
Table 1: Accuracy and computational costs of different networks on Cityscapes val. split. The model mIoU
is measured at single scale inference. The GFlops is measured at single scale inference with a crop size of
1024 × 2048. Note that comparison results are quoted from [1] which provides re-implementation of all the
models in the table.

Method backbone GFlops mIOU (%)

PSANet Dilated-ResNet-50 1597.15 77.24
PSANet Dilated-ResNet-101 2218.62 79.31

PSPNet Dilated-ResNet-18 434.11 74.87
PSPNet Dilated-ResNet-50 1427.47 78.55
PSPNet Dilated-ResNet-101 2048.95 79.76

DeepLabv3+ Dilated-ResNet-18 433.9 76.89
DeepLabv3+ Dilated-ResNet-50 1410.86 80.09
DeepLabv3+ Dilated-ResNet-101 2030.3 80.97

OCRNet HRNetV2p-W18-S 353.47 77.16
OCRNet HRNetV2p-W18 424.29 78.57
OCRNet HRNetV2p-W48 1296.77 80.7

NRD (Ours) ResNet-18 95.7 77.5
NRD (Ours) ResNet-50 234.6 79.8
NRD (Ours) ResNet-101 390.0 80.7

Table 2: Experiment results on the ADE20K val. split. The GFlops is measured at single scale inference using
crop sizes provided in the table. ‘ms’ means that mIoU is calculated using multi-scale inference.

Method Backbone Crop size GFlops mIoU (%) mIoU ‘ms’ (%)

SegFormer MiT-B1 512× 512 15.9 42.2 43.1
NRD MiT-B1 512× 512 14.7 42.9 44.3

SegFormer MiT-B2 512× 512 62.4 46.5 47.5
NRD MiT-B2 512× 512 24.5 46.8 48.2

SegFormer MiT-B5 640× 640 183.3 51.0 51.8
NRD MiT-B5 640× 640 124.2 51.2 51.9

A Appendix

In this section, we show more evaluation results to demonstrate the effectiveness of the proposed
NRD.

A.1 Additional Evaluation Results

Evaluation on Cityscapes. Table 1 shows the comparison of mIOU performance for different
methods on Cityscapes val split. The GFlops and the mIOU performance are all measured in the
same structure implemented in [1]. NRD performs better in terms of accuracy-computation trade-off.
NRD usually has the best performance among methods that are of similar computational cost. Even
if compared with the methods that use dilated backbones which have 5 times of the computational
cost, NRD is still competitive in accuracy.

Evaluation on ADE20K. We further use the recent transformer based backbone SegFormer [2] as
the encoder to show the ability of the proposed method. The experiments are conducted on the
ADE20K dataset. We replace the lightweight all-MLP decoder proposed by Segformer with NRD
and follow all training settings in [2]. The results show that using the exactly same backbone, the
performance of NRD is competitive with much lighter computation.

A.2 More Visualization Results

Comparison with bilinear upsampling. Fig. 1 shows the result comparison between the bilinear
decoder and NRD decoder. Note that here, the results are generated from feature maps that are 1/32
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Figure 1: Comparison between the bilinear decoder and the NRD decoder without guidance map on the
Cityscapes dataset. We can see that there is a significant improvement at the boundary region.

Figure 2: Visualization results on Cityscapes. From top to bottom: Input image; results of DeeplabV3+; and
results of NRD. The single scale GFlops of these two methods are 293.6 (DeeplabV3+) vs. 234.6 (NRD). Our
NRD requires less computation; yet the segmentation accuracy is superior.

of the input scale. Thus, the results can represent the effectiveness comparison between bilinear
method and NRD. From the illustration we can see that it is inevitable for the decoder to lose some
details during a 32 times upsampling. However, NRD clearly preserves more details than the bilinear
interpolation method. These two upsampling schemes have similar computation costs.

Comparison with the DeeplabV3+ decoder. Fig. 2 shows more comparison between the
DeeplabV3+ [3] decoder and NRD. The computational cost of the decoder part are 76.4 (DeeplabV3+)
vs. 20.4 (NRD) GFlops. From the figure, we can see that in various scenes, NRD shows superior
segmentation results than DeeplabV3+.

Competitive segmentation results on ADE20K and PASCAL-Context. Fig. 3 shows the segmen-
tation results on ADE20K produced by NRD using ResNeXt101 backbone with multi-scale inference.
We can see that in various scenes, including the bedroom, the toilet, and some outdoor scenes, NRD
can generate satisfactory segmentation results. It can also perform well at boundaries such as the
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Figure 3: Competitive segmentation results on the ADE20K dataset. Our method performs well on various
scenes, and can capture the detailed boundary’s information.

human legs and the poles. Fig. 4 is the segmentation results on PASCAL-Context produced by NRD
using Resnet101 backbone with multi-scale inference (60 classes).

Detailed illustration of the NRD module. Fig. 5 shows how an input image is processed in NRD.
For the NRD structure, the guidance maps that are generated from the low level features and the
coordinate maps are concatenated together. These feature maps are served as the input to the NRD
structure. We attribute each patch of the feature maps with a representational network gθ(·) whose
parameters are dynamically generated by the controller. In Fig. 5 each block surrounded by white
lines represents a patch that is processed by a particular gθ(·). The result is then directly used as
output of the decoder without the use of more convolutions to ‘refine’ the results.

Figure 4: Competitive segmentation results on the PASCAL-Context dataset. The proposed method performs
well on various shapes of objects.
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Figure 5: Detailed Illustration of the NRD module. Guidance maps from low-level feature maps and coordinate
maps are concatenated together and pass through the representational networks gθ(·).
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