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A APPENDIX

A.1 RELATIONSHIP BETWEEN INFONCE REPRESENTATIONS AND PMI

For data sampled x ∼ p(x) and augmentations x′ ∼ pτ (x
′|x) sampled according to a synthetic

augmentation strategy, Oord et al. (2018) show that the InfoNCE objective for a particular sample x
is optimised if their respective representations z, z′ satisfy

exp{sim(z, z′)} = c p(x,x′)
p(x)p(x′) , (8)

where sim(·, ·) is the similarity function (e.g. dot product), and c is a proportionality constant. We
note that c may differ arbitrarily for each x and might, more generally, be considered an arbitrary
function of x, but for simplicity we consider the case for a particular x. Note also that c is strictly
positive since it is the ratio of a (positive) exponential term and a (non-negative) probability ratio.
Accordingly, representations satisfy

sim(z, z′) = PMI(x, x′) + c′, (9)

where c′ = log c ∈ R and PMI(x, x′) is the pointwise mutual information between data and
augmentations. Pointwise mutual information (PMI) is a term from information theory that reflects
the probability of events occurring jointly versus independently, which, for an arbitrary sample and
arbitrary augmentation is given by:

PMI(x, x′)
.
= log

p(x, x′)

p(x)p(x′)
= log

pτ (x
′|x)

p(x′)
. (10)

Since pτ (x
′|x) = 0 whenever x′ is not an augmentation of x, if augmentations of different data

samples do not coincide (e.g. two original images cannot be augmented in different ways to give the
same augmented image, as typically assumed), the marginal p(x′)=

∫
x
pτ (x

′|x)p(x) is given by a
single term pτ (x

′|x∗)p(x∗), where x∗ is the original sample from which x′ was augmented. Thus

pτ (x
′|x)

p(x′)
=

pτ (x
′|x)

pτ (x′|x∗)p(x∗)
=

{
1/p(x∗) if x∗=x (i.e. x′ is an augmentation of x)
0 otherwise;

(11)

and PMI(x, x′) = − log p(x) ≥ 0 or PMI(x, x′) = −∞, respectively.

If the main objective were to accurately approximate PMI (subject to a constant c′) in Eq. 9, e.g.
to approximate mutual information, or if representation learning depended on it, then, at the very
least, the domain of sim(·, ·) must span its range of values. For a typical dataset, PMI values range
from −∞ for negative samples to small positive values (e.g. 0-20) for positive samples. Despite
this, the popular bounded cosine similarity function (cossim(z, z′) = zT z

||z||2||z′||2 ∈ [−1, 1]) is found
to significantly outperform the unbounded dot product even though the cosine similarity function
necessarily cannot span the range required to reflect true PMI values, which the dot product can. This
strongly suggests that representation learning does not require representations to capture PMI values,
or for the overall loss function to approximate mutual information. Instead the cosine similarity-
restricted InfoNCE objective is optimised if representations of a data sample and its augmentations
are fully aligned (cossim(z, z′) = 1) and representations of dissimilar data being maximally spread
cossim(z, z′) = −1, since these minimise the difference to the true PMI values for positive and
negative samples (described above). Constraints such as the dimensionality of the representation
space vs the number of samples may prevent these revised theoretical optima being fully achieved
but show that the loss function is optimised by clustering representations of augmentations and the
sample they are derived from and separating representations otherwise.

We note that our theoretical justification for representations not capturing PMI is supported by the
empirical observation that closer approximations of mutual information do not appear to improve
representations (Tschannen et al., 2020). Also, more recent contrastive self-supervised methods
increase the cosine similarity between semantically related data but spread apart representation the
without negative sampling of InfoNCE, yet outperform the InfoNCE objective despite having no
obvious relationship to PMI (Grill et al., 2020; Bardes et al., 2022).
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A.2 OBJECTIVE DERIVATION

Let x = {x1, ..., xJ} be a set of J semantically related samples and θ = {θx, θz, π}, ϕ = {ϕz, ϕy}
be parameters of the generative model, pθ(x, z), and approximate posterior, qϕ(z|x), respectively.
We derive the Evidence Lower Bound (ELBO) used as the SimVAE optimization objective (§4.2) as:

min
θ

DKL[ p(x) ∥ pθ(x) ] = max
θ

E
x

[
log pθ(x)

