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ABSTRACT

Speech large language models (LLMs) offer a unified approach to handling vari-
ous speech-processing tasks using a single autoregressive model built on discrete
speech and audio codecs. Unlike traditional pipeline-based systems, which in-
volve separate components for speech recognition, understanding, and genera-
tion, end-to-end speech LLMs can capture both verbal and non-verbal informa-
tion, such as paralinguistic and speaker characteristics. This enables full-duplex
capabilities, allowing the system to listen and speak simultaneously with low la-
tency, making it ideal for conversational AI. In this paper, we introduce a novel
codec-free, full-duplex framework for speech understanding and generation, and
present SALMONN-omni, an instance of this speech LLM. SALMONN-omni
can listen to its own generated speech and background sounds while speaking. To
align the frame rate gap between text and audio, we propose a novel thinking step,
ensuring high performance on pre-trained tasks. Using a two-stage understand
then generate training approach, SALMONN-omni effectively addresses a variety
of streaming speech tasks, including speech recognition, synthesis, enhancement,
dereverberation, target speaker extraction, and spoken question answering.

1 INTRODUCTION

Large language models (LLMs) have established a new approach to problem-solving and task ex-
ecution through natural conversations. Speech, being a fundamental form of human communica-
tion, acts as an intuitive and effective means for interactions between humans and LLMs. As a
result, there is a growing research emphasis on enhancing the spoken input and output capabilities
of LLMs. Some recent studies have focused on equipping LLMs with a comprehensive understand-
ing of speech and audio, such as SALMONN (Tang et al., 2024; Sun et al., 2024; Yu et al., 2024)
and LTU (Gong et al., 2024; 2023), while other research has explored utilizing LLMs’ advanced
language understanding abilities to develop more sophisticated speech generation and processing
methods (Hao et al., 2023).

To further advance the naturalness of interaction with LLMs, more recently, full-duplex speech
LLMs have been developed that support both speech understanding and generation. Some work
achieves this by integrating inputs or outputs of standalone speech recognition and synthesis systems
into LLMs (Wu et al., 2024; Huang et al., 2024). However, cascaded systems transcribe, understand
and generate in series, resulting in systematic error accumulation and high latency, impeding the
fluidity of real-time conversations with users. Meanwhile, end-to-end speech LLMs have been in-
vestigated, which often discretize speech into tokens and extend the LLM’s vocabulary to support
speech input and output (Ma et al., 2024; Zhang et al., 2023a; Défossez et al., 2024; Rubenstein
et al., 2023). While these models achieve lower latency and end-to-end training, tokenized speech
representations limit the expressivity of the high-dimensional speech signal due to the constraints
on the number of tokens, often resulting in suboptimal performance in speech modelling.

This paper proposes SALMONN-omni, a codec-free full-duplex framework for low-latency stream-
ing speech understanding and generation with speech LLMs. SALMONN-omni enables speech pro-
duction and the perception of surrounding sounds and its own speech at the same time. In contrast to
existing methods which rely on specific tokenization of the speech signal, SALMONN-omni models
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speech features in a continuous space that is independent of any specific discrete tokenizations or
audio codecs. Streaming speech encoders and generation modules are connected to SALMONN-
omni via a streaming cross-attention structure. Moreover, a “turn-taking” mechanism is proposed in
SALMONN-omni which enables the prediction of when to start a turn-taking conversation, enhanc-
ing the seamless speech-based human-AI interaction.

• This paper proposes SALMONN-omni, the first codec-free full-duplex speech-LLM that
supports low-latency speech understanding and generation, enabling natural and sponta-
neous speech-based human-AI interactions.

• SALMONN-omni employs continuous-space speech representations without relying on
discrete tokenizations or audio codecs. This avoids the loss of information during quan-
tization as well as being compatible with any downstream speech generation systems.

• SALMONN-omni is the first to incorporate a streaming cross-attention module in full-
duplex LLM, supporting highly efficient streaming inputs and outputs.

• SALMONN-omni further introduces a “turn-taking” mechanism to predict when to start a
turn-taking conversation, improving the seamless interaction.

