean outputs of the GPs.

It is crucial to note that there are several benefits of our proposed predictive model. First, by the
design, we can inherit the benefits of the mixture of GP experts model [32, 33] for uncertainty
estimates. These are (i) a divide-and-conquer principle that significantly reduces the computational
complexity of the GPs, (ii) the ability to model non-stationary covariance for both epistemic and
aleatoric uncertainty, and (iii) a natural support for a distributed computation. Second, the predicition
accuracy is the same as for the original DNN while the uncertainty estimates can be computed from
the equivalent GP model. In other words, we attain the best of both worlds: the predictive power of
DNNs and the uncertainty estimates from scalable GPs. This is achieved in a decoupled manner,
e.g. the DNN does not require re-training, nor degrade its predictive performance. And finally, as
shown in equation 24, our method does not require multiple forward passes through the DNNs. This
is in contrast to many existing methods which often require multiple samples of the DNN predictions
for a single input datum (either from a deep ensemble [40] or model uncertainty [41]). Hence, the
resulting probabilistic predictor is fast and accurate, which is of importance to robotics.

3.5 Additional derivations

Our framework uses the loss functions in order to derive the relationships between the predictions of
DNNs and GPs. This means that per loss function, we need a derivation for the model information
(e.g. the first or second order information such as Hessian or residuals). Here, we provide a derivation
for two loss functions that are used in the considered network architectures of our experiments. These
include mean squared errors and cross entropy. Unlike the rest of the paper, we omit superscript m,
that indicates a specific expert but the discussion herein applies to any m. This is for the clarity of the
exposition.

3.5.1 Inverse dynamics task

For the inverse dynamics task, we used a multi-layer perceptron (MLP) with means squared error as
the loss function L per single input. It is defined as:

L =
1
2

(
y− fθ(x)

)2
, (26)

where the x is input point, y is the measured output (7 joints), fθ(x) is the predictions of the trained
MLP. Then, assuming an independent GP per joint, the Hessian HLm = 1, the residual RLm =

(fθ(x)−y), and consequently, the transformed output ỹ = J f (x)θ̂+ fθ(x)−y. Here, the quantities
we infer are fθ(x) and ỹ, and for predictive uncertainty: Σ(̃y) = Σ(J f (x)θ̂+ fθ(x)−y) = Σ(fθ(x))
. This theoretically justifies that GP, trained on (x, ỹ), can be used for uncertainty estimates, while
keeping the original MLP prediction fθ(x).

13

3.5.2 Object detection task

Next, we describe the mathematical derivation related to DETR architecture for object detection.
DETR is a state-of-the art object detection method, that uses transformers and also built on end-to-end
principle. Object detection involves both classification and regression (bound box), which extends
the previously described cases that only considered a regression task. Let y be the ground truth with

yi = (ci,bi). Here, ci is the class labels, and bi ∈
[
0 1

]4
is the representation of a bounding box with

centers, height and width of the box. DETR uses K object queries (decoded by the transformer layer),
followed by MLPs that overall predicts y = {ŷi}

K
i=1. To match the number K, the ground truth label y

is padded with ∅ (no object) into K.

For training, DETR first performs matching between the supervised labels and the predictions (each
representing a set):

σ̂ = arg minσ∈℘
K∑
i

Lmatch(yi,yσ(i)) with

Lmatch(yi,yσ(i)) = −1{ci,∅}p̂σ̂(i)(ci) + 1Lbox(bi, b̂σ̂(i)).

(27)

The match index is denoted σ(i). Given the optimal match w.r.t the above criteria, the used loss is
defined:

L(y,y)DETR =

K∑
i

[
−logp̂σ̂(i)(ci) + 1{ci,∅}

∥∥∥bi, b̂σ̂(i)
∥∥∥2

2

]
. (28)

The above loss is back-propagated whenever the object query receives the optimal assignment σ̂
(equivalently, equation 27 is solved using Hungarian algorithm, and is not back-propagated).

Now, notice that per input datum x, the regression loss, whenever ci , ∅, is simply the MSE loss, and
otherwise, do not exist. This means that our derivation only need to take into account, the bounding
box uncertainty when ci , ∅. Then, using the same techniques as before, the transformed bounding

box output is: ˜̂bσ̂(i) = J f (xk)θ̂− b̂σ̂(i) +bi for all i, and Σ(̃b̂σ̂(i)) = Σ(J f (xk)θ̂− b̂σ̂(i) +bi) = Σ(b̂σ̂(i)).
This justifies the use of GP uncertainty for bounding box regression.

For classification loss −logp̂σ̂(i)(ci), which is the broadly used cross-entropy loss, we now derive
the relationship between the transformed output, and true output. Let ci is given by h[fi,θ(x)],
where h is the sigmoid function (used in DETR), and fi,θ(x) is the activation of the classification
layer for input point x. It implies that DETR uses the Bernoulli likelihood function, and we may
treat the classification as regression (similar to Lu et al. [42]). Then, the residual term is given by
h[fi,θ(x)]− ci and the Hessian of the sigmoid is: h[fi,θ(x)](1−h[fi,θ(x)]). Similar to a regression
task, the transformed output:

c̃i = J f (x)θ̂−
[
h
[
fi,θ(x)

] (
1−h[fi,θ(x)]

)]−1 (
h[fi,θ(x)]− ci

)
or (29)

ci = h
(

fi,θ(x)
)
+

[
h[fi,θ(x)](1−h[fi,θ(x)])]̃ci

]
−

[
h[fi,θ(x)](1−h[fi,θ(x)])

]
J f (x)θ̂. (30)

Lastly, taking the variance on both sides:

Σ(ci) = Σ
(
h(fi,θ(x)

)
+

[
h[fi,θ(x)](1−h[fi,θ(x)])

]
c̃i−

[
h[fi,θ(x)](1−h[fi,θ(x)])

]
J f (x)θ̂),

=
[
h[fi,θ(x)](1−h[fi,θ(x)])

]2
Σ(̃ci).