]
= max

θ,ϕ
E
x

[∫
z

qϕz
(z|x) log pθ(x)

]
= max

θ,ϕ
E
x

[∫
z

qϕz
(z|x) log pθx(x|z)pθz(z)

pθ(z|x)
qϕ(z|x)
qϕz (z|x)

]
= max

θ,ϕ
E
x

[∫
z

qϕz (z|x) log
pθx(x|z)pθz(z)

qϕz (z|x)

]
+DKL[ qϕ(z|x) ∥ pθ(z|x) ]

≥ max
θ,ϕ

E
x

[∫
z

qϕz
(z|x)

{
log

pθx(x|z)
qϕz(z|x)

+ log pθz(z)
}]

(cf Eq. 2)

= max
θ,ϕ

E
x

[∫
z

qϕz
(z|x)

{
log

pθx(x|z)
qϕz(z|x)

+ log

∫
y

pθz(z|y)pπ(y)
}]

(*)

= max
θ,ϕ

E
x

[∫
z

qϕz
(z|x)

{
log

pθx(x|z)
qϕz(z|x)

+ log

∫
y

pθz(z|y)pπ(y)
qϕy(y|z)
qϕy(y|z)

}]
≥ max

θ,ϕ
E
x

[∫
z

qϕz
(z|x)

{
log

pθx(x|z)
qϕz(z|x)

+

∫
y

qϕy
(y|z) log pθz(z|y)pπ(y)

qϕy(y|z)

}]

The line indicated (*) is the ELBO if y is continuous and p(z|y) and p(y) are chosen so that the final
integral is tractable, e.g. all Gaussian. Where the integral is intractable, we continue with a further
lower bound and introduce the approximate posterior q(y|z). For explanatory purposes, we consider
the case J = 2 : x = {x, x′}. With a mean-field assumption q(z, z′|x, x′) = q(z|x)q(z′|x′), we
reach the following ELBO formulation:

min
θ

DKL[ p(x) ∥ pθ(x) ]

≥ max
θ,ϕz

E
x

[∫
z,z′

qϕz
(z, z′|x, x′)

{
log

pθx(x,x
′|z,z′)

qϕz (z,z
′|x,x′) + log

∫
y

pθz (z, z
′|y)pπ(y)

}]
(*)

≥ max
θ,ϕz

E
x

[∫
z

qϕz (z|x) log pθx(x|z)︸ ︷︷ ︸
[1]

−
∫
z

qϕz (z|x) log qϕz (z|x)︸ ︷︷ ︸
[2]

+

∫
z′
qϕz (z

′|x′) log pθx(x
′|z′)︸ ︷︷ ︸

[3]

−
∫
z′
qϕz

(z′|x′) log qϕz
(z′|x′)︸ ︷︷ ︸

[4]

+

∫
z,z′

qϕz
(z|x)qϕz

(z′|x′)

∫
y

qϕy
(y|z, z′) log pθz (z|y)pθz (z′|y)

pπ(y)
qϕy(y|z,z′)︸ ︷︷ ︸

[5]

]
(12)

Terms of the SimVAE objective in Equation (12) are analogous to those of the standard ELBO:
[1] & [3] are commonly referred to as (negative) reconstruction error, [2] & [4] are entropy of the
approximate posterior H(qϕ(z|x)). Terms [1-4] are equivalent to terms found in the standard ELBO
for each of the (J = 2) related samples. Term [5] derives naturally from the hierarchy of SimVAE
and defines cluster structure of p(z, z′), between representations of semantically related data, in terms
of p(z|y) and p(y). Algorithm 1 provides an overview of the computational steps required for the
training of the SimVAE evidence lower bound and details the steps required for the computation of
[1]/[3], [2]/[4] & [5] referred to as the rec, H, prior terms respectively. As our experimental setting
considers augmentations as semantically related samples, algorithm 1 incorporates a preliminary step
to augment data samples.
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A.3 EXPERIMENTAL DETAILS

A.3.1 DATASETS

MNIST The MNIST dataset (LeCun, 1998) gathers 60’000 training and 10’000 testing images
representing digits from 0 to 9 in various caligraphic styles. Images were kept to their original 28x28
pixel resolution and were binarized. The 10-class digit classification task was used for evaluation.