2 RELATED WORK

With the recent research advancements in multimodal LLMs, LLMs have been used for both speech
and audio understanding and generation. SALMONN(Tang et al., 2024), Qwen-audio(Chu et al.,
2023) and LTU(Gong et al., 2024; 2023) are early investigations that demonstrated generic audio
understanding abilities with LLMs, which significantly broadened the scope of tasks a single model
can perform. Later work further exploits the power of specific tasks such as speech translation (Chen
et al., 2023b), entity retrieval (Wang et al., 2023) or emotion recognition (Latif et al., 2023), or to
improve specific aspects such as task overfitting (Deng et al., 2024) or data efficiency (Katsumaru
et al., 2009; Manakul et al., 2024), etc. On speech and audio generation, LLMs have either been
used to provide better textual descriptions that facilitate text-to-speech (TTS) synthesis (Zhang et al.,
2023b; Leng et al., 2023), or been used to provide tokens that can directly be mapped to audio (Dekel
et al., 2023; Wu et al., 2023). In particular, Dekel et al. (2023) studies streaming speech generation
alongside text generation, enabling seamless spoken response generation.

Full-duplex speech LLMs have recently become a research focus, with various methods being pro-
posed that enable both speech understanding and generation simultaneously. AudioGPT (Huang
et al., 2024) and NextGPT (Wu et al., 2024) are examples where separate speech recognition and
synthesis systems were integrated to enable speech-based interaction with LLMs. More recently, re-
searchers have investigated end-to-end trainable speech-text interfaces with LLMs by expanding the
LLM vocabulary with speech tokens representing different speech signals (Ma et al., 2024; Zhang
et al., 2023a; Défossez et al., 2024; Rubenstein et al., 2023), which suffers from the trade-off be-
tween number of tokens and representation ability. In contrast to these methods, SALMONN-omni
is the first speech LLM that directly leverages the continuous speech representation space that is
independent of any specific sets of speech tokens.

3 CODEC-FREE FULL-DUPLEX SPEECH UNDERSTANDING AND GENERATION
FRAMEWORK

A full-duplex speech understanding and generation framework must address four key challenges.
First, it should support streaming speech input and output. Second, it must provide a mechanism
to handle both input and output streams simultaneously. Third, it must incorporate a period to
synchronize the states of the input and output streams. Finally, it should implement a strategy for
the model to learn turn-taking in natural human conversations, such as when to backchanneling or
to be badged in by the user.

Instead of tokenizing speech into discrete codecs and using next-token-prediction to modelling both
the textual and auditory tokens, we propose the first codec-free full-duplex speech understanding
and generation framework, as shown in Figure 1, which keeps the LLM generating only text tokens
to avoid jointly modeling tokens of two modalities in a single sequence model. Four key features
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User’s speech Agent’s response

Background noise
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Codec decoder
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Figure 1: The structure of SALMONN-omni implemented in the proposed codec-free full-duplex
speech understanding and generation framework.

in our framework address the challenges for implementing a full-duplex system while keeping the
core of the model codec-free. First, we propose to incorporate the LLM with a streaming speech
encoder and a streaming speech synthesizer to enable streaming speech input and output. Second,
the speech encoder and synthesizer are connected to the LLM with several cross attention layers
(Vaswani et al., 2017) so that the model can handle both input and output streams simultaneously
in an autoregressive manner. Third, we set a fixed period for the synchronization between input and
output streams. Specifically, a fixed policy is introduced for the mapping between the number of text
embeddings and the duration of the speech streams. Finally, a novel ”thinking” strategy is proposed
to enable the model to learn turn-taking in natural human conversations. As shown in Figure 2, when
the model should not response to the inputs, we just send ”thinking” tokens into the LLM and train
the model not to generate start-of-generation token. Because we don’t force the model to generate
any specific token, the LLM will not tend to bias to one special token and the degradation of the
performance can be negligible. Moreover, due to the frame rate difference between text and speech,
even if the textual embeddings are finished generating, we still send ”thinking” embeddings into the
speech synthesizer to make sure the full-duplex framework is complete.

