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ABSTRACT

Denoising Score Matching with Annealed Langevin Sampling (DSM-ALS) has
recently found success in generative modeling. The approach works by first
training a neural network to estimate the score of a distribution, and then using
Langevin dynamics to sample from the data distribution assumed by the score
network. Despite the convincing visual quality of samples, this method appears to
perform worse than Generative Adversarial Networks (GANs) under the Fréchet
Inception Distance, a standard metric for generative models. We show that this
apparent gap vanishes when denoising the final Langevin samples using the score
network. In addition, we propose two improvements to DSM-ALS: 1) Consistent
Annealed Sampling as a more stable alternative to Annealed Langevin Sampling,
and 2) a hybrid training formulation, composed of both Denoising Score Matching
and adversarial objectives. By combining these two techniques and exploring
different network architectures, we elevate score matching methods and obtain
results competitive with state-of-the-art image generation on CIFAR-10.

1 INTRODUCTION

Song and Ermon (2019) recently proposed a novel method of generating samples from a target
distribution through a combination of Denoising Score Matching (DSM) (Hyvärinen, 2005; Vincent,
2011; Raphan and Simoncelli, 2011) and Annealed Langevin Sampling (ALS) (Welling and Teh,
2011; Roberts et al., 1996). Since convergence to the distribution is guaranteed by the ALS, their
approach (DSM-ALS) produces high-quality samples and guarantees high diversity. Though, this
comes at the cost of requiring an iterative process during sampling, contrary to other generative
methods. These generative methods can notably be used to diverse tasks like colorization, image
restoration and image inpainting (Song and Ermon, 2019; Kadkhodaie and Simoncelli, 2020).

Song and Ermon (2020) further improved their approach by increasing the stability of score matching
training and proposing theoretically sound choices of hyperparameters. They also scaled their
approach to higher-resolution images and showed that DSM-ALS is competitive with other generative
models. Song and Ermon (2020) observed that the images produced by their improved model were
more visually appealing than the ones from their original work; however, the reported Fréchet
Inception Distance (FID) (Heusel et al., 2017) did not correlate with this improvement.

Although DSM-ALS is gaining traction, Generative adversarial networks (GANs) (Goodfellow
et al., 2014) remain the leading approach to generative modeling. GANs are a very popular class
of generative models; they have been successfully applied to image generation (Brock et al., 2018;
Karras et al., 2017; 2019; 2020) and have subsequently spawned a wealth of variants (Radford
et al., 2015a; Miyato et al., 2018; Jolicoeur-Martineau, 2018; Zhang et al., 2019). The idea behind
this method is to train a Discriminator (D) to correctly distinguish real samples from fake samples
generated by a second agent, known as the Generator (G). GANs excel at generating high-quality
samples as the discriminator captures features that make an image plausible, while the generator
learns to emulate them.

Still, GANs often have trouble producing data from all possible modes, which limits the diversity of
the generated samples. A wide variety of tricks have been developed to address this issue in GANs
(Kodali et al., 2017; Gulrajani et al., 2017; Arjovsky et al., 2017; Miyato et al., 2018; Jolicoeur-
Martineau and Mitliagkas, 2019), though it remains an issue to this day. DSM-ALS, on the other
hand, does not suffer from that problem since ALS allows for sampling from the full distribution
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captured by the score network. Nevertheless, the perceptual quality of DSM-ALS higher-resolution
images has so far been inferior to that of GAN-generated images. Generative modeling has since seen
some incredible work from Ho et al. (2020), who achieved exceptionally low (better) FID on image
generation tasks. Their approach showcased a diffusion-based method (Sohl-Dickstein et al., 2015;
Goyal et al., 2017) that shares close ties with DSM-ALS, and additionally proposed a convincing
network architecture derived from Salimans et al. (2017).

In this paper, after introducing the necessary technical background in the next section, we build upon
the work of Song and Ermon (2020) and propose improvements based on theoretical analyses both at
training and sampling time. Our contributions are as follows:

• We propose Consistent Annealed Sampling (CAS) as a more stable alternative to ALS,
correcting inconsistencies relating to the scaling of the added noise;
• We show how to recover the expected denoised sample (EDS) and demonstrate its unequiv-

ocal benefits w.r.t the FID. Notably, we show how to resolve the mismatch observed in
DSM-ALS between the visual quality of generated images and its high (worse) FID;
• We propose to further exploit the EDS through a hybrid objective function, combining

GAN and Denoising Score Matching objectives, thereby encouraging the EDS of the score
network to be as realistic as possible.

In addition, we show that the network architecture used used by Ho et al. (2020) significantly
improves sample quality over the RefineNet (Lin et al., 2017a) architecture used by Song and Ermon
(2020). In an ablation study performed on CIFAR-10 and LSUN-church, we demonstrate how these
contributions bring DSM-ALS in range of the state-of-the-art for image generation tasks w.r.t. the
FID. The code to replicate our experiments is publicly available at [Available in supplementary
material].