FashionMNIST The FashionMNIST dataset (Xiao et al., 2017) is a collection of 60’000 training
and 10’000 test images depicting Zalando clothing items (i.e., t-shirts, trousers, pullovers, dresses,
coats, sandals, shirts, sneakers, bags and ankle boots). Images were kept to their original 28x28 pixel
resolution. The 10-class clothing type classification task was used for evaluation.

CIFAR10 The CIFAR10 dataset (Krizhevsky et al., 2009) offers a compact dataset of 60,000 (50,000
training and 10,000 testing images) small, colorful images distributed across ten categories including
objects like airplanes, cats, and ships, with various lighting conditions. Images were kept to their
original 32x32 pixel resolution.

Celeb-A The Celeb-A dataset (Liu et al., 2015) comprises a vast collection of celebrity facial images.
It encompasses a diverse set of 183’000 high-resolution images (i.e., 163’000 training and 20’000 test
images), each depicting a distinct individual. The dataset showcases a wide range of facial attributes
and poses and provides binary labels for 40 facial attributes including hair & skin color, presence
or absence of attributes such as eyeglasses and facial hair. Each image was cropped and resized to
a 64x64 pixel resolution. Attributes referring to hair color were aggregated into a 5-class attribute
(i.e., bald, brown hair, blond hair, gray hair, black hair). Images with missing or ambiguous hair color
information were discarded at evaluation.

All datasets were sourced from Pytorch’s dataset collection.

A.3.2 DATA AUGMENTATION STRATEGY

Taking inspiration from SimCLR’s (Chen et al., 2020) augmentation strategy which highlights the
importance of random image cropping and color jitter on downstream performance, our augmentation
strategy includes random image cropping, random image flipping and random color jitter. The color
augmentations are only applied to the non gray-scale datasets (i.e., CIFAR10 (Krizhevsky et al.,
2009) & Celeb-A dataset (Liu et al., 2015)). Due to the varying complexity of the datasets we
explored, hyperparameters such as the cropping strength were adapted to each dataset to ensure
that semantically meaningful features remained after augmentation. The augmentation strategy
hyperparameters used for each dataset are detailed in table 2.

Dataset Crop Vertical Flip Color Jitter
scale ratio prob. b-s-c hue prob.

MNIST 0.4 [0.75,1.3] 0.5 - - -
Fashion 0.4 [0.75,1.3] 0.5 - - -
CIFAR10 0.6 [0.75,1.3] 0.5 0.8 0.2 0.8
Celeb-A 0.6 [0.75,1.3] 0.5 0.8 0.2 0.8

Table 2: Data augmentation strategy for each dataset: (from left to right)
cropping scale, cropping ratio, probability of vertical and horizontal
flipping, brightness-saturation-contrast jitter strength, hue jitter strength,
probability of color jitter

A.3.3 TRAINING IMPLEMENTATION DETAILS

This section contains all details regarding the architectural and optimization design choices used to
train SimVAE and all baselines. Method-specific hyperparameters are also reported below.

Network Architectures The encoder network architectures used for SimCLR, MoCo, VicReg, and
VAE-based approaches including SimVAE for simple (i.e., MNIST, FashionMNIST ) and complex
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datasets (i.e., CIFAR10, Celeb-A) are detailed in table 3a, table 4a respectively. Generative models
which include all VAE-based methods also require decoder networks for which the architectures
are detailed in table 3b and table 4b. The latent dimensionality for MNIST and FashionMNIST is
fixed at 10 and increased to 64 for the Celeb-A and CIFAR10 datasets. The encoder and decoder
architecture networks are kept constant across methods including the latent dimensionality to ensure
a fair comparison.