(31)

In above equation, we reason about the variance of the class assignment. Overall, this derivation
motivates the use of GP for classification uncertainty within DETR, as the variance of transformed
output is related to the original output. Then, we compute the Jacobian of DNN for the given test
input. This involves backpropagation of the DNNs and is again bounded to how efficient DNN is.
Then, our gating function assigns the test data to an expert and we compute GP uncertainty.

14

4 Algorithmic Overview

Algorithms 1 and 2 summarize our approach for training and testing respectively. Implemented using
Gpytorch [43], these algorithms are executed with GPU supports. For an efficient implementation,
we use the algorithms of Gardner et al. [43] for training, and Lanczos approximation [44] for testing,
leveraging recent advances in software infrastructure for GPs.

Algorithm 1: A divide and conquer solution (off-line).
Data: A trained DNN fθ and train dataD = X,Y.
Result: A trained MoE-GP with

{
δm,σ0,m

}
∀m

Compute Y = fθ(X), J f (X) and Ỹ ;
Apply the pruning step 1 on J f (X);
Perform NTK PCA ;
K-means on principal components ;
for all the M experts do

Apply the pruning step 2 on J fm (X);
Active learning on J fm bl(X)∀l ;
Patchwork-GP priorKm,patch ;
GP expert training ;

end

The training of GP refers to the use of the marginal log likelihood for the model selection:

log p(ỹm|xm,δm,σ0,m) = −
1
2
ỹT

m(
1
δm
Km,patch +σ0,m)ỹm

−
1
2

log(
1
δm
Km,patch +σ0,m)−

nm

2
log(2π).

(32)

The result of the above algorithm is a set of GPs with their hyperparameters, and respective Jacobians
on the subset of data. Gating function, which uses NTK PCA and K-means clustering, is also saved,
which constitutes of (i) the kernel matrix that belongs to the randomly selected data for clustering,
and (ii) the cluster centroids. We also note that distributed training is natually supported in the above
algorithm - the training of GPs can be distributed across the GPUs. If we use a different gating
function for different multi-output GP, the division step can be distributed across the GPUs per output
dimension. The most computationally involving part of the algorithm is the Jacobian computations
and saving operations to the disks.

Algorithm 2: A fast GP uncertainty (on-line).
Data: A trained DNN fθ, MoE-GP and test data x∗.
Result: Prediction y∗ and uncertainty p(y∗|x∗,D)
Compute the prediction: y∗ = fθ(x∗) ;
Compute the test Jacobian: J f (x∗) =

∂y∗

∂θ (x∗) ;
Gating network assigns mth expert ;
Compute GP uncertainty p(y∗|x∗,D) ;

Algorithm 2 computes the predictive uncertainty of DNNs with MoE-GPs. First, we compute the
prediction of a DNN, which indicate that the computational efficiency of our approach is bounded
to how fast DNNs can be. This is usually true for the most of the predictive uncertainty estimation
methods. After this, we use the gating function to assign the test input to an expert and compute GP
based uncertainty. The gating function projects the Jacobian into a principle axes (using the obtained
NTK-based PCA), and perform K-means clustering of this test sample. The Lanczos approximation
[44] is used for the computation of GP-based uncertainty. The test Jacobian is pruned to match the
dimensions of the train Jacobians, using the obtained pruning masks.

15

5 Implementation Details and Additional Results

Implementation details and additional results are presented in this section.

We used a GPU cluster that consists of NVIDIA GTX 1080 Ti (Pascal), NVIDIA Titan V (Volta),
NVIDIA Titan RTX (Turing) and NVIDIA V100 for our off-line processing of the experiments.
The CPU pairs used are respectively, 12-core Intel Xeon W2133, 16-core Intel Xeon and 32-core
AMD CPUs. On a robot, we use NVIDIA Jetson TX2 for evaluation of the run-time, which uses
the Dual-Core NVIDIA Denver 2 64-Bit and the Quad-Core ARM Cortex-A57 MPCore CPUs. The
board features 256-core NVIDIA Pascal GPU architecture with 8GB of memory. Communication
has been established to other computing components of our robot using ROS.

5.1 Implementation Details for Laplace Approximation Variants

We compare our method against two Laplace Approximation [37] based baselines. The first, referred
to simply as Laplace, is similar to [45], except that we focus on the diagonal Fisher information
matrix (FIM) approximation and only consider all linear layers, including multihead-attention layers,
but omitting convolutional layers. This decision allows for a fairer comparison against the second
approach referred to as rLaplace, which is a linearized version the first approach similar to [46] where
no sampling is required. Linearized Laplace approximation relies on the Generalized Gauss-Newton
matrix (GNN) of which we also only consider a diagonal approximation for computational reasons.

Both methods are implemented in Python using the PyTorch framework [47, 48, 49]. We make
use of the same pre-trained networks for all approaches. To compute the diagonal FIM and GNN
approximations, we loop once over the respective training datasets using the same parameterization
as during training of the network weights. Afterwards, we perform a coarse hyperparameter search
for each approach and network architecture to find appropriate multiplicative factors used for scaling
the FIMs and GNNs prior to inversion. For the standard Laplace approximation approach, we sample
30 weight configurations and perform one forward pass for each sample to obtain the distribution over
outputs. For the linear Laplace approximation, we compute one GNN per layer and output dimension
to increase the accuracy of the approximation.

5.2 Implementation Details for MC-Dropout Variants

We take MC dropout [41] and its real-time variants [50] which we name approximate variance
propagation as two of the baseline approaches. Because both approaches rely on the pre-trained
network with dropout layer, for inverse dynamic experiments, we insert the dropout into the last layer
of the 3 layer MLP architecture which can obtain satisfied results with this way from our preliminary
experiments. By referring to the Tensorflow implementation of approximate variance propagation,
we re-implement this method with Pytorch. We have verified the implementation by obtaining similar
performance on the same benchmarks (UCI) compared to original implementation.

