421

422

423

424

425
426
427

428

429
430
431

432
433

A Appendix

A.1 RiEMann Trainig Algorighm

Following the notations in Section 4.2, the training algorithm of RiEMann is summarized as follows:

Algorithm 1 RiEMann Training

Input: Demonstrations {(P;, Ti)}i]‘il, initialized models ¢, 11, 12, hyperparameters 1 and ro,
epochs n.

1: foriter =0ton — 1do

2: Sample a batch of m demonstrations {(P;, T;)}™,, where T; = (R, t;)

3: Predict the saliency map fs(z) = ¢(x),z € P;

4: Get a1 by doing weighted sum on P with the softmax weight from f ()

5: Get Broy centered on x;; with radius ¢

6: Predict f;(z) = 91 (x), fr(z) = Y2(x), Vo € Bror

7: Gett as the weighted position of f;(z) and get R by mean pooing on fr(z) on points centered

at t with the radius o R

8: Normalize each type-1 vector of R

9: Update ¢, 1)1, and ¢y with £ = 37" ([S70 (6 — £)2 + S0 (6 —)% + (Ri — Ry)?)]
10: end for
Qutput: Trained models ¢, ¥, and

A.2 TIterative Modified Gram-Schmidt Orthogonalization

We use Iterative Modified Gram-Schmidt Orthogonalization [41] to make the outputted rotation
matrix R legal. IMGS works much more stable than the vanilla Gram-Schmidt Orthogonalization.
The algorithm is summarized as follows.

Algorithm 2 Iterative Modified Gram-Schimidt

Input: R that contains column vectors Vg, U1, and vy € R3
1: for iter = 1to 2 do
2: fori=0to2do

3: U; = U;

4: for) =0toi—1do
s u-u-
6: end for

7: U; = V;

8: end for

9: end for

Output: A legal rotation matrix R that contains updated column vectors vg, v1, and vy € R3

A.3 Proofs of Theories

First, let’s review the definition SE(3)-equivariance on our point cloud P. Given an outputted vector
field f,,:(z) = @, f'(z),Vz € P from SE(3)-transformer [17] where n is the total types of
vectors, they are SE(3)-equivariant that means:

D,(R)fy(z) = f;(Tz),Vz € P,T = (R, t) € SE(3),l € n. (5)

where D;(R) is the Wigner-D matrix. For entities living in the usual 3D physical world, the angular
momentum quantum number j of the Wigner-D matrix is 1, thus for vectors with [= 1, we have:

D(R) =e "™d, (B)e™™, 6)

12

434
435
436

437

438
439

440
441
442

443
444
445
446

447

448
449

450
451

452
453

454

455
456
457
458

459
460
461

462
463
464

465

where «, 3,7 are the Euler angle representation of R that satisfies R = R.(o)R.(8)R.(7),
m,m’ € {~1,0,1}, and @}, . (B) is the matrix element. Since D(R) is also a unitary matrix,
we can find a set of basis [vg, v1, v2] that makes D(R) = R.

For type-0 vector fields, Do (R) is a one-dimensional identical scale factor 1. Let’s begin our proofs.

Theorem 1 Rotation matrices, represented by three type-1 vectors, are SE(3)-equivariant parame-
terization of rotation actions.

Proof: For a rotation matrix R = [vg, v1,v9] € R, where v, v1, and v, are the three column
vectors, we use three type-1 vectors to represent these three column vectors. Thus the output vector
of the network is as follows:

3
four(z) = P F) (2),Va € P. (7)
i=1

When the input point cloud is transformed by a SE(3) transformation T = (R,t), the rotation
matrix representation of the target object also transforms by R, that is [v}, v], v5] = Rlvg, vy, va).
According to Equation 5 and 6, the outputted type-1 vector fields are transformed by D;(R) = R,
thus we have:

[U(l)’viavé] = Dl(R)[UOthU?] ¥

Theorem 2 There is no SE(3)-equivariant vector field representation for Euler angle, quaternion,
and axis-angle.

Proof: We use proof by contradiction to prove theorem 2. Consider the example illustrated in Figure
2.

1) For quaternion, we define a quaternion ¢ = [cos(0/2),sin(0/2)u;,sin(6/2)u;,sin(6/2)uy]
where 6 is the rotation angle and [u;, u;, us] is the rotation axis. For the initial pose, we have

q = [1,0,0,0]. For the end pose, we have ¢’ = [@, §7 0, 0], thus:
V2o V2

1
2 T2

¢ =q+]| ,0,0].)