Layer Name Output Size Block Parameters

fc1 500 784x500 fc, relu
fc2 500 500x500 fc, relu
fc3 2000 500x2000 fc, relu
fc4 10 2000x10 fc

(a) Encoder

Layer Name Output Size Block Parameters

fc1 2000 10x2000 fc, relu
fc2 500 2000x500 fc, relu
fc3 500 500x500 fc, relu
fc4 784 500x784 fc

(b) Decoder

Table 3: Multi-layer perceptron network architectures used for MNIST & FashionMNIST training

Layer Name Output Block Parameters

conv1 32x32 4x4, 16, stride 1
batchnorm, relu
3x3 maxpool, stride 2

conv2 x 32x32 3x3, 32, stride 1
3x3, 32, stride 1

conv3 x 16x16 3x3, 64, stride 2
3x3, 64, stride 1

conv4 x 8x8 3x3, 128, stride 2
3x3, 128, stride 1

conv5 x 4x4 3x3, 256, stride 2
3x3, 256, stride 1

fc 64 4096x64 fc

(a) Encoder

Layer Name Output Block Parameters

fc 256x4x4 64x4096 fc

conv1 x 8x8 3x3, 128, stride 2
3x3, 128, stride 1

conv2 x 16x16 3x3, 64, stride 2
3x3, 64, stride 1

conv3 x 32x32 3x3, 32, stride 2
3x3, 32, stride 1

conv4 x 64x64 3x3, 16, stride 2
3x3, 16, stride 1

conv5 64x64 5x5, 3, stride 1

(b) Decoder

Table 4: Resnet18 network architectures used for CIFAR10 & Celeb-A datasets

Optimisation & Hyper-parameter tuning All methods were trained using an Adam optimizer until
training loss convergence. A learning rate tuning was performed for each method independently
across the range 1e−3 to 8e−5. A fixed batch size of 128 was used across methods and datasets. The
β, τ , λ parameters for the β-VAE, SimCLR and CRVAE methods were tuned across the [0.1,0.2,0.5],
[0.1,0.5,1.0] and [0.01,0.1,1.0] ranges respectively based on downstream performance. β = 0.1,
λ = 0.01 were selected and τ = 1.0, τ = 0.5 were chosen for simple and natural datasets respectively.
The likelihood probability variance for VAE-based methods including SimVAE was kept to σ2 = 1.0
and the prior probability, p(z|y), variance parameter for SimVAE was tuned based on downstream
performance and fixed to 0.005, 0.003, 0.005, 0.005 for MNIST, FashionMNIST, CIFAR10, and
Celeb-A respectively.

A.3.4 EVALUATION IMPLEMENTATION DETAILS

Following common practices (Chen et al., 2020), downstream performance is assessed using a linear
probe, a multi-layer perceptron probe, a k-nearest neighbors (kNN) algorithm, and a Gaussian mixture
model (GMM). The linear probe consists of a fully connected layer whilst the mlp probe consists
of two fully connected layers with a relu activation for the intermediate layer. Both probes were
trained using an Adam optimizer with a learning rate of 3e-4 for 200 epochs with batch size fixed to
128. Scikit-learn’s Gaussian Mixture model with a full covariance matrix and 200 initialization was
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fitted to the representations using the ground truth cluster number. The kNN algorithm from Python’s
Scikit-learn library was used with k spanning from 1 to 15 neighbors. The best performance was
chosen as the final performance measurement. No augmentation strategy was used at evaluation.

A.3.5 GENERATION PROTOCOL

In this section, we detail the image generation protocol as well as the evaluation of the quality of the
generated samples.

Ad-hoc decoder training VAE-based approaches, including SimVAE, are fundamentally generative
methods aimed at approximating the logarithm of the marginal likelihood distribution, denoted as
log p(x). In contrast, most traditional self-supervised methods adopt a discriminative framework
without a primary focus on accurately modeling p(x). However, for the purpose of comparing
representations, and assessing the spectrum of features present in z, we intend to train a decoder
model for SimCLR & VicReg models. This decoder model is designed to reconstruct images from the
fixed representations initially trained with these approaches. To achieve this goal, we train decoder
networks using the parameter configurations specified in Tables 3b and 4b, utilizing the mean squared
reconstruction error as the loss function. The encoder parameters remain constant, while we update
the decoder parameters using an Adam optimizer with a learning rate of 1e−4 until convergence is
achieved (i.e. ∼ 200 epochs).