Nevertheless, we also find that the current implementation does not serve well for the some advanced
layers such as mult-head attention and LSTM. Therefore we need to build up the variance propagation
layer for them from scratch. On account for the high complexity of the analytical derivations of the
Jacobian matrix for these layers, which is hard and error-prone to implement, we decide to make use of
the automatic differentiation functionality of Pytorch to achieve it. This comes at cost of the running
time because of the additional backward operation. Specifically, limited by the only backward-mode
automatic differentiation support in Pytorch, we need to loop over the output dimension to obtain
each row of the Jacobian matrix which further reduce the efficiency of this method. However, we
believe that by this way we can make use of the full power of it and aim to conduct a more fair
and comprehensive comparison with our approach and other baseline methods. To note that, for
variance propagation, we propagate covariance matrix in inverse dynamic experiments and a diagonal
covariance matrix. For MC-dropout, 30 samples are used for evaluation.

5.3 Implementation Details for Deep Ensembles

We closely follow the recent protocol of Sharma et al. [51] for the implementation of deep ensembles
[40]. In total 5 models of identical architecture from random initialization are trained for each data-
sets namely sarcos, kuka1 and kuka2, which is repeated over 3 random seeds. The first member of the
ensemble is chosen from the deterministic neural networks, which are used across other baselines.

16

5.4 Discussion on Negative Log Likelihood Calculation

When evaluating different uncertainty estimation approaches with negative log likelihood (NLL)
as metric, we are confronted with the issue of different ways to compute it from the quantities
predicted by different models. Some predict only the samples from the output distribution directly,
such as Monte-Carlo Dropout, while the other predict the moments such as mean and variance of the
output distribution directly based on variance propagation[50] or linearization over a parameter point
estimate [46].

Because the calculation of Gaussian likelihood requires the moments (mean and variance) and the
observation variance, we can compute it by either following [41] to evaluate the NLL of each sample
predicted by the model (NLLsamples, refer to equation 33):

NLLsamples(x,y) =− log
T∑
i

exp(−
(f̂i(x)−y)2

2τ
) + logT +

1
2

log2π−
1
2

logτ, (33)

where τ is the observation variance, T is the number of samples, f̂i are the sampled prediction. For
using the predicted moments directly (NLLmoments, refer to equation 34):

NLLmoments(x,y) =− logexp(−
(fmean(x)−y)2

2(fvar(x) +τ)
) +

1
2

log2π−
1
2

log(fvar(x) +τ), (34)

The principled selection of NLL should depend on the quantities they produce, however, because of
the different formulations of them (when evaluating on one data pair (x,y)).

Also, fmean and fvar are the moments of the Gaussian distribution, predicted by certain methods. We
note that equation 34 is an exact formula, while the equation 33 involves approximations. Therefore,
the final calculated values differ in the scale of magnitude as well. In order to facilitate a fair
comparison, we select the ones which perform best among them. Nevertheless, the issue on this
should raise an alarm or attract more attention when researchers decide to choose NLL as their
evaluation metric. This also holds when practitioners decide to select one uncertainty estimation
method for their specific purpose. Unfortunately, other measures of regression uncertainty, such as
calibration measures, are subject to the results being different depending on the chosen binning [52].

5.5 Implementation Details and Additional Results for MoE-GP

We provide the implementation details of the presented experiments and our method below.

5.5.1 Toy regression

Our toy regression experiment used Snelson data-set, which is often used in GP literature [53].
Due to the small scale, many experimental variables can be carefully controlled for better insights.
In this experiment, we trained a single-layer Multi-layer perceptron (MLP) with 200 units and a
tangent activation. The reported figure in the main text used 7 GP experts on this data-set. We
used the Negative Log Likelihood (NLL) as our loss function and used 10000 epochs with Adam
optimizer. It used the decay of zero, and learning rate of 0.1. We did not use any memory reduction
hyperparameters as the used data and the architectures are small. The only difference between
"without patch" and "with patch" setting was the use of the proposed patchwork prior.

Additional results. We perform additional experiments with GPs as a baseline. The used setup is
as follows. We use the same Snelson data-set and a MLP to the toy regression experiments, which
is described in the paragraph above. In addition to the comparisons on "in-between" uncertainty
estimates [46], we also evaluate on the original Snelson data-set by keeping all the training data.
This is to create an additional setup to evaluate if the conclusions still hold. What motivates Snelson
data-set over other experiment setups of our work is the relatively small size of the data-set where
full GPs can scale without any further approximations. We note that in GP literature, it is often
referred to as large scale problems if the data-set contains more than 10000 data points [53] where
the computational complexity of a full GP is prohibitive. Thus, we compare our approach to the full
NTK - the kernel we attempt to approximate in order to improve its applicability beyond 10000 data
points. We also include a GP with RBF as an additional reference. Lastly, we choose two different

17

4 2 0 2 4 6 8 10
x

4

2

0

2

4

y

RBF GP

4 2 0 2 4 6 8 10
x

5

0

5

10

y

Full NTK

4 2 0 2 4 6 8 10
x

5

0

5

10

y

Ours (M=3)

4 2 0 2 4 6 8 10
x

5

0

5

10

y

Ours (M=7)

Figure 2: We visualize predictive uncertainty on Snelson dataset where we remove the training data
of certain regime (between x = −1 and x = 3) to test the domain shift scenario. Evaluations on the
entire snelson data is depicted in figure 3. The black dots are train data points, and the red line shows
the mean predictions. Blue shades show up to three standard deviations. (Left-Top) We plot a GP
with RBF kernel with the original predictions of the GP. (Right-Top) For a validation of the proposed
concept, a full NTK without the mixtures of experts approximation is shown. (Left-Bottom) We plot
the proposed concept with 3 GP experts. (Right-Bottom) The increase of experts to 7 is visualized.
We note that the GP with RBF kernel utilizes a different kernel function and hence, deviations to the
GP with the full NTK can be observed both in the predictions and their uncertainty estimates.