4 METHODOLOGY

4.1 MAMBA STREAMING ENCODER

We introduce the Mamba (Gu & Dao, 2023) streaming encoder to extract continuous embeddings
from speech inputs. Following Yang et al. (2024), multi-teacher knowledge distillation is employed
to align the feature space of the streaming encoder with those of teacher models, using only unla-
beled data. Fbank features are extracted at a frame rate of 100Hz, after which two convolutional
layers downsample the features to 50Hz. Two adjacent embeddings are then concatenated into one
embedding which are used as the input to a series of standard Mamba language model blocks. The
generated speech features S are used to calculated the multi-teacher knowledge distillation loss as

lossMTL = λ1 ∗ lossASR + λ2 ∗ lossAT (1)

3
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Mamba Streaming Encoder

Large Language Model w/ Streaming XATTN & LoRA

Streaming VoiceCraft w/ XATTN 

…

…

Audio embedding

Contextual embedding

Thinking embedding

Figure 2: The proposed ”thinking” strategy, which enable SALMONN-omni to learn the turn-taking
phenomena in human natural conversation.

Here we consider two teachers Whisper-large-v3 (Radford et al., 2023) as the teacher for speech
recognition (ASR) and BEATs (Chen et al., 2023a) as the teacher for audio tagging (AT).

4.2 STREAMING TTS

Our streaming TTS system builds on the popular open-source TTS VoiceCraft-830M (Peng et al.,
2024), which employs a codec language model architecture. A streaming TTS is capable of stream-
ing generation conditioned on a streaming increased input. A codec language model is suitable for
the requirement of streaming generation, since it generates codec codes autoregressively, which can
be transformed to speech waveform via a codec decoder. However, current codec language models
require the entire text sequence to generate codec codes, limiting their ability to accept incremental
text input during generation. To address this limitation, we have implemented several modifications
that allow our model to accommodate streaming input effectively.

Our solution involves transforming a non-causal mask decoder-only codec language model into a
causal cross-attention decoder model, as shown in Figure 3. Traditional decoder-only codec lan-
guage models struggle to process incremental text input because text and codec code are combined
as the decoder input. Once the model begins generating codec codes based on the entire text se-
quence, it can no longer accept new text input, or the codec code generation would be interrupted.
To overcome this limitation, we implement a cross-attention decoder architecture that separates text
input from codec code input. The embeddings of generated tokens from large language models
serve as the text input, fed to the cross attention, while the codec codes function as the decoder
input. A stack of linear layers is employed to transform the embeddings to the dimension of Voice-
Craft attention. To effectively model streaming incremental input, we utilize a fixed-number causal
cross-attention; for instance, generating 20 codec codes from 2 embeddings provided by the large
language model. This causal cross-attention mechanism enables the codec language model to gen-
erate audio seamlessly based on streaming input.

4.3 TRAINING STRATEGY

The understand then generate training strategy is utilized to enable SALMONN-omni with
streaming speech understanding and generation abilities, as illustrated in Figure 4. The training loss
may contain two parts: the text LLM loss lossLLM which is the cross entropy loss between the text
tokens and corresponding labels and the speech TTS loss lossTTS , the cross entropy loss between
the codec codes and corresponding labels. The weight of different losses may be changed across
different training stages.

loss = wtext ∗ lossLLM + wspeech ∗ lossTTS (2)
The first stage is understanding training, aligning speech encoder to the LLM to equip it with speech
understanding ability. Speech encoder, cross attention module and LoRA in LLM are trained on
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Causal cross attention VoiceCraft

Text embedding
(accept incremental input)

Codec code

Causal
cross attention mask

Decoder-only VoiceCraft

Text embedding
(Fixed length)

Codec code

(a) vanilla Decoder-only VoiceCraft (b) Causal cross attention VoiceCraft

Figure 3: The sketch map of our streaming TTS module, highlighting two key modifications. Cross
attention enables the model to accept incremental input when generating codec codes. Causal cross
attention simulates the streaming increased text input during training.

