
A Appendix421

A.1 RiEMann Trainig Algorighm422

Following the notations in Section 4.2, the training algorithm of RiEMann is summarized as follows:423

Algorithm 1 RiEMann Training

Input: Demonstrations {(Pi,Ti)}Mi=1, initialized models ϕ, ψ1, ψ2, hyperparameters r1 and r2,
epochs n.

1: for iter = 0 to n− 1 do
2: Sample a batch of m demonstrations {(Pi,Ti)}mi=1, where Ti = (Ri, ti)
3: Predict the saliency map fs(x) = ϕ(x), x ∈ Pi

4: Get xt1 by doing weighted sum on P with the softmax weight from fs(x)
5: Get BROI centered on xt1 with radius r1
6: Predict ft(x) = ψ1(x), fR(x) = ψ2(x), ∀x ∈ BROI

7: Get t̂ as the weighted position of ft(x) and get R̂ by mean pooing on fR(x) on points centered
at t̂ with the radius r2

8: Normalize each type-1 vector of R̂
9: Update ϕ, ψ1, and ψ2 with L =

∑m
i=0[

∑N
j=1(ti − t̂i)

2 +
∑NB

k=1((ti − t̂i)
2 + (Ri − R̂i)

2)]
10: end for
Output: Trained models ϕ, ψ1, and ψ2

A.2 Iterative Modified Gram-Schmidt Orthogonalization424

We use Iterative Modified Gram-Schmidt Orthogonalization [41] to make the outputted rotation425

matrix R̂ legal. IMGS works much more stable than the vanilla Gram-Schmidt Orthogonalization.426

The algorithm is summarized as follows.427

Algorithm 2 Iterative Modified Gram-Schimidt

Input: R̂ that contains column vectors v0, v1, and v2 ∈ R3

1: for iter = 1 to 2 do
2: for i = 0 to 2 do
3: ui = vi
4: for j = 0 to i− 1 do
5: vi = vi − ⟨vi,uj⟩

⟨uj ,uj⟩uj
6: end for
7: ui = vi
8: end for
9: end for

Output: A legal rotation matrix R̂ that contains updated column vectors v0, v1, and v2 ∈ R3

A.3 Proofs of Theories428

First, let’s review the definition SE(3)-equivariance on our point cloud P. Given an outputted vector429

field fout(x) =
⊕n

i=1 f
i(x),∀x ∈ P from SE(3)-transformer [17] where n is the total types of430

vectors, they are SE(3)-equivariant that means:431

Dl(R)fl(x) = fl(Tx),∀x ∈ P, T = (R, t) ∈ SE(3), l ∈ n. (5)

where Dl(R) is the Wigner-D matrix. For entities living in the usual 3D physical world, the angular432

momentum quantum number j of the Wigner-D matrix is 1, thus for vectors with l = 1, we have:433

D(R) = e−im′αdjm′,m(β)e−imγ , (6)
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where α, β, γ are the Euler angle representation of R that satisfies R = Rz(α)Rx(β)Rz(γ),434

m,m′ ∈ {−1, 0, 1}, and djm′,m(β) is the matrix element. Since D(R) is also a unitary matrix,435

we can find a set of basis [v0, v1, v2] that makes D(R) = R.436

For type-0 vector fields, D0(R) is a one-dimensional identical scale factor 1. Let’s begin our proofs.437

Theorem 1 Rotation matrices, represented by three type-1 vectors, are SE(3)-equivariant parame-438

terization of rotation actions.439

Proof: For a rotation matrix R = [v0, v1, v2] ∈ R9, where v0, v1, and v2 are the three column440

vectors, we use three type-1 vectors to represent these three column vectors. Thus the output vector441

of the network is as follows:442

fout(x) =

3⊕
i=1

f1i (x),∀x ∈ P. (7)

When the input point cloud is transformed by a SE(3) transformation T = (R, t), the rotation443

matrix representation of the target object also transforms by R, that is [v′0, v
′
1, v

′
2] = R[v0, v1, v2].444

According to Equation 5 and 6, the outputted type-1 vector fields are transformed by D1(R) = R,445

thus we have:446

[v′0, v
′
1, v

′
2] = D1(R)[v0, v1, v2] (8)

■447

Theorem 2 There is no SE(3)-equivariant vector field representation for Euler angle, quaternion,448

and axis-angle.449

Proof: We use proof by contradiction to prove theorem 2. Consider the example illustrated in Figure450

2.451

1) For quaternion, we define a quaternion q = [cos(θ/2), sin(θ/2)ui, sin(θ/2)uj , sin(θ/2)uk]452

where θ is the rotation angle and [ui, uj , uk] is the rotation axis. For the initial pose, we have453

q = [1, 0, 0, 0]. For the end pose, we have q′ = [
√
2
2 ,

√
2
2 , 0, 0], thus:454

q′ = q + [

√
2

2
− 1,

√
2

2
, 0, 0]. (9)

There are two options for quaternion type-l parameterization: 1) using four type-0 vectors; 2) using455

one type-1 vector and one type-0 vector. For both cases, the +[
√
2
2 − 1,

√
2
2 , 0, 0] operation cannot456

be represented by a Wigner-D matrix. Thus there is no SE(3)-equivariant vector field representation457

for quaternion. Axis-angle can be proven in the same way.458

2) For Euler angles, we define an Euler angle as E = (α, β, γ). For the initial pose, we have Euler459

angles equal to E = (0, 0, 0). For the end pose, we have Euler angles equal to E′ = (−π
2 , 0, 0).460

Thus we have:461

E′ = E + [−π
2
, 0, 0]. (10)

There are two options for Euler angles’ type-l parameterization: 1) using three type-0 vectors; 2)462

using one type-1 vector. For both cases, the +[−π
2 , 0, 0] operation cannot be represented by a463

Wigner-D matrix. Thus there is no SE(3)-equivariant vector field representation for Euler angles.464

■465

A.4 Training Details466

A.4.1 Point Cloud Preprocessing467

In the real-world experiments, we perform point cloud voxel downsampling before feeding the point468

cloud into the network with the voxel size equal to 1cm for the Mug on Rack task and 2cm for the469

task Plane on Shelf.470
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After this, we perform color jittering by adding Gaussian noise on each point’s color with a standard471

variance equal to 0.005. We also perform random color dropping that replaces 30% points’ color472

to zero, and HSV transformation that randomly transfers the hue, saturation, and brightness of each473

point by 0.4, 1.5, and 2 times respectively.474

A.4.2 Implementation Details475

For RiEMann, We use r1 = 0.2m, r2 = 0.02m for all the tasks in the simulation. We use r1 =476

0.16m, r2 = 0.02m for the real world Mug on Rack task, and r1 = 0.2m, r2 = 0.02m for the Plane477

on Shelf task. Other network hyperparameters of RiEMann are listed in Table 5. We do not use478

any kind of prior knowledge for the training of RiEMann such as object segmentation, pertaining, or479

pose augmentations. We also set the robot to first reach some pre-defined pre-grasp pose (e.g., above480

the mug) and a pre-place pose (e.g., in front of the rack) to eliminate the unnecessary influence of481

the motion planners.482

The full training of RiEMann takes 200 epochs on a single NVIDIA A40 with a batch size of 4 and483

a learning rate of 1e-4 for each network module ϕ, ψ1, and ψ2. However, we find that for Mug on484

Rack, they only need about 50 epochs to converge, which takes about 47 minutes.485

Table 5: Network hyperparameters of RiEMann.
Network Layer Max Type-l Head Number Channels Message Passing Distance

ϕ 4 4 1 8 0.1m
ψ1 4 3 1 8 0.07m
ψ2 4 4 1 8 0.07m

For PerAct [37], the language descriptions of our tasks are: Put the mug on the rack, Place the plane486

on the shelf, Turn the faucet. We follow the original 3D voxel grid size (1003) and the patch size487

(53). We use Euler angles as the rotational action representations for PerAct. For fairness, we do488

not train the gripper action for PerAct. We use 6 self-attention layers for the perceiver Transformer489

module. The other hyper-parameters are the same with the original paper.490

For R-NDF [13], since there is no pre-trained weight for the plane and the faucet, we here pre-491

train the NDFs using the reconstructed meshes from the point clouds in our demonstrations, and use492

these model as the NDFs module to run R-NDFs. We observe that R-NDFs fail to accomplish all of493

the tasks when testing, which shows that R-NDFs cannot perform well without object segmentation,494

because of the locality requirements of R-NDFs. We also tried to use the original pre-trained weights495

from the original paper [13] for the task Mug on Rack, but we found that the performances were496

even worse because of the discrepancy of the specific object shapes in the test experiments and the497

pertaining datasets. Other network hyper-parameters are the same as in the original paper.498

For EDF [14]and D-EDF [15], we manually separate the robot end-effector and the grasped object499

point cloud from the scene rather than setting a series of separate cameras to capture their point500

cloud. For EDFs, we run the MH for 1000 steps, run the Langevin algorithm for 300 steps, and501

optimize the samples for 100 steps. We use one query point for picking and three query points for502

placing. We train EDFs for 200 epochs, the same epochs with RiEMann. For D-EDFs, we train503

the networks for 1 hour with parallel training of the low-resolution and the high-resolution networks504

and the energy-based critic network. Other network hyper-parameters are the same as in the original505

paper.506

A.5 Simulation Experiments507

A.5.1 Detailed Descriptions of Simulation Tasks508

For all simulation tasks, the radius of the table is 0.75m, and we put a Franka Panda robot arm in the509

center of the table. We divide the table into a semicircle part and two quarter parts and make them510

different heights with a height difference of 0.1m. This is designed to conveniently apply SE(3)511
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(a) First step: the robot moves to the pre-
dicted target pose of the end-effector.

(b) Second step: the robot opens the faucet
along the predicted direction (red arrow).

Figure 6: The articulated object manipulation task Turn Faucet.

transformations on target objects. We cut the input point cloud into a cube with a side length of 2m512

centered on the center of the table. Details of different tasks are introduced here:513

Mug on Rack: A mug and a rack are placed on the table. The robot has to pick up the mug by the514

rim and then hang it on the rack by the handle. This is the most representative object rearranging515

task that is also evaluated in [12, 14, 13, 15]. For the training set T, we use a mug in blue with a side516

length of about 17 cm, and a rack with a height of 67cm. The mug must be hung on the highest peg517

of the rack. For the new instance set NI, we use a patterned red mug with a height of about 19cm518

and a base diameter of about 10cm.519

Plane on Shelf : A plane model and a box-shape shelf are placed on the table, and the robot has to520

pick the middle part of the body of the plane and place it on the shelf. For T, we use a grey plane521

model with a length of about 20cm. For NI, we use a blue plane with the same size.522

Turn Faucet: As shown in Figure 6, a faucet is placed on the table, and the robot has to turn on523

the faucet by first moving to the handle of the faucet and then moving along the opening direction.524

For T, we use the NO. 5004 faucet model in ManiSkill2 [45]. For NI, we use the No. 5005 faucet525

model.526

For the open-faucet task, we assume that given a target pose T = {R, t} ∈ SE(3) and a target527

direction d ∈ R3, the robot can accomplish the task by first going to the target pose T just as done528

in pick-and-place tasks, and then moving along the target direction d while keeping the orientation529

not changed, as illustrated in Figure 6. To encode the extra directional action d, we add another530

type-1 vector field on the orientation network ψ2, that is: fR =
⊕4

i=1 f
i
1(x), x ∈ BROI . The final531

output directional action d̂ is also calculated through mean pooling on points in the radius r2. Note532

the policy needs to continuously predict the output direction during the opening process, which533

shows that RiEMann can capture the local SE(3)-equivariance of the handle part of the faucet.534

In this task, we give demonstrations of not only the target pose T, but also the opening direction d at535

the first frame. Here there exists two kinds of SE(3)-equivariance: the target pose should be equivari-536

ant to the pose of the faucet at the first frame, and the opening direction should be equivariant to the537

handle during the opening process, where the second equivariance requires both local-equivariance538

and the real-time performance.539

A.5.2 Demonstration Collection540

We provide the ground truth pose to a point cloud based motion planner MPlib [46] to generate the541

demonstration trajectory for training. We transform all point cloud input to the end-effector coor-542

dinate system. We collect 10 demonstrations for each setting for the evaluation of SE(3) geodesic543
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distance. We manually exclude those situations that cannot support a successful collision-free mo-544

tion planning trajectory, as well as in the testing cases.545

A.6 Real World Experiments546

A.6.1 Environment Setup547

We use a Franka Emika Panda robot arm with four RealSense D435i RGB-D cameras for the real-548

world experiments, as shown in Figure 4. The cameras are calibrated relative to the robot’s base549

frame. We fuse the point clouds from all four cameras and transform the point cloud into the end-550

effector frame of the robot for control. We crop the scene to a cube with a side length of 1.5 meters551

and downsample the point to get 8192 points in the scene.552

For real-world tasks, since the point cloud is noisy and usually part-occluded, we do not perform the553

pose transformation calculation T̂ = TplaceT−1
object for the task, i.e., we directly use the predicted554

target pose as the final action.555

A.6.2 Detailed Task Descriptions556

Mug on Rack: The task is similar to the version in the simulation. For T, we use a pink mug with a557

side length of about 10cm. We use a rack with a height of 35cm and a base diameter of about 15cm.558

We split the table into four equal areas, as in the simulated version of this task. In T, we only collect559

demonstrations in a quarter of the desktop area and let the mug rotate along the z-axis for 90 degrees560

in a top pose. For NI, we use a yellow new mug with a similar size to the pink mug. For NP, we let561

the mug on all table regions and rotate in 3 dimensional with any degree.562

Plan on Shelf : The task is similar to the version in the simulation. For T, we use a blue plane model,563

and collect demonstrations in the same manner as above. For NI, we use a green plane with a similar564

size. The shelf is a set of discrete racks that can support the plane if it is placed in the correct pose.565

A.6.3 Demonstration Collection566

We use the teaching mode of the robot arm to give demonstrations, as illustrated in Figure 1 and in567

supplementary videos. We transform all the point clouds into the end-effector coordinate system.568

A.7 More Illustrations569

A.7.1 Failure Case Illustrations570

We show some failure case point clouds of RiEMann in both tasks in Figure 7. We can see that the571

lower section of the object is not captured by the cameras, which leads to incomplete geometries.572

A.7.2 Results Illustrations573

We here illustrate the results and the features of the plane-on-shelf task in Figure 8.574

A.8 Ablation Studies575

A.8.1 Ablation of Hyperparameters576

We test the trained model on the NP case of the task Mug on Rack in simulation. Results are shown577

in Figure 9. We can see that with more points in the scene input point cloud, the performance of the578

model is better, and the same is the number of demonstrations. Our model can achieve competitive579

results with less than 10 demonstrations. For the hidden layer type-l experiment, we can see that with580

a higher max type-l, the model can work better. However, in practice, higher type-l will extremely581

increase the computational cost and GPU memory usage. In the Mug On Rack task, a network with582

a maximum number l equals 5 only supports batch size = 1 during training on an NVIDIA A40.583

Lastly, the last group of Figure 9 shows that the saliency map network can not only reduce the584

training burden of the policy network but also improve the final pose estimation results.585
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(a) High-quality point clouds in the real world. There
are still some flaws in the point clouds, which shows
the robustness of RiEMann.

(b) Low-quality point clouds in the real-world. Left
up: a big part is missed. Right up: the plane head
is missed. Left down: a big part is missed. Right
down: noisy points on the mug. These low-quality
point clouds can lead to the failure of RiEMann.

Figure 7: Visualization of the low-quality data in the real-world experiments that cause the failure
of experiments.

NPNI

DO ALL

(a) Pose predictions of the task Plane on Shelf of
four test cases NI, NP, DO, and ALL in the real
world.

(b) The BROI and the local SE(3)-equivariant fea-
ture visualization of the ALL test cases.

Figure 8: Test pose predictions and feature visualization of real-world evaluations of the plane on
shelf task.

A.8.2 Ablation of Radius r1 and r2586

Here we add additional experiments to answer this question. We train the mug-on-rack task in the587

simulation with different r1 and r2. Results are in Table 6.588

Note in our paper, we choose r1 = 0.16m and r2 = 0.02m. In the mug-on-rack task, the height of589

the mug is about 0.22m and the width of the mug is about 0.20m. Note r2 = 0.01m means that590

there is only one point for ψ2 to perform mean pooling, because we perform point cloud voxelization591

for the point cloud with a voxel size of 0.01m.592

From the results, we can see that:593
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SE(3) Geodesic Distances on the NP setting of the Mug on Rack task

Figure 9: Ablation studies of different hyperparameters of RiEMann. Each value is the average
result of 20 random seeds.

Table 6: Success rates and SE(3)-geodesic distances of different r1 and r2 of the mug-on-rack task
in simulation. Each value is evaluated under 20 random seeds. In our original paper, we choose
r1 = 0.16m and r2 = 0.02m.

r1/m 0.05 0.10 0.16 0.22 0.28

r2/m 0.01 0.02 0.04 0.01 0.02 0.04 0.01 0.02 0.04 0.01 0.02 0.04 0.01 0.02 0.04

T 0.00 0.00 0.00 0.50 0.85 0.80 0.90 1.00 1.00 0.90 1.00 1.00 0.95 1.00 1.00
NI 0.00 0.00 0.00 0.10 0.80 0.75 0.80 0.90 0.95 0.90 0.95 0.90 0.90 0.90 0.95

SR NP 0.00 0.00 0.00 0.45 0.75 0.80 0.85 0.95 1.00 0.90 0.95 0.95 0.95 0.95 1.00
DO 0.00 0.00 0.00 0.35 0.80 0.70 0.70 1.00 1.00 0.85 0.95 1.00 0.80 1.00 1.00

ALL 0.00 0.00 0.00 0.00 0.50 0.55 0.50 0.85 0.85 0.70 0.85 0.90 0.70 0.85 0.80

T 1.366 1.478 1.175 0.688 0.178 0.186 0.278 0.053 0.056 0.067 0.064 0.062 0.059 0.060 0.055
NI 1.159 1.759 1.311 0.982 0.220 0.201 0.321 0.066 0.061 0.068 0.061 0.062 0.066 0.063 0.062

Dgeo NP 1.668 1.076 1.079 0.804 0.123 0.202 0.339 0.069 0.066 0.063 0.066 0.055 0.060 0.064 0.058
DO 1.460 1.298 1.290 0.866 0.175 0.199 0.297 0.058 0.056 0.082 0.062 0.059 0.079 0.064 0.063

ALL 1.982 1.333 1.077 1.390 0.797 0.639 0.427 0.071 0.070 0.079 0.077 0.068 0.088 0.079 0.072

• r1 should be large enough (≥ 0.16m) to capture all points of the target objects to make594

sure the position and orientation network can understand the full object geometry. If r1 is595

less than the radius of the mug, the success rate will drop quickly, and the SE(3) geodesic596

error will increase quickly. If r1 is too small (r1 = 0.05m), the success rate becomes zero.597

The reason is that the training becomes very unstable because every time the position and598

the orientation network may choose different parts of the point cloud for training since the599

saliency map network is not that strong to give very precise position predictions.600

• r2 should capture more than one point (> 0.01m) to avoid noisy and accidental errors601

caused by too few points.602

• Although r2 = 0.04m also works well, it brings more burden for training since the orien-603

tation network ψ2 outputs the highest type-l vectors in our whole pipeline, and using fewer604

points for training is better for reducing the memory usage for ψ2.605

• For r2 = 0.01m, the results are significantly worse than other situations in DO and ALL.606

This shows that noisy points will influence the results if we only use one point for predic-607

tion.608

• The worst SE(3)-geodesic error of RiEMann (r1 = 0.05m) is smaller than the R-NDF609

baseline [13] in Table 2. This is because the saliency map network will restrict the position610

error to be in a certain range.611
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A.8.3 The Geometry Generalization Ability of RiEMann612

The generalization ability of RiEMann on the new geometry comes from the neural network struc-613

ture and its inductive bias. We think it is the locality property of the message-passing mechanism614

in the equivariant backbone that brings this geometry-level generalization. We perform the new in-615

stance experiments because, in related works [14, 15], they found that equivariant networks have616

a certain degree of geometric generalization ability only with 5 to 10 demonstrations, and we con-617

firmed this point in our experiments. Yes, compared to NDFs [12, 13], our geometry generalization618

ability is worse because their encoder is trained on a large-scale in-category dataset.619

To better demonstrate how strong the generalization ability of RiEMann is on new object geometries,620

here we add an additional experiment. We gradually deform the mesh of the mug trained in the mug-621

on-rack task, put them into the NP setting, and record the corresponding SE(3)-geodesic error of the622

predictions from the original trained model. We keep the longest side of the mug the same. The623

results are in Table 7.624

Table 7: SE(3)-geodesic distance evaluations of the trained model on the training mug. Each value
is evaluated under 20 random SE(3) poses.

Picture
Description original flat tall fat new

Dgeo 0.055 0.187 0.127 0.094 0.395

We can see that if the general shape of the mug remains (especially for the rim of the mug), the Dgeo625

remains at a low level, which shows that RiEMann has a certain power of geometry generalization626

ability. However, if the geometry of the mug is deformed too much, the result becomes worse.627
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