2 0 2 4 6 8 10
x

4

2

0

2

4

y

RBF GP

2 0 2 4 6 8 10
x

5

0

5

10

y

Full NTK

2 0 2 4 6 8 10
x

5

0

5

10

y

Ours (M=3)

2 0 2 4 6 8 10
x

5

0

5

10

y

Ours (M=7)

Figure 3: We visualize predictive uncertainty on Snelson dataset where we test the uncertainty
estimates for out-of-distribution scenarios, and see if the data noise can be captured. Evaluations
including the domain shift scenario is depicted in figure 2. The black dots are train data points, and the
red line shows the mean predictions. Blue shades show up to three standard deviations. (Left-Top) We
plot a GP with RBF kernel with the original predictions of the GP. (Right-Top) For a validation of the
proposed concept, a full NTK without the mixtures of experts approximation is shown. (Left-Bottom)
We plot the proposed concept with 3 GP experts. (Right-Bottom) The increase of experts to 7 is
visualized. We note that the GP with RBF kernel utilizes a different kernel function and hence, the
observed deviations to the GP with the full NTK can be observed both in the predictions and their
uncertainty estimates.

18

32 64 12
8

25
6

51
2

10
24

20
48

Variations

1

0

1

M
LL

10
00

20
00

30
00

40
00

50
00

Variations

0

1

M
LL

2
1 20 21 22

Variations (log2 scale)

0.0

2.5

5.0

M
LL

0.0 0.2 0.4 0.6 0.8
Variations

0

1

M
LL

Figure 4: The effects of each hyperparameter is shown with train MLL, by varying them in different
steps (Variations), and fixing the others to default settings. Lower the better.

settings of MoE-GPs with 3 experts and 7 experts, which is to intuitively support the ablation study
on the hyperparameter choices in the paper. Figures 2 and 3 depict the results.

The following observations can be found in the results. First, the results show that all the considered
models qualitatively provide well-calibrated uncertainty estimates, i.e. whenever there is no training
data, the models show high uncertainty estimates for both domain-shift and out-of-distribution
scenarios. When the regimes where the training data exists, all the models capture the data noise.
Second, a GP with RBF kernel provides different predictions to the GPs that utilizes the NTK. This
behavior is expected as both the models utilize different kernels. Lastly, we find that the proposed
concept qualitatively provides similar uncertainty estimates to a GP with the full NTK. This result can
be seen as an empirical evidence that the proposed approximations to the NTK can provide similar
posterior predictive to a GP with the full NTK. The deviations also grow as more approximations are
made, i.e. the number of data division grows. This observation is similar to the ablation study on the
hyperparameter choices in the main paper, i.e. more number of experts can deteriorate the uncertainty
estimates, as each GP experts contain less amount of data than the full GP with the full NTK. We
refer to our theoretical results, which formalize the proposed approximations to the full NTK.

5.5.2 Ablation studies

In our ablation study, we focus on the issue of design choices within our approach. Concretely,
there are 5 hyperparmeters namely, (i) the number of GP experts, (ii) the size of the subsets for
clustering, the sparsity level of (iii) neural and (iv) jacobian pruning (can considered as a single
hyperaparameter), and (v) the number of data points for the active learning. These design choices
influence the uncertainty estimates, as well as the computational complexity. For the empirical study,
we examine a regression task using a 5-layered, 200 units MLP on SARCOS data-set [53]. Often
used, SARCOS contains 48933 data points with 21 input values from the joint sensors, and 7 joint
torque values as targets. We used SGD optimizer with learning rate of 0.0001, moment of 0.9 and
500 epochs. The loss function was chosen as the mean squared error.

For the ablation studies, we vary each hyper-parameters while fixing the remaining ones, and we use
the Marginal Log Likelihood (MLL) to evaluate on the training data and the Negative Log Likelihood
(NLL) for the testing. The default setup is 512, 5000, 0, and 0 for the number of experts, the subsets
for the division step, the level of pruning sparsity, and the proportion of actively selected points
respectively. For the number of experts, the variations are: 32, 64, 128, 256, 512, 1024 and 2048.
We varied the subset size for the division step from 1000 to 5000 in the steps of 5, and the result
follows the conclusions of Chitta et al. [54]. We pruned the Jacobians from upto 0.00001 percent of
the layers: 0.0, 0.3, 0.6, 0.9, 0.99, 0.9999, 0.99999. This is to examine the extreme cases where we
keep only a few feature maps of the Jacobians for the GP experts. Lastly, we varied the size of the
actively selected points from 0.0 to 0.8 in the steps of 0.2. Figure 4 shows the plot for MLL while we
have shown NLL plots in the main paper. We did not see any significant difference in trend, when
comparing both the NLL and the MLL.

The details of the stopping criterion for the active learning and the Jacobian pruning is as follows,
which have been the implementation details adapted in all the relevant experiments. In the active
learning, we choose the ratio of the most informative data points to select, e.g. 80 percent of the
data points. Then, the number of query steps are decided, i.e. we choose 3 query steps in all the
experiments. Selecting the maximization of information as an acquisition function, the active learning
process continues unto the selected query steps. Similar one-shot pruning strategy is adapted as
oppose to an iterative pruning. Similar to active learning, the pre-specified ratio of the pruning.
Ranking the parameters according to the given metric, the top parameters in the ranking are kept

19

where the numbers of given by the pre-specified ratio. The recipe for the choice of these parameters
have been discussed in the ablation study on hyperparameters.

