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Motivation for Bayesian Inference

Deep learning is starting to show promise in
multiple domains e.g. radiology, cancer detection

etc. But we still have to solve a number of issues -

Does it make sense to pass on obscure values
like 0.1 positive chance to Doctors in order to
take medical decisions?

What is to be done, when the model see’s
something it has never seen before?

Bayesian Inference is the tool used to ”know what we don’t know”
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Bayesian Inference in Neural Networks

The object of interest when we are given an input data point (x∗, y∗) is
q(y∗|x∗) which is obtained by marginalizing out the parameter θ i.e. The
output distribution for test point (x∗, y∗) is give as -

q(y∗|x∗,D) =

∫
q(y∗|x∗, θ)p(θ|D)dθ (1)

Now since exact integration computation is impossi-
ble in case of Neural Networks we often use Monte-
Carlo sampling to approximate the same -

q(y∗|x∗,D) ≈ 1

N

N∑
i=1

q(y∗|x∗, θi ), θi ∼ p(θ|D) (2)

So as seen from the figure we can view them as ensembles of similar

networks with N different parameters.
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Variational Inference

Exact Bayesian Inference involves computing the true posterior p(θ|D)
according to Bayes rule after defining a prior p(θ) on the weight space

p(θ|D) =
p(D|θ)p(θ)

p(D)
, where p(D) =

∫
p(D|θ)p(θ)dθ (3)

Since intractable we use a trick by defining a surrogate posterior qφ(θ),
(which could be Gaussian and in this case φ = (µ,Σ)) and try to bring this
surrogate posterior as close to the true posterior as possible. Therefore we
define ELBO loss as -

KL[qφ(θ)||p(θ|D)] = −Eθ∼q(θ)[log(p(D|θ))] + KL[qφ(θ)||p(θ)] + C (4)

The first term can be viewed as Expected Cross Entropy in case of
classification or Expected MSE in case of regression, and the the second
term as a Regularizer.
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Priors and what meaning do they have?

For classification among K classes, deep neural networks represent a
function fθ : X → p ∈ [0, 1]K , where X represents the input, and p
represents a probability mass function such that

∑K
i=1 pi = 1. For making

predictions we assume the output distribution is - p(Y |X , θ) = Cat(Y |p),
where p = fθ(X ) i.e. the softmax output of the Neural Network.
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Priors and what meaning do they have?

Clearly there exists a map θ → f (.), meaning a prior on θ implicitly defines
a prior measure on the space of f , denoted as p(f ). We therefore skip
steps and directly define a uniform prior on the K -dimensional unit simplex
for the functional space, such that

p(f ) = Dir(p|〈1, . . . , 1〉) (5)

Figure: Ideal Prior for making OOD samples uncertain

A completely uncertain prior. This indicates regardless of the input we are
always uncertain of the output.
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Functional Space Variational Inference

For analytical tractability we assume the marginal posterior is also a
Dirichlet distribution. In other words, unlike for a standard neural network
where p = fθ(x) is the point estimate output, in our case
Dir(p|α) = qθ(f (x)) is the marginal functional distribution. This is similar
to how a Gaussian process has a multivariate Gaussian as its marginal
distribution.

Figure: Fig (a) (left) A case where the Functional VI model is very confident of it
belonging to all three classes whereas Fig (b) (right) Is the case where a regular
Bayesian NN model (e.g.Dropout, Ensemble etc.) is confident of it belonging to a
particular class
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Functional Space Variational Inference

So in our model given the training data D = (XD , yD) and the test points
(x∗, y∗) we have:

p(y∗|x∗,D) =

∫
p(y∗|p) p(p|x∗,D) dp (6)

As usual p(y∗|p) = Cat(y∗|p), but the difference lies in the fact the neural
network estimates a Dirichlet distribution p(p|x∗,D) = Dir(p|α).
For standard neural network where p = fθ(x) is the point estimate output,
in our case Dir(p|α) = qθ(f (x)) is the marginal functional distribution.
The true functional posterior p(f |D) is intractable, but it can be
approximated by minimizing the functional evidence lower bound (fELBO):

L(q) = −Eq(f )[log p(yD |f (XD))] + KL[q(f )||p(f )] (7)
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Functional Space Variational Inference

The second term in Equation 7 is the functional KL divergence, which is
hard to estimate. Therefore, we shift to a more familiar metric, the KL
divergence between the marginal distributions of function values at finite
sets of points x1:n:

L2 = KL(q(f )||p(f )) = sup
x1:n

KL [q(f (x1:n)||p(f (x1:n)] (8)

A more relaxed way of sampling these “measure points” x1:n, is to assume
x1:k ∼ XD (training distribution) and xk+1:n ∼ c where c is a distribution
having the same support as the training distribution, which could be OOD
samples, that can be forced to be more uncertain.

Note: the KL divergence between two Dirichlet distributions can be
computed in closed form.

(Indian Institute of Technology, Bombay) Functional Space Variational Inference for Uncertainty Estimation in Computer Aided Diagnosis Pranav Poduval, IIT Bombay9 / 12



Functional Space Variational Inference

We get a closed form solution for the first part in Equation 7 by assuming
y to be a one-hot vector as follows:

L1 =

∫ [
K∏
i=1

− log p(yi |p)

]
1

B(α)

K∏
i=1

pαi−1
i dp (9)

By assuming p(y |p) = Cat(y |p) we have-

L1 =

∫ [
K∑
i=1

− log pyii

]
1

B(α)

K∏
i=1

pαi−1
i dp =

K∑
i=1

yi

z(
K∑
j=1

αj)−z(αi )


(10)

Where B(α) is the Beta distribution and z(.) is the digamma function.

Combining L1 + L2 we will get the same loss function as Evidential Deep
Learning (NeurIPS 2018) and has a simple closed form solution.
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Expected Calibration Error

If we have a well calibrated weather prediction model that predicts sunny
event with 80% probability for 100 days then, any deviation from 80 sunny
days and 20 non-sunny days will imply a poorly calibrated model.
Important for model interpretability.

Table: Comparison of classification accuracy and ECE on HAM10000 dataset

Method Standard NN Dropout Ensembles Functional VI

Test Accuracy 84.38% 86.32% 85.21% 84.84%

ECE (M = 15) 7.73% 6.39% 3.12% 1.17%
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Additional Experiment

We observe our model is very confident on Nevi (NV) class, which is
expected since it make majority of the dataset. We can also see our OOD
samples can be distinctly separated from the in-class samples. The OOD
sample used for training and testing are from different distributions. For
simplicity we used Gaussian Distribution for training OOD samples and
Uniform Distribution for testing OOD samples.
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