Conditional Image Generation To allow for a fair comparison, all images across all methods are
generated by sampling z from a multivariate Gaussian distribution fitted to the training samples’
representations. More precisely, each Gaussian distribution is fitted to z conditioned on a label y.
Scikit-Learn Python library Gaussian Mixture model function (with full covariance matrix) is used.

A.4 ADDITIONAL RESULTS

A.4.1 SINGLE-TASK CLASSIFICATION

Clustering metrics Table 5 and table 6 report the normalized mutual information (NMI) and adjusted
rank index (ARI) for the fitting of a GMM to latent representations z.

Dataset Random VAE β-VAE CR-VAE SimVAE

MNIST ARI 21.5 ± 1.4 98 ± 0.1 93.7 ± 0.9 97.6 ± 0.0 94.2 ± 0.0

NMI 46.1 ± 1.3 96.3 ± 0.4 96.6 ± 0.4 88.2 ± 1.7 97.1 ± 0.0

Fashion ARI 28.7 ± 0.6 44.2 ± 1.1 44.7 ± 0.2 23.3 ± 0.8 55.7 ± 0.0

NMI 51.5 ± 0.2 66.7 ± 0.7 66.4 ± 0.4 46.1 ± 2.2 76.8 ± 0.2

Celeb-A ARI 3.4 ± 0.3 5.7 ± 0.2 6.2 ± 0.7 6.6 ± 0.9 2.6 ± 0.7

NMI 4.2 ± 0.4 3.9 ± 0.2 4.7 ± 0.9 5.0 ± 0.7 2.9 ± 0.7

CIFAR10 ARI 0.09 ± 0.0 0.7 ± 0.2 0.7 ± 0.2 0.9 ± 0.1 8.6 ± 0.3

NMI 27.9 ± 0.1 17.7 ± 0.5 18.7 ± 0.3 18.9 ± 0.1 37.2 ± 0.4

Table 5: Normalized mutual information (NMI) and Adjusted Rank Index (ARI) for all generative
methods and datasets; Average scores and standard errors are computed across three random seeds

A.4.2 MULTI-TASK CLASSIFICATION

Figure 4 reports the average classification accuracy using a MLP probe across 3 random seeds for
the prediction of each of 20 Celeb-A facial attributes for SimVAE, generative and discriminative
baselines.

Augmentation protocol strength ablation Figure 5 reports the downstream CA across methods for
various augmentations stategy. More precisely, we progressively increase the cropping scale and color
jitter amplitude. Unsurprinsingly (Chen et al., 2020), discriminative methods exhibit high sensitivity
to the augmentation strategy with stronger disruption leading to improved content prediction. The
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Figure 4: Celeb-A 20 facial attributes prediction using a MP. Average scores and standard errors are
reported across 3 random seeds.
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Dataset MoCo VicReg SimCLR

MNIST ARI 58.3 ± 3.8 73.1 ± 1.8 95.3 ± 1.2

NMI 71.4 ± 2.5 86.2 ± 1.2 97.5 ± 0.6

Fashion ARI 30.9 ± 0.5 37.1 ± 1.3 50.3 ± 1.9

NMI 50.4 ± 0.6 64.5 ± 0.7 71.2 ± 1.0

Celeb-A ARI − 18.7 ± 0.8 0.0 ± 0.1

NMI − 24.3 ± 0.3 0.0 ± 0.0

CIFAR10 ARI 27.2 ± 1.0 31.2 ± 0.2 49.6 ± 1.3

NMI 16.5 ± 0.4 53.4 ± 0.1 26.9 ± 0.8

Table 6: Normalized mutual information (NMI) and Adjusted Rank Index (ARI) for all discriminative
baselines and datasets; Average scores and standard errors are computed across three random seeds

opposite trend is observed with vanilla generative methods where reduced variability amongst the
data leads to increased downstream performance. Interestingly, SimVAE is robust to augmentation
protocol and performs comparably across settings.

Figure 5: Ablation experiment across the number of augmentations considered during training of the
SimVAE model using the MNIST (left) and FashionMNIST (right) datasets. Two, four, six and eight
augmentations were considered. The average and standard deviation of the downstream classification
accuracy using KNN and GMM probes are reported across three seeds.