5.5.3 Learning inverse dynamics of a manipulator

Now, we consider the task of robot inverse dynamics learning, and evaluate our approach against
existing methods for uncertainty estimation. The goal herein is to learn a mapping from the joint
positions, velocities and accelerations to toques τ (Nm) for all 7 joints. Again, our goal is not to
obtain the most accurate prediction, but to estimate predictive uncertainty. A 5-layered MLP is
trained on SARCOS, KUKA 1, KUKA 2 with the above mentioned data pairs from SARCOS and
KUKA robot arms respectively. We use the test/training split ratio of 1/9 for SARCOS, KUKA 1 and
KUKA 2, ratio of 1/99 for KUKA SIM dataset (used for testing). Besides the nominal settings, to
evaluate our approach in a more realistic and challenging way, an OOD scenario, where the models
are evaluated on a complete different data-set to training (e.g. train on SARCOS, and test on KUKA
1), are conducted. The results are averaged over three random seeds for the error bars of the numerical
results.

The used hyperparameters are as follows. For SARCOS, we use 10 Nr. experts, 5000 subsets, sparsity
levels of 0.5 and 0.9 for pre-pruning and post-pruning respectively, and use 0.3 for the level of active
points. For KUKA, we use 50 Nr. experts, and keep the other hyperparameters the same as SARCOS.
We believe that there are still rooms for better hyperparameter tuning. All GPU memory was not
used, as the current implementation can fail due to some GP experts having more data points than
others. While SARCOS contains ∼ 50k data pairs of 100hz rhythmic motions, KUKA 1 and KUKA
2 have ∼ 200k pairs of rhythmic motions at various speed, respectively. KUKA SIM has a larger size
of 2 million data pairs recorded in simulation. We use the test/training split ratio of 1/9 for SARCOS,
KUKA 1 and KUKA 2, ratio of 1/99 for KUKA SIM dataset.

5.5.4 Distributed training

We have tested the scalability of our method. From a theoretic view, MoE-GP scales to infinitely large
data-sets by creating more and more GP experts. Yet, for the method to be practical, the question is
how long the training takes to scale. Scalability is of significant importance in this case, as DNNs
operate in the regime of big data, and an exact GP does not scale to such settings. To this end, using
the same MLP as before, we train MoE-GP on KUKA SIM data-set [55], which contains 1984950
data points. At this scale, an exact GP is clearly not scalable, and many existing solutions resort
to incremental learning [55]. Furthermore, we use a cluster with NVIDIA V100s, and perform a
distributed training. In MoE-GPs, a key benefit over the other sparse GPs lies on its distributed, local
nature, and we can exploit it in practice.

To this end, we use 512 GP experts per joint torques, and use 100 iterations for MLL optimization.
For stable training due to the current implementations, we use less CPU cores per GPUs, while on a
single GPU training, all the 32 CPU cores are used. Thus, we see a drop of training time performance
when compared to a single GPU. The other hyperparameters used are (i) the subset size of 5000, (ii)
the active learning parameter of 0.0 (iii) and the pruning parameters 0.5 and 0.999 respectively. The
training time of an algorithm depends on several factors such as implementation, size of the DNN
and available computational resources. Our attempt is to show how much MoE-GP can scale to large
datasets within a reasonable time frame.

5.5.5 Probabilistic Object Detection

We also evaluate our method within the context of an on-going space demo mission for future
planetary explorations. The scenario of interests involves a team of heterogeneous robots where the
flying system is used for scouting. Once all areas of interest are scouted, the system returns back
to the landing units (either on a lander, or on a rover). This task of homing is challenging, as the
localization algorithm may have accumulated drift or because the roving unit has moved. Therefore,
it is necessary to find these particular objects again. Importantly, it is mission critical, that the object
detector outputs a correct confidence measure. For example, as the system should just attempt a
landing, if it is confident enough to have detect the desired landing systems. This is why we choose
to apply our method to the given use-case.

20

DNN

79.7%

JRC

17.2%

GP

3.1%

Memory Anaylsis: avg. 7.043 GB

DNN

24.8%

JRC

70.4%

GP

4.8%

Runtime Anaylsis: avg. 2.35 fps

0.2 0.0 0.2 0.4 0.6 0.8 1.0
Normalized Entropy

0

5

10

15

Co
un

ts

OOD
IN-DIST

Figure 5: The GPU memory and run-time analysis shows the overhead caused by the uncertainty
computations (left). JRC means the jacobians related computations. The normalized entropy is shown
for OOD, and IN-DIST data, collected on our robot (right). A clear separation is observed, showing
the ability to detect OOD samples. A configuration of the hyperparameters and the implementations
are chosen to be a high-end. The memory requirement of a Jetson TX2 is 8GB.

The implementation details are as follows. MoE-GPs with the total 30 GP experts (3 GPs per output),
and a single gating network with 5000 subsets are used. We select 80% of the neighboring GPs
for the active learning hyperparameter. The same data augmentation as DNNs are used, keeping
up to 10000 images of flips, and brightness changes. Importantly, for efficiency, we did not use
torch.autograd but manually derived the Jacobians of fully connected layers, and incorporated them
into our forward pass. As the original DETR architecture with ResNet backbones are not designed for
real-time applications, we instead use EfficientNet backbone, combined with torch.jit functionality to
make the DETR architecture more efficient. We do not consider other popular frameworks of object
detection which requires several post-processing steps. This is because end-to-end architectures
are a preferred way to evaluate uncertainty estimates, without dependencies on how uncertainty
estimates are propagated through the post-processing steps. The uncertainties are computed only for
the deterministic predictions above a threshold of 0.5. We further note that there are many different
ways of designing the probabilistic object detector with our method, and we aim to see the potentials
of our algorithm in practice.