all the speech understanding tasks, including streaming ASR, noisy ASR, target speaker ASR and
speech QA.
The second stage is generation training, enabling the speaking ability of the model. Two generation
training strategies are explored in this paper. The first strategy involves training the LoRA in both
the LLM and VoiceCraft across all generation tasks, using a combination of text LLM loss and
speech TTS loss. The weight of text LLM loss wtext is 0.1 while The weight of speech TTS
loss wspeech is 1. Notably, we modify the zero-shot TTS task into a zero-shot continual TTS task
during training, retaining only one percent of the original zero-shot TTS data. This adjustment is
necessary because the generated text also appears in the text prompt, which could lead the TTS
model to bypass learning shortcuts by attending directly to the text prompt, instead relying on the
proper relationship between the generated text and the corresponding speech. The another option of
generation training is to freeze the LLM and only train VoiceCraft only on zero-shot continual TTS
task. Here wtext is 0 and wspeech is 1. The speech generation ability learned by zero-shot continual
TTS task can be generalized to other generation tasks, like SE, dereverberation and TSE.

We demonstrate the proposed ”thinking” strategy with understanding tasks and train the model to
predict the time for turn-taking. For simplicity, we set the ending point for each speech utterance as
the turn-taking point.

Mamba Streaming Encoder 🔥

       Large Language Model w/ Streaming XATTN & LoRA 🔥

Text prompt
…

Speech Input

❄

Text response

Mamba Streaming Encoder

       Large Language Model w/ Streaming XATTN & LoRA🔥

Text prompt
…

Speech Input

❄

Generated speech

      Streaming VoiceCraE 🔥

❄

❄

LoRA may be trained 
differ with strategy 

(a) Understanding training stage (b) Generation training stage

Figure 4: The understand then generate training strategy of our method. First training the speech
encoder, cross attention module and LoRA in LLM to align speech modality to LLM. Then training
the streaming TTS to enable streaming speech generation based on text token embeddings of LLM.
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5 EXPERIMENTAL SETUP

5.1 TASK CONFIGURATION

SALMONN-omni is a multi-task speech generation model that supports zero-shot TTS, speech en-
hancement, dereverberation, and target speaker extraction. All generation tasks are formulated as
a ”Understand then Speak” manner, as demonstrated in Fig 1. The speech LLM generates text
based on the text prompt and audio prompt, then the streaming TTS produces speech from the em-
beddings of the generated tokens synchronously. The generated speech is fed back to the speech
encoder during generation process. Additionally, a 3-second speaker prompt is placed at the be-
ginning of Voicecraft to control the voice of the generated speech. Since our primary focus is on
extracting meaning and producing clear speech—rather than reconstructing speech with all its subtle
details—we define our tasks more precisely as zero-shot TTS, respeaking SE, respeaking derever-
beration, and respeaking TSE.

Table 1: Configuration of different speech generation tasks.
Task Audio prompt Generated text Generated speech

zero-shot TTS speaker prompt the text to be generated the speech to be generated
respeaking SE degraded speech noisy ASR result respeaking clean speech

respeaking dereverb. degraded speech noisy ASR result respeaking clean speech
respeaking TSE mixed speech, speaker prompt target speaker ASR result respeaking target speaker speech

5.2 DATA

We utilize Libriheavy Kang et al. (2024) as the basic dataset for our experiment. Only speech seg-
ments under 10s, which are approximately 2.7M, are used for generation tasks, since the training is
unstable when there is a lot of long speech segments. For continual TTS, the previous text is gen-
erated by Llama-3-8B-Instruct Dubey et al. (2024) given the text to generate. For respeaking SE,
the speech segments are degraded following the setting of DNS Challenge 2023 Dubey et al. (2023)
with a random SNR from 5 to 20. For respeaking dereverberation, the speech segments are degraded
following the setting of DNS Challenge 2023 Dubey et al. (2023) with the impulse response from
Ko et al. (2017). For respeaking TSE, two speech segments are mixed with a random overlapping
ratio from 0.1 to 0.5. For continual TTS, all speech segments under 10s are used, While for SE, dere-
verberation and TSE, 1M speech segments are randomly selected to conduct the training datasets.
The train, valid and test splits are generated from the large, dev, test clean spilts of Libriheavy, re-
spectively. For automatic speech recognition (ASR) task, we also include widely used LibriSpeech
960h dataset as training data besides the extracted 2.7M segments from LibriHeavy. VoiceAssistant-
400k (Xie & Wu, 2024) dataset is used for spoken question answering task but we only keep the
samples in qa assistant v1 7k and alpaca gpt4 en 55k categories and regenerate the an-
swers for these questions with GPT-4o-mini. For the pretraining of the Mamba streaming encoder,
GigaSpeech-XL (Chen et al., 2021) subset and AudioSet (Gemmeke et al., 2017) are used.