2 BACKGROUND

2.1 DENOISING SCORE MATCHING

Denoising Score Matching (DSM) (Hyvärinen, 2005) consists of training a score network to approxi-
mate the gradient of the log density of a certain distribution (∇x log p(x)), referred to as the score
function. This is achieved by training the network to approximate a noisy surrogate of p at multiple
levels of Gaussian noise corruption (Vincent, 2011). The score network s, parametrized by θ and
conditioned on the noise level σ, is tasked to minimize the following loss:

1
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Ep(x̃,x,σ)

[∥∥∥∥σsθ(x̃, σ) + x̃− x

σ

∥∥∥∥2
2

]
, (1)

where p(x̃,x, σ) = qσ(x̃|x)p(x)p(σ). We define further qσ(x̃|x) = N (x̃|x, σ2I) the corrupted
data distribution, p(x) the training data distribution, and p(σ) the uniform distribution over a set {σi}
corresponding to different levels of noise. In practice, this set is defined as a geometric progression
between σ1 and σL (with L chosen according to some computational budget):

{σi}Li=1 =

{
γiσ1

∣∣∣ i ∈ {0, . . . , L− 1}, γ ,
σ2
σ1

= ... =

(
σL
σ1

) 1
L−1

< 1

}
. (2)

Rather than having to learn a different score function for every σi, one can train an unconditional
score network by defining sθ(x̃, σi) = sθ(x̃)/σi, and then minimizing Eq. 1. While unconditional
networks are less heavy computationally, it remains an open question whether conditioning helps
performance. Li et al. (2019) and Song and Ermon (2020) found that the unconditional network
produced better samples, while Ho et al. (2020) obtained better results than both of them using a
conditional network. Additionally, the denoising autoencoder described in Lim et al. (2020) gives
evidence supporting the benefits of conditioning when the noise becomes small (also see App. D
and E for a theoretical discussion of the difference). While our experiments are conducted with
unconditional networks, we believe our techniques can be straightforwardly applied to conditional
networks; we leave that extension for future work.
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2.2 ANNEALED LANGEVIN SAMPLING

Given a score function, one can use Langevin dynamics (or Langevin sampling) (Welling and Teh,
2011) to sample from the corresponding probability distribution. In practice, the score function is
generally unknown and estimated through a score network trained to minimize Eq. 1. Song and
Ermon (2019) showed that Langevin sampling has trouble exploring the full support of the distribution
when the modes are too far apart and proposed Annealed Langevin Sampling (ALS) as a solution.
ALS starts sampling with a large noise level and progressively anneals it down to a value close to 0,
ensuring both proper mode coverage and convergence to the data distribution. Its precise description
is shown in Algorithm 1.

Algorithm 1 Annealed Langevin Sampling

Require: sθ, {σi}Li=1, ε, nσ .
1: Initialize x

2: for i← 1 to L do
3: αi ← ε σ2

i /σ
2
L

4: for nσ steps do
5: Draw z ∼ N (0, I)
6: x← x+ αisθ(x, σi) +

√
2αiz

return x

Algorithm 2 Consistent Annealed Sampling

Require: sθ, {σi}Li=1, γ, ε, σL+1 = 0
1: Initialize x

2: β ←
√
1− (1− ε/σ2

L)
2
/γ2

3: for i← 1 to L do
4: αi ← ε σ2

i /σ
2
L

5: Draw z ∼ N (0, I)
6: x← x+ αisθ(x, σi) + βσi+1z

return x

2.3 EXPECTED DENOISED SAMPLE (EDS)

A little known fact from Bayesian literature is that one can recover a denoised sample from the score
function using the Empirical Bayes mean (Robbins, 1955; Miyasawa, 1961; Raphan and Simoncelli,
2011):

s∗(x̃, σ) =
H∗(x̃, σ)− x̃

σ2
, (3)

whereH∗(x̃, σ) , Ex∼qσ(x|x̃)[x] is the expected denoised sample given a noisy sample (or Empirical
Bayes mean), conditioned on the noise level. A different way of reaching the same result is through
the closed-form of the optimal score function, as presented in Appendix D. The corresponding result
for unconditional score function is presented in Appendix E for completeness.

The EDS corresponds to the expected real image given a corrupted image; it can be thought of as
what the score network believes to be the true image concealed within the noisy input. It has also
been suggested that denoising the samples (i.e., taking the EDS) at the end of the Langevin sampling
improves their quality (Saremi and Hyvarinen, 2019; Li et al., 2019; Kadkhodaie and Simoncelli,
2020). In Section 4, we provide further evidence that denoising the final Langevin sample brings it
closer to the assumed data manifold. In particