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1. Introduction
The rapid growth of data and AI technologies has

significantly improved predictive accuracy across
fields [1]. However, methods for quantifying pre-
diction reliability –known as uncertainty quantifi-
cation (UQ)– have not advanced at the same pace.
This gap is particularly critical in materials science
[2, 3, 4, 5], where small inaccuracies in predictions,
such as ionic conductivity or material stability, can
lead to costly experimental errors and misdirected
resources.
The emergence of generative AI [6] has further

highlighted the need for robust UQ methods. With-
out reliable UQ, distinguishing promising materials
fromflawedpredictions remains a challenge, and re-
cent failures in validating AI-generated candidates
emphasize that accuracy alone is insufficient, while
actionable insights require confidence measures.
Existing UQ methods offer partial solutions but

often fall short of the computational efficiency and
direct interpretability required in materials science.
They are also limited in detecting and quantifying
out-of-distribution (OOD) predictions, leaving a gap
for more practical and scalable approaches.
We propose CLUE (Comparative Latent Uncer-

tainty Estimator), a novel UQ method tailored for
materials science. CLUE leverages latent space rep-
resentations from deep learningmodels, directly as-
sessing prediction similarity to training data [7, 8].
By identifying extrapolated cases outside the convex
hull of known data, CLUE also flags high-risk pre-
dictions. Its computational efficiency enables retro-
spective application to existing models without re-
training, making it a scalable and intuitive solution
for uncertainty-aware AI in materials discovery.

2. Related work
State-of-the-art UQ methods primarily estimate

epistemic uncertainty in predictions [3].Thesemeth-
ods can be broadly categorized into two approaches:
addressing model architecture limitations and eval-
uating target similarity to training data.
Bayesianmethods [9, 10], a cornerstone of UQ, es-

timate posterior uncertainties by incorporating pa-
rameter distributions. Similarly, ensemble models
[11, 12] and stochastic techniques, such as dropout-
based uncertainty estimation, aggregate predic-
tions from multiple models or randomized train-
ing variations. While effective in some cases,
these approaches often suffer from limited accuracy
and high computational overhead, making them
resource-intensive and less practical for large-scale

applications.
Emerging approaches leverage latent space repre-

sentations to estimate uncertainty. These methods
measure the similarity between latent embeddings
of training and target data, offering an efficient way
to gauge prediction confidence. Graph neural net-
works (GNNs), with their ability to encode complex
material structures, are particularly suited for this
task. However, existing latent-based methods typi-
cally rely on uncertainty calibration techniques that
aremanual, case-dependent, and lack generalizabil-
ity.
CLUE addresses these challenges by refining

latent-based uncertainty estimation. It eliminates
the need for calibration or external parameters
while incorporating themodel’s understanding of its
own reliability. By assessing the relationship be-
tween known cases and target predictions, CLUE
provides intuitive uncertainty estimates: predic-
tions further from known cases in the latent space
are considered less reliable.
Another important feature of CLUE relies on its

ability to discern whether a prediction is an interpo-
lation or an extrapolation. This is achieved by deter-
miningwhether a target resides inside or outside the
convex hull of latent representations, crucial for as-
sessing the fidelity of predictions.
Our approach begins by collecting uncertainties

from all observed cases, typically from a validation
set that can also include training data. To estimate
uncertainties for a new target set, CLUE performs
a multilinear interpolation of these known uncer-
tainties, using the latent representations of eachma-
terial as coordinates (which often belong to high-
dimensional latent spaces).
These latent representations, extracted from the

final layer of the model, capture essential structural
and compositional features of the materials. Al-
though GNNs are used in this study, CLUE is versa-
tile and can work with any model architecture capa-
ble of producingmeaningful latent embeddings, tak-
ing or not as input graph representations ofmaterial
as input [13]. Moreover, its adaptability extends be-
yond materials science, making it suitable for tasks
in other scientific and technical domains.

3. Experiments
To validate the performance of CLUE, we con-

ducted a benchmark study using a subset from the
Materials Project database [14], encompassing 45,000
inorganic crystal structures. The task focused on
predicting ground-state energies (Fig. Figure 1), a
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Fig. 1: a) Training accuracy curve of the underfited GNN model, trained for ground-state energy prediction
over 100 epochs, b) model predictions versus true values for the test set, with uncertainty bounds given by
CLUE, c) deviations between CLUE-predicted uncertainties and ground-truth errors from reference data.

critical property in materials discovery.
Figure 1 illustrates the model’s training process.

We deliberately underfit the model to generate high
inaccuracies, enabling robust testing of CLUE’s capa-
bilities. CLUEestimates theuncertainty of each sam-
ple independently of train-test splitting, eliminating
the need for and surpassing the problems related to
additional calibrations. Furthermore, by means of a
convex-hull approach, CLUE distinguishes whether
predictions fall within interpolation or extrapolation
regimes, providing valuable insights intomodel per-
formance, with special relevance on the assessment
of material generation related tasks.

4. Data andmodels
The dataset was split into 40500 samples for train-

ing, 2250 for validation, and 2250 for testing. To test
CLUE, we used training set uncertainties to config-
ure the method and inferred uncertainties for the
test set. In real-world applications, however, all
available data –coming from training, test and any
validation data– should be utilized to maximize the
accuracy of uncertainty estimation for new cases.
Our GNN architecture consists of two graph con-

volutional layers with 32 neurons each, followed by
three fully connected layers with 32, 16, and 1 neu-
ron, respectively. Global mean pooling was applied
for feature aggregation. The model was trained for
100 epochs with a batch size of 128, a dropout rate of
0.1, a learing rate of 0.001, and standard optimization
techniques.

5. Conclusion
We present CLUE, a novel approach to uncer-

tainty estimationbasedonparameter-free latent em-
beddings of materials. Using the Materials Project
database as a benchmark, we demonstrated that
CLUE provides rapid and confident uncertainty es-
timates for predictions. This method avoids the
need for external model training or predefined pa-
rameters, instead intelligently utilizing validated
cases. By delivering meaningful uncertainty esti-
mates, CLUE represents a significant step toward re-
liable, uncertainty-aware AI in materials science.
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