5.3 EVALUATION

For understanding tasks, word error rate (WER) is used for ASR task. For the Spoken QA task, we
use GPT-4o-mini to judge whether the answer generated is suitable for answer the question and we
report the success rate.

For generation tasks, objective predicted mean opinion score (MOS) and speaker similarity (SIM)
are reported. We utilize UTMOS Saeki et al. (2022)1 as our MOS prediction module, which can
estimate an objective score of MOS to evaluate the speech naturalness. For SIM, the pre-trained
speaker verification model WavLM-TDCNN Chen et al. (2022)2 is used to estimate the similarity
between the generated speech and the reference speech.

1https://github.com/tarepan/SpeechMOS
2https://huggingface.co/microsoft/wavlm-base-plus-sv
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6 RESULTS

6.1 UNDERSTANDING

Strategy test clean test other Spoken QA
1 6.3% 11.1% 38.5%
2 6.0% 10.5% 40.5%

Table 2: Results of the speech recognition and spoken QA tasks.

As shown in Table 2, both strategies 1 and 2 can perform speech recognition and spoken question
answering tasks. Strategy 2 performs slightly better than strategy 1 because only VoiceCraft is
finetuned and keeps the performance after the first stage.

6.2 GENERATION

Strategy embedding TTS SE dereverberation TSE
layer MOS SIM MOS SIM MOS SIM MOS SIM

1
0 3.31 0.86 3.36 0.88 3.31 0.86 3.38 0.86
16 3.47 0.87 3.61 0.92 3.61 0.92 3.59 0.91
-1 3.51 0.87 3.61 0.91 3.59 0.91 3.52 0.90

2
0 - - 3.47 0.86 3.45 0.86 3.52 0.86
16 - - 3.53 0.88 3.54 0.88 3.59 0.89
-1 - - 3.23 0.86 3.20 0.85 3.29 0.85

Table 3: Results of generation tasks on Libriheavy test-clean subset.

The performance of SALMONN-omni across various generation tasks is presented in Table 3. Re-
sults for the TTS tasks are omitted, as the LLM struggles to repeat the text for generation. The
results demonstrate that SALMONN-omni is capable of generating clear, natural speech with a sim-
ilar speaker voice defined by the speaker prompt, across different tasks. We also examined the
impact of using embeddings from different LLM layers. In strategy 1, where both LoRA and Voice-
Craft are fine-tuned, the later layers of the LLM perform better, as more parameters in LLMs can
be finetuned to generate embeddings that VoiceCraft can interpret more effectively. In contrast, for
strategy 2, where the LLM is frozen and only VoiceCraft is fine-tuned, the earlier layers prove more
useful, as they retain more information from the input text.

6.3 TURN-TAKING

Model test clean test other Spoken QA
SALMONN-omni 5.3% (100%) 11.2% (99.6%) 38.5% (94.6%)

Table 4: Results for the speech recognition and spoken QA tasks demonstrate that the model effec-
tively predicts turn-taking. The second set of numbers represents the success rate of the model in
accurately determining the timing of turn-taking.

Table 4 shows that with the proposed ”thinking” strategy, the model has a high success rate in
predicting when to start generating. Moreover, because we set the end of the utterances as the
turn-taking point, the speech recognition task turns into non-streaming recognition and the model
performs better than the streaming one.

7 CONCLUSION

In this paper, we presented SALMONN-omni, a speech LLM built within a codec-free, full-duplex
framework for speech understanding and generation. SALMONN-omni is capable of handling var-
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ious streaming speech tasks, including automatic speech recognition (ASR), text-to-speech (TTS),
speech enhancement (SE), dereverberation, and target speaker extraction (TSE). Additionally, we
introduced a streaming Mamba encoder to facilitate real-time speech understanding and a causal
cross-attention codec language model for effective streaming speech generation. Future work will
focus on enhancing the stability and versatility of the framework, as well as exploring its potential
for developing low-latency spoken dialogue systems.
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