# of augmentation ablation Figure 6 reports the downstream classification accuracy for increasing
numbers of augmentations considered simultaneously during the training of SimVAE for MNIST and
FashionMNIST datasets. A larger number of augmentations result in a performance increase up to a
certain limit (i.e., 6-8 augmentations). Further exploration is needed to understand how larger sets of
augmentations can be effectively leveraged potentially by allowing for batch size increase. Due to
computational limitations, CIFAR10 & Celeb-A experiments rely on pairs of augmentations only.

Likelihood p(x|z) variance ablation We explore the impact of the likelihood, p(x|z), variance,
σ2, across each pixel dimension on the downstream performance using the CIFAR10 dataset. Ap-
pendix A.4.2 highlights how the predictive performance is inversely correlated with the σ2, highlight-
ing how SimVAE’s performance can further benefit from a reduction of σ2.

A.4.3 IMAGE GENERATION

In this section, we explore and report the quality of images generated through SimVAE and all
considered baselines through visualisations (for VAE-based approaches only) and quantitative

19



Under review as a conference paper at ICLR 2024

Figure 6: Ablation experiment across the number of augmentations considered during training of the
SimVAE model using the MNIST (left) and FashionMNIST (right) datasets. Two, four, six and eight
augmentations were considered. The average and standard deviation of the downstream classification
accuracy using KNN and GMM probes are reported across three seeds. Batch size of 128 for all
reported methods and number of augmentations.

Figure 7: Ablation experiment across the likelihood, p(x|z), variance. The average
and standard errors of CIFAR10 classification accuracy (CA) using a linear probe
(LP), mlp probe (MP), k-NN algorithm (KNN) and Gaussian mixture model (GMM)
are reported across three random seeds.

measurements.

Generated Images Figures 8 and 9 report examples of randomly generated images for each digit
class and clothing item using the SimVAE trained on MNIST and FashionMNIST respectively.

Figure 8: Conditional sampling for each one of the MNIST digit using pre-trained SimVAE model

20



Under review as a conference paper at ICLR 2024

Figure 9: Conditional sampling for each one of the FashionMNIST clothing type using pre-trained
SimVAE model

RE FID NLL

MNIST

VAE 11.3 ± 0.1 150.1 ± 0.2 5703.8 ± 0.1

β-VAE 11.3 ± 0.0 155.3 ± 0.5 5703.9 ± 0.0

CR-VAE 11.8 ± 0.0 153.0 ± 0.9 5705.2 ± 0.1

SimVAE 11.2 ± 0.0 152.7 ± 0.3 5703.5 ± 0.0

Fashion

VAE 4.4 ± 0.1 99.4 ± 0.6 5696.5 ± 0.1

β-VAE 4.6 ± 0.1 99.9 ± 0.7 5696.7 ± 0.1

CR-VAE 4.3 ± 0.0 98.7 ± 0.0 5696.7 ± 0.0

SimVAE 3.4 ± 0.1 96.1 ± 1.0 5695.6 ± 0.0

Celeb-A

VAE 56.6 ± 0.2 162.9 ± 2.8 −
β-VAE 60.3 ± 1.0 163.8 ± 2.3 −
CR-VAE 57.4 ± 0.1 159.3 ± 5.4 −
SimVAE 35.3 ± 0.2 157.8 ± 2.3 −

CIFAR10

VAE 21.4 ± 0.2 365.4 ± 3.3 22330.8 ± 0.2

β-VAE 22.3 ± 0.2 376.7 ± 1.7 22327.7 ± 0.2

CR-VAE 22.5 ± 0.0 374.4 ± 0.4 22327.3 ± 0.8

SimVAE 22.1 ± 0.1 349.9 ± 2.1 22327.3 ± 0.2

Table 7: Generation quality evaluation of all generative methods across three
random seeds: (from left to right) mean squared reconstruction error (RE, ↓),
fréchet inception distance (FID, ↓), negative log-likelihood (NLL,↓)

Generative quality Table 7 reports the FID scores, reconstruction error and approximate negative
log-likelihoods using 1000 importance-weighted samples for all generative baselines and SimVAE.
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