There are two options for quaternion type-/ parameterization: 1) using four type-0 vectors; 2) using

one type-1 vector and one type-0 vector. For both cases, the +[@ -1, @,

5 0, 0] operation cannot
be represented by a Wigner-D matrix. Thus there is no SE(3)-equivariant vector field representation

for quaternion. Axis-angle can be proven in the same way.

2) For Euler angles, we define an Euler angle as E = («, 3,). For the initial pose, we have Euler
angles equal to 2 = (0,0,0). For the end pose, we have Euler angles equal to £’ = (—7,0,0).

Thus we have:
T

—5
There are two options for Euler angles’ type-l parameterization: 1) using three type-0 vectors; 2)
using one type-1 vector. For both cases, the +[—7,0,0] operation cannot be represented by a
Wigner-D matrix. Thus there is no SE(3)-equivariant vector field representation for Euler angles.

E' =E+[-=,0,0]. (10)

A.4 Training Details
A.4.1 Point Cloud Preprocessing

In the real-world experiments, we perform point cloud voxel downsampling before feeding the point
cloud into the network with the voxel size equal to 1cm for the Mug on Rack task and 2¢m for the
task Plane on Shelf.

13

471
472
473
474

475

476
477
478
479
480
481
482

483
484
485

486
487
488
489

491
492
493
494
495
496
497
498

499
500

502
503
504
505
506

508

509
510
511

After this, we perform color jittering by adding Gaussian noise on each point’s color with a standard
variance equal to 0.005. We also perform random color dropping that replaces 30% points’ color
to zero, and HSV transformation that randomly transfers the hue, saturation, and brightness of each
point by 0.4, 1.5, and 2 times respectively.

A.4.2 Implementation Details

For RiEMann, We use r; = 0.2m,r, = 0.02m for all the tasks in the simulation. We use r; =
0.16m, ro = 0.02m for the real world Mug on Rack task, and r; = 0.2m, ro = 0.02m for the Plane
on Shelf task. Other network hyperparameters of RiEMann are listed in Table 5. We do not use
any kind of prior knowledge for the training of RiIEMann such as object segmentation, pertaining, or
pose augmentations. We also set the robot to first reach some pre-defined pre-grasp pose (e.g., above
the mug) and a pre-place pose (e.g., in front of the rack) to eliminate the unnecessary influence of
the motion planners.

The full training of RiEMann takes 200 epochs on a single NVIDIA A40 with a batch size of 4 and
a learning rate of le-4 for each network module ¢, 11, and v,. However, we find that for Mug on
Rack, they only need about 50 epochs to converge, which takes about 47 minutes.

Table 5: Network hyperparameters of RIEMann.

Network Layer Max Type-l Head Number Channels Message Passing Distance

¢ 4 4 1 8 0.1m
1 4 3 1 8 0.07m
W 4 4 1 8 0.07m

For PerAct [37], the language descriptions of our tasks are: Put the mug on the rack, Place the plane
on the shelf, Turn the faucet. We follow the original 3D voxel grid size (100%) and the patch size
(5%). We use Euler angles as the rotational action representations for PerAct. For fairness, we do
not train the gripper action for PerAct. We use 6 self-attention layers for the perceiver Transformer
module. The other hyper-parameters are the same with the original paper.

For R-NDF [13], since there is no pre-trained weight for the plane and the faucet, we here pre-
train the NDFs using the reconstructed meshes from the point clouds in our demonstrations, and use
these model as the NDFs module to run R-NDFs. We observe that R-NDFs fail to accomplish all of
the tasks when testing, which shows that R-NDFs cannot perform well without object segmentation,
because of the locality requirements of R-NDFs. We also tried to use the original pre-trained weights
from the original paper [13] for the task Mug on Rack, but we found that the performances were
even worse because of the discrepancy of the specific object shapes in the test experiments and the
pertaining datasets. Other network hyper-parameters are the same as in the original paper.