We also report other trials we have conducted where we used the Jacobians of the entire DNN. As the
first trial, we use the backpropagation algorithm (torch.autograd) to compute the Jacobians of the
entire DNN online, and pruned the jacobians upto 4832 parameters. Again, torch.script and pruning
of convolution and fully connected layers have been combined to increase the run-time of the DETR
architecture. The results are shown in figure 5 which shows the run-time and memory analysis, as
well as the ability to separate OOD samples via the entropy histogram. Interestingly, the most of
computations are related to computing the jacobians of DNNs. We learned that this is specific to
PyTorch, which is designed for back-propagation of loss, as oppose to the output. We note that this
version of the implementation is slower than the version we present in the main paper, but achieves
better OOD detection performance. This shows the relevance of selecting from the Jacobians of the
entire DNN as oppose to the last few layers. Moreover, this empirically shows an application of
our method to convolutions and transformer architecture. For improving the efficiency, one way to
leverage this set-up in practice is the use of JAX for the Jacobians computations online.

We next discuss the lessons learned for the future venues of research.

6 Lessons Learned and Limitations

To our knowledge, we are the first to evaluate different uncertainty estimation techniques on a Jetson
TX2, for DNN-based robot perception. During the implementation and experimentation we have
conducted, we learned a few lessons which we would like to share with the community.

6.1 Ensembles or sampling can be parallelized on a robot. Decoration or real?

We find the difficulty of parallelizing the methods based on ensembles or sampling on a Jetson TX2.
This is due to the limited on-board memory of a GPU and the limited number of CPU cores. While
there might be a possibility to parallelize the DNN forward passes for the ground-based robots such as

21

autonomous cars, from our experience of building robots [56, 57, 58], the readers may also consider
the number of other processes running onboard a robot. Such processes can be any localization
methods and any planning methods, which can take several CPU cores.

The main problem of deep ensembles over MC-dropout is that for robot perception especially, it is
often not feasible to deploy deep ensembles, because many large DNNs cannot be stored on a single
embedded GPU simultaneously. As loading a DNN to GPU alone can take upto several seconds, deep
ensembles tend to be slower than MC-dropout. One may consider an example of a robot perception
task, where the robot is equipped with 8GB of memory (e.g. Jetson TX2) and a single neural network
is 5GB in GPU memory. In this case, lowering the number of ensembles cannot allow for real-time
applications. Even in the case where a single neural network is 2GB and we can fit 4 ensemble
members to a single GPU, paralleling the predictions on the real robot may not be trivially done –
or we are not aware of any existing implementations or proof that this is possible for the real-robot
object detection.

In this regard, the new research line on “sampling free” methods are attempting to address this
limitation [50], and the recent survey paper on probabilistic object detection [59] and others [3] also
state this as an important direction of research. Therefore, we find the sampling-free or single-forward
pass methods of computing the predictive uncertainty, to be relevant in practice for robot perception.

6.2 Software infrastructure for Jacobian computations

Our method depends on the Jacobian computations of a DNN. As reported in section 5.5, a naive
way of using popular software infrastructure such as PyTorch can deteriorate the run-time efficiency.
While an analytical derivation of the Jacobian is feasible for fully connected layers and convolution
layers, such derivations may not be possible for more sophisticated DNNs such as transformers. We
see JAX as a step forward for the methods that use NTK and consequently the Jacobian computations.

For deployments on a real robot, however, we find that using the Jacobian associated with the last
few layers can also be a practical alternative. In our formulation, this corresponds to pruning all
the other layers except for the Jacobian of last few layers. Our experiment suggests that by using
the Jacobian of last few layers, we can still perform novelty detection better than the widely used
technique called MC-dropout, while being about 12 times faster on our hardware. The performance
is better by considering the Jacobian of the entire neural network along with pruning, but this result
in slower inference time. Therefore, we find that using the Jacobian of the last few layers can be a
practical alternative in terms of run-time and performance trade-offs.

6.3 A concrete use case of the proposed method

The proposed learning algorithm is subject to a trade-off, which plagues from the use of GPs with a
high dimension feature space, i.e the Jacobians of DNNs. While we have shown what is possible with
the proposed method (in terms of scalability, predictive uncertainty and run-time), the algorithm is
inherently subject to the limitations of GPs. GPs are powerful tools for probabilistic machine learning,
but may limited in the applicability with respect to both the growing number of available data points
and the number of outputs. For the later, leveraging the recent advances in multi-output GPs can be
an important direction of research. However, the memory consumption due to the fact that you need
to store the training data, may limit the applicability within the text of uncertainty quantification for
DNNs. Along with the model compression techniques, the data compression techniques such as the
use of coresets, can be a way to reduce this limitation.

Despite these, we find a concrete use-case of our method, which is a transfer learning settings in
robotics, where the number of data points are relatively small. Along with recent robot learning
methods that attempt to work with the relatively small amount of data, e.g. meta learning, few-shot
learning, etc, our paper suggests that advancing scalability of kernel methods such as GPs can be a
promising direction of future research.

This is in comparison to the weight-space formulation of Bayesian Neural Networks (BNNs). To
explain, consider an object detection scenario, where a developer has to create the labeled images for
transfer learning. The NTK needs to then deal with the kernel scaling issues, which is associated
with the number of data points, say 10000 images. An alternative is to deal with the scaling issues of
BNNs in weight space, where the dimensions of network parameters are more than 1 million. Both
approaches require various approximations to be applicable, but in many domains of robotics - due

22

to the limited amount of available data - dealing with the kernel scaling issue can be more practical
than dealing with the approximations in the weight space (e.g. Bernoulli posterior in MC-dropout).
In this regard, our experiments provide the relevance of this function-space view for robotics. By
dealing with the challenges of the NTK to an extent, our real robot experiments show that the NTK
can perform better than MC-dropout in terms of novelty detection and run-time.

We also stress that the proposed algorithm is only one way to exploit our theoretic insights. In
this sense, our theoretic foundations can pave the ways towards different applications, beyond the
use-cases of our algorithm. Finally, with our demonstrations, we hope the community to develop
several algorithms, which can reduce the downside of GPs while leveraging the benefits of GPs for
the predictive uncertainty estimation of DNNs.