For EDF [14]and D-EDF [15], we manually separate the robot end-effector and the grasped object
point cloud from the scene rather than setting a series of separate cameras to capture their point
cloud. For EDFs, we run the MH for 1000 steps, run the Langevin algorithm for 300 steps, and
optimize the samples for 100 steps. We use one query point for picking and three query points for
placing. We train EDFs for 200 epochs, the same epochs with RiIEMann. For D-EDFs, we train
the networks for 1 hour with parallel training of the low-resolution and the high-resolution networks
and the energy-based critic network. Other network hyper-parameters are the same as in the original

paper.
A.5 Simulation Experiments

A.5.1 Detailed Descriptions of Simulation Tasks

For all simulation tasks, the radius of the table is 0.75m, and we put a Franka Panda robot arm in the
center of the table. We divide the table into a semicircle part and two quarter parts and make them
different heights with a height difference of 0.1m. This is designed to conveniently apply SE(3)

14

512
513

514
515

517
518
519

521
522

523
524
525
526

527
528
529
530
531
532
533
534

535
536
537
538
539

540

541
542
543

» 5 /0%

" :
) g ¥ h
T s -

~ Qf’ o !)

.
-

\

L

(a) First step: the robot moves to the pre- (b) Second step: the robot opens the faucet
dicted target pose of the end-effector. along the predicted direction (red arrow).

Figure 6: The articulated object manipulation task Turn Faucet.

transformations on target objects. We cut the input point cloud into a cube with a side length of 2m
centered on the center of the table. Details of different tasks are introduced here:

Mug on Rack: A mug and a rack are placed on the table. The robot has to pick up the mug by the
rim and then hang it on the rack by the handle. This is the most representative object rearranging
task that is also evaluated in [12, 14, 13, 15]. For the training set T, we use a mug in blue with a side
length of about 17 cm, and a rack with a height of 67cm. The mug must be hung on the highest peg
of the rack. For the new instance set NI, we use a patterned red mug with a height of about 19cm
and a base diameter of about 10cm.

Plane on Shelf: A plane model and a box-shape shelf are placed on the table, and the robot has to
pick the middle part of the body of the plane and place it on the shelf. For T, we use a grey plane
model with a length of about 20cm. For NI, we use a blue plane with the same size.

Turn Faucet: As shown in Figure 6, a faucet is placed on the table, and the robot has to turn on
the faucet by first moving to the handle of the faucet and then moving along the opening direction.
For T, we use the NO. 5004 faucet model in ManiSkill2 [45]. For NI, we use the No. 5005 faucet
model.

For the open-faucer task, we assume that given a target pose T = {R,t} € SFE(3) and a target
direction d € R3, the robot can accomplish the task by first going to the target pose T just as done
in pick-and-place tasks, and then moving along the target direction d while keeping the orientation
not changed, as illustrated in Figure 6. To encode the extra directional action d, we add another
type-1 vector field on the orientation network 1), that is: fp = @?:1 fi(z),z € Brojs. The final
output directional action d is also calculated through mean pooling on points in the radius 5. Note
the policy needs to continuously predict the output direction during the opening process, which
shows that RiIEMann can capture the local SE(3)-equivariance of the handle part of the faucet.

In this task, we give demonstrations of not only the target pose T, but also the opening direction d at
the first frame. Here there exists two kinds of SE(3)-equivariance: the target pose should be equivari-
ant to the pose of the faucet at the first frame, and the opening direction should be equivariant to the
handle during the opening process, where the second equivariance requires both local-equivariance
and the real-time performance.

A.5.2 Demonstration Collection

We provide the ground truth pose to a point cloud based motion planner MPlib [46] to generate the
demonstration trajectory for training. We transform all point cloud input to the end-effector coor-
dinate system. We collect 10 demonstrations for each setting for the evaluation of SE(3) geodesic

15

544
545

546

547

548
549
550
551
552

553

555

556

558
559
560
561

563
564
565

566

567
568

569

570

571
572

573

574

575

576

577
578
579
580
581
582
583
584
585

distance. We manually exclude those situations that cannot support a successful collision-free mo-
tion planning trajectory, as well as in the testing cases.

A.6 Real World Experiments
A.6.1 Environment Setup

We use a Franka Emika Panda robot arm with four RealSense D435i RGB-D cameras for the real-
world experiments, as shown in Figure 4. The cameras are calibrated relative to the robot’s base
frame. We fuse the point clouds from all four cameras and transform the point cloud into the end-
effector frame of the robot for control. We crop the scene to a cube with a side length of 1.5 meters
and downsample the point to get 8192 points in the scene.

For real-world tasks, since the point cloud is noisy and usually part-occluded, we do not perform the
pose transformation calculation T = TplaceT;blject for the task, i.e., we directly use the predicted
target pose as the final action.

A.6.2 Detailed Task Descriptions

Mug on Rack: The task is similar to the version in the simulation. For T, we use a pink mug with a
side length of about 10cm. We use a rack with a height of 35cm and a base diameter of about 15cm.
We split the table into four equal areas, as in the simulated version of this task. In T, we only collect
demonstrations in a quarter of the desktop area and let the mug rotate along the z-axis for 90 degrees
in a top pose. For NI, we use a yellow new mug with a similar size to the pink mug. For NP, we let
the mug on all table regions and rotate in 3 dimensional with any degree.

Plan on Shelf: The task is similar to the version in the simulation. For T, we use a blue plane model,
and collect demonstrations in the same manner as above. For NI, we use a green plane with a similar
size. The shelf is a set of discrete racks that can support the plane if it is placed in the correct pose.

A.6.3 Demonstration Collection

We use the teaching mode of the robot arm to give demonstrations, as illustrated in Figure 1 and in
supplementary videos. We transform all the point clouds into the end-effector coordinate system.

A.7 More Illustrations
A.7.1 Failure Case Illustrations

We show some failure case point clouds of RiIEMann in both tasks in Figure 7. We can see that the
lower section of the object is not captured by the cameras, which leads to incomplete geometries.

A.7.2 Results Illustrations

We here illustrate the results and the features of the plane-on-shelf task in Figure 8.

A.8 Ablation Studies
A.8.1 Ablation of Hyperparameters

We test the trained model on the NP case of the task Mug on Rack in simulation. Results are shown
in Figure 9. We can see that with more points in the scene input point cloud, the performance of the
model is better, and the same is the number of demonstrations. Our model can achieve competitive
results with less than 10 demonstrations. For the hidden layer type-l experiment, we can see that with
a higher max type-/, the model can work better. However, in practice, higher type-I will extremely
increase the computational cost and GPU memory usage. In the Mug On Rack task, a network with
a maximum number [equals 5 only supports batch size = 1 during training on an NVIDIA A40.
Lastly, the last group of Figure 9 shows that the saliency map network can not only reduce the
training burden of the policy network but also improve the final pose estimation results.

16

586

587
588

589
590
591
592

593

(b) Low-quality point clouds in the real-world. Left
up: a big part is missed. Right up: the plane head
(a) High-quality point clouds in the real world. There is missed. Left down: a big part is missed. Right
are still some flaws in the point clouds, which shows down: noisy points on the mug. These low-quality
the robustness of RiIEMann. point clouds can lead to the failure of RiIEMann.

Figure 7: Visualization of the low-quality data in the real-world experiments that cause the failure
of experiments.

DO
(a) Pose predictions of the task Plane on Shelf of
four rest cases NI, NP, DO, and ALL in the real (b) The Bror and the local SE(3)-equivariant fea-
world. ture visualization of the ALL test cases.

Figure 8: Test pose predictions and feature visualization of real-world evaluations of the plane on
shelf task.

A.8.2 Ablation of Radius r; and r,
Here we add additional experiments to answer this question. We train the mug-on-rack task in the
simulation with different 7y and 5. Results are in Table 6.

Note in our paper, we choose 1 = 0.16m and o = 0.02m. In the mug-on-rack task, the height of
the mug is about 0.22m and the width of the mug is about 0.20m. Note ro = 0.01m means that
there is only one point for ¢/, to perform mean pooling, because we perform point cloud voxelization
for the point cloud with a voxel size of 0.01m.

From the results, we can see that:

17

595
596
597
598
599
600

602

603
604
605

606
607
608

609

611

0.07 A

0.06 -

0.05 A

Values

0.03 A

0.02 A

0.01 A

0.04

SE(3) Geodesic Distances on the NP setting of the Mug on Rack task

0.071
0.056
0.047
0.044
0.025
0.020
b.016 0.018

0.013, 414 0.0110.012 0.011 0.011

512 2048'4096 8192 2 "4 5 377 10 w/o w/
Number of Points Hidden Layer Type-I Number of Demonstrations w/ or w/o Phi

Figure 9: Ablation studies of different hyperparameters of RiEMann. Each value is the average
result of 20 random seeds.

Table 6: Success rates and SE(3)-geodesic distances of different r; and 75 of the mug-on-rack task
in simulation. Each value is evaluated under 20 random seeds. In our original paper, we choose
r1 = 0.16m and ro = 0.02m.

ri/m 0.05 0.10 0.16 0.22 0.28
ro/m 0.01 0.02 0.04 0.01 0.02 004 0.01 0.02 0.04 0.01 002 0.04 0.01 0.02 0.04

T 0.00 0.00 0.00 0.50 0.85 0.80 0.90 1.00 1.00 0.90 1.00 1.00 0.95 1.00 1.00
NI 0.00 0.00 0.00 0.10 0.80 0.75 0.80 090 0.95 090 095 0.90 090 0.90 0.95

SR NP 000 0.00 0.00 045 0.75 080 0.85 0.95 1.00 0.90 095 095 0.95 0.95 1.00
DO 0.00 0.00 0.00 0.35 080 0.70 0.70 1.00 1.00 0.85 095 1.00 0.80 1.00 1.00
ALL 0.00 0.00 0.00 0.00 0.50 0.55 0.50 0.85 0.85 0.70 0.85 090 0.70 0.85 0.80
T 1.366 1.478 1.175 0.688 0.178 0.186 0.278 0.053 0.056 0.067 0.064 0.062 0.059 0.060 0.055
NI 1.159 1.759 1.311 0.982 0.220 0.201 0.321 0.066 0.061 0.068 0.061 0.062 0.066 0.063 0.062
Dyeo NP 1.668 1.076 1.079 0.804 0.123 0.202 0.339 0.069 0.066 0.063 0.066 0.055 0.060 0.064 0.058

DO 1.460 1.298 1.290 0.866 0.175 0.199 0.297 0.058 0.056 0.082 0.062 0.059 0.079 0.064 0.063
ALL 1.982 1.333 1.077 1.390 0.797 0.639 0.427 0.071 0.070 0.079 0.077 0.068 0.088 0.079 0.072

r1 should be large enough (> 0.16m) to capture all points of the target objects to make
sure the position and orientation network can understand the full object geometry. If r; is
less than the radius of the mug, the success rate will drop quickly, and the SE(3) geodesic
error will increase quickly. If r; is too small (r; = 0.05m), the success rate becomes zero.
The reason is that the training becomes very unstable because every time the position and
the orientation network may choose different parts of the point cloud for training since the
saliency map network is not that strong to give very precise position predictions.

ro should capture more than one point (> 0.01m) to avoid noisy and accidental errors
caused by too few points.

Although r5 = 0.04m also works well, it brings more burden for training since the orien-
tation network 15 outputs the highest type-l vectors in our whole pipeline, and using fewer
points for training is better for reducing the memory usage for 5.

For ro = 0.01m, the results are significantly worse than other situations in DO and ALL.
This shows that noisy points will influence the results if we only use one point for predic-
tion.

The worst SE(3)-geodesic error of RiEMann (r; = 0.05m) is smaller than the R-NDF
baseline [13] in Table 2. This is because the saliency map network will restrict the position
error to be in a certain range.

18

612

613
614
615
616
617
618
619

620
621
622
623
624

625
626
627

A.8.3 The Geometry Generalization Ability of RIEMann

The generalization ability of RiIEMann on the new geometry comes from the neural network struc-
ture and its inductive bias. We think it is the locality property of the message-passing mechanism
in the equivariant backbone that brings this geometry-level generalization. We perform the new in-
stance experiments because, in related works [14, 15], they found that equivariant networks have
a certain degree of geometric generalization ability only with 5 to 10 demonstrations, and we con-
firmed this point in our experiments. Yes, compared to NDFs [12, 13], our geometry generalization
ability is worse because their encoder is trained on a large-scale in-category dataset.

To better demonstrate how strong the generalization ability of RiEMann is on new object geometries,
here we add an additional experiment. We gradually deform the mesh of the mug trained in the mug-
on-rack task, put them into the NP setting, and record the corresponding SE(3)-geodesic error of the
predictions from the original trained model. We keep the longest side of the mug the same. The
results are in Table 7.

Table 7: SE(3)-geodesic distance evaluations of the trained model on the training mug. Each value
is evaluated under 20 random SE(3) poses.

Picture w ej

Description | original flat tall fat new

Dyo | 0055 | 0187 | 0127 | 009 | 0395

We can see that if the general shape of the mug remains (especially for the rim of the mug), the Dy,
remains at a low level, which shows that RiIEMann has a certain power of geometry generalization
ability. However, if the geometry of the mug is deformed too much, the result becomes worse.

19