References

[1] J. Lee, J. Feng, M. Humt, M. Müller, and R. Triebel. Trust your robots! predictive uncertainty
estimation of neural networks with sparse gaussian processes. In Proceedings of the Conference
on Robot Learning. PMLR, 08 Nov–11 Nov 2021.

[2] C. M. Bishop. Pattern recognition and machine learning. springer, 2006.

[3] J. Gawlikowski, C. R. N. Tassi, M. Ali, J. Lee, M. Humt, J. Feng, A. Kruspe, R. Triebel,
P. Jung, R. Roscher, et al. A survey of uncertainty in deep neural networks. arXiv preprint
arXiv:2107.03342, 2021.

[4] C. E. Rasmussen. Gaussian processes in machine learning. In Summer School on Machine
Learning, pages 63–71. Springer, 2003.

[5] Y. Bengio, O. Delalleau, and N. Le Roux. The curse of dimensionality for local kernel machines.
Technical Report 1258, Département d’informatique et recherche opérationnelle, Université de
Montréal, 2005.

[6] A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization
in neural networks. In Advances in neural information processing systems, pages 8571–8580,
2018.

[7] R. Novak, L. Xiao, Y. Bahri, J. Lee, G. Yang, D. A. Abolafia, J. Pennington, and J. Sohl-
dickstein. Bayesian deep convolutional networks with many channels are gaussian processes.
In International Conference on Learning Representations, 2019.

[8] B. Settles. Active learning. Synthesis lectures on artificial intelligence and machine learning, 6
(1):1–114, 2012.

[9] B. Settles. Active learning literature survey. 2009.

[10] Y. Cheng, D. Wang, P. Zhou, and T. Zhang. A survey of model compression and acceleration
for deep neural networks. ArXiv, abs/1710.09282, 2017.

[11] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and connections for efficient
neural network. ArXiv, abs/1506.02626, 2015.

[12] Y. Gong, L. Liu, M. Yang, and L. D. Bourdev. Compressing deep convolutional networks using
vector quantization. ArXiv, abs/1412.6115, 2014.

[13] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan. Deep learning with limited
numerical precision. In ICML, 2015.

[14] V. Vanhoucke, A. Senior, and M. Z. Mao. Improving the speed of neural networks on cpus.
2011.

[15] M. Courbariaux, Y. Bengio, and J. David. Binaryconnect: Training deep neural networks with
binary weights during propagations. In NIPS, 2015.

[16] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus. Exploiting linear structure
within convolutional networks for efficient evaluation. In NIPS, 2014.

23

[17] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up convolutional neural networks with
low rank expansions. ArXiv, abs/1405.3866, 2014.

[18] Y. Lu, A. Kumar, S. Zhai, Y. Cheng, T. Javidi, and R. Feris. Fully-adaptive feature sharing in
multi-task networks with applications in person attribute classification. 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 1131–1140, 2017.

[19] Y. Cheng, F. Yu, R. Feris, S. Kumar, A. Choudhary, and S. Chang. An exploration of parameter
redundancy in deep networks with circulant projections. 2015 IEEE International Conference
on Computer Vision (ICCV), pages 2857–2865, 2015.

[20] F. N. Iandola, M. Moskewicz, K. Ashraf, S. Han, W. Dally, and K. Keutzer. Squeezenet: Alexnet-
level accuracy with 50x fewer parameters and <1mb model size. ArXiv, abs/1602.07360, 2016.

[21] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and
H. Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications.
ArXiv, abs/1704.04861, 2017.

[22] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. H. Li. Learning structured sparsity in deep neural
networks. In NIPS, 2016.

[23] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. Graf. Pruning filters for efficient convnets.
ArXiv, abs/1608.08710, 2017.

[24] J. Ba and R. Caruana. Do deep nets really need to be deep? In NIPS, 2014.

[25] A. Romero, N. Ballas, S. Kahou, A. Chassang, C. Gatta, and Y. Bengio. Fitnets: Hints for thin
deep nets. CoRR, abs/1412.6550, 2015.

[26] G. E. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. ArXiv,
abs/1503.02531, 2015.

[27] S. Han, H. Mao, and W. Dally. Deep compression: Compressing deep neural network with
pruning, trained quantization and huffman coding. arXiv: Computer Vision and Pattern
Recognition, 2016.

[28] R. M. Neal. Priors for infinite networks. In Bayesian Learning for Neural Networks, pages
29–53. Springer, 1996.

[29] M. E. E. Khan, A. Immer, E. Abedi, and M. Korzepa. Approximate inference turns deep
networks into gaussian processes. In Advances in Neural Information Processing Systems,
pages 3088–3098, 2019.

[30] J. Lee, Y. Bahri, R. Novak, S. Schoenholz, J. Pennington, and J. Sohl-dickstein. Deep neural
networks as gaussian processes. In International Conference on Learning Representations,
2018.

[31] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive mixtures of local experts.
Neural computation, 3(1):79–87, 1991.

[32] V. Tresp. Mixtures of gaussian processes. In Advances in neural information processing systems,
pages 654–660, 2001.

[33] C. E. Rasmussen and Z. Ghahramani. Infinite mixtures of gaussian process experts. In Advances
in neural information processing systems, pages 881–888, 2002.

[34] H. Blum, A. Gawel, R. Siegwart, and C. Cadena. Modular sensor fusion for semantic segmenta-
tion. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 3670–3677. IEEE, 2018.

[35] O. Mees, A. Eitel, and W. Burgard. Choosing smartly: Adaptive multimodal fusion for object
detection in changing environments. In 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 151–156. IEEE, 2016.

24

[36] S. Gross, M. Ranzato, and A. Szlam. Hard mixtures of experts for large scale weakly supervised
vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 6865–6873, 2017.

[37] D. J. C. MacKay. A practical bayesian framework for backpropagation networks. Neural
Computation, 4(3):448–472, 1992.

[38] J. Martens and R. B. Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In Proceedings of the 32nd International Conference on Machine Learning, ICML
2015, Lille, France, 6-11 July 2015, pages 2408–2417, 2015.

[39] D. J. MacKay. Information-based objective functions for active data selection. Neural computa-
tion, 4(4):590–604, 1992.

[40] B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable predictive uncertainty
estimation using deep ensembles. In Advances in neural information processing systems, pages
6402–6413, 2017.

[41] Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing model uncer-
tainty in deep learning. In international conference on machine learning, pages 1050–1059,
2016.

[42] Z. Lu, E. Ie, and F. Sha. Uncertainty estimation with infinitesimal jackknife, its distribution and
mean-field approximation. CoRR, abs/2006.07584, 2020.

[43] J. Gardner, G. Pleiss, K. Q. Weinberger, D. Bindel, and A. G. Wilson. Gpytorch: Blackbox
matrix-matrix gaussian process inference with gpu acceleration. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 31, pages 7576–7586. Curran Associates, Inc., 2018.

[44] G. Pleiss, J. Gardner, K. Weinberger, and A. G. Wilson. Constant-time predictive distributions
for gaussian processes. In International Conference on Machine Learning, pages 4114–4123.
PMLR, 2018.

[45] H. Ritter, A. Botev, and D. Barber. A scalable laplace approximation for neural networks.
In 6th International Conference on Learning Representations, ICLR 2018-Conference Track
Proceedings, volume 6. International Conference on Representation Learning, 2018.

[46] A. Y. Foong, Y. Li, J. M. Hernández-Lobato, and R. E. Turner. ’in-between’uncertainty in
bayesian neural networks. arXiv preprint arXiv:1906.11537, 2019.

[47] M. Humt, J. Lee, and R. Triebel. Bayesian optimization meets laplace approximation for robotic
introspection. arXiv preprint arXiv:2010.16141, 2020.

[48] K. Shinde, J. Lee, M. Humt, A. Sezgin, and R. Triebel. Learning multiplicative interactions
with bayesian neural networks for visual-inertial odometry. arXiv preprint arXiv:2007.07630,
2020.

[49] J. Lee, M. Humt, J. Feng, and R. Triebel. Estimating model uncertainty of neural networks in
sparse information form. In H. D. III and A. Singh, editors, Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pages 5702–5713. PMLR, 13–18 Jul 2020.

[50] J. Postels, F. Ferroni, H. Coskun, N. Navab, and F. Tombari. Sampling-free epistemic uncertainty
estimation using approximated variance propagation. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2931–2940, 2019.

[51] A. Sharma, N. Azizan, and M. Pavone. Sketching curvature for efficient out-of-distribution
detection for deep neural networks. The Conference on Uncertainty in Artificial Intelligence
(UAI), 2021.

[52] J. Wenger, H. Kjellström, and R. Triebel. Non-parametric calibration for classification. In
International Conference on Artificial Intelligence and Statistics, pages 178–190. PMLR, 2020.

25

[53] C. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. Adaptive Computa-
tion and Machine Learning. MIT Press, Cambridge, MA, USA, Jan. 2006.

[54] R. Chitta, R. Jin, T. C. Havens, and A. K. Jain. Approximate kernel k-means: Solution to large
scale kernel clustering. In Proceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 895–903, 2011.

[55] F. Meier, P. Hennig, and S. Schaal. Incremental local gaussian regression. In Advances in
Neural Information Processing Systems, pages 972–980, 2014.

[56] P. Lutz, M. G. Müller, M. Maier, S. Stoneman, T. Tomić, I. von Bargen, M. J. Schuster,
F. Steidle, A. Wedler, W. Stürzl, and R. Triebel. ARDEA - An MAV with skills for future
planetary missions. Journal of Field Robotics (JFR), 2019.

[57] J. Lee, R. Balachandran, Y. S. Sarkisov, M. De Stefano, A. Coelho, K. Shinde, M. J. Kim,
R. Triebel, and K. Kondak. Visual-inertial telepresence for aerial manipulation. In 2020 IEEE
International Conference on Robotics and Automation (ICRA), pages 1222–1229. IEEE, 2020.

[58] J. Lee, T. Muskardin, C. R. Pacz, P. Oettershagen, T. Stastny, I. Sa, R. Siegwart, and K. Kondak.
Towards autonomous stratospheric flight: A generic global system identification framework for
fixed-wing platforms. In 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 6233–6240. IEEE, 2018.

[59] D. Feng, A. Harakeh, S. Waslander, and K. Dietmayer. A review and comparative study on
probabilistic object detection in autonomous driving. arXiv preprint arXiv:2011.10671, 2020.

26

	Overview
	Background
	Bayesian Neural Networks
	Gaussian Processes
	Active Learning
	Kernel Methods for Clustering
	Model Compression

	On theory: derivations, main results and proofs
	Mixtures of Neural Network Experts
	Laplace Approximation for Individual Experts
	Neural Networks as Mixtures of Gaussian Process Experts
	Theoretic Justifications and Key Benefits
	Additional derivations
	Inverse dynamics task
	Object detection task

	Algorithmic Overview
	Implementation Details and Additional Results
	Implementation Details for Laplace Approximation Variants
	Implementation Details for MC-Dropout Variants
	Implementation Details for Deep Ensembles
	Discussion on Negative Log Likelihood Calculation
	Implementation Details and Additional Results for MoE-GP
	Toy regression
	Ablation studies
	Learning inverse dynamics of a manipulator
	Distributed training
	Probabilistic Object Detection

	Lessons Learned and Limitations
	Ensembles or sampling can be parallelized on a robot. Decoration or real?
	Software infrastructure for Jacobian computations
	A concrete use case of the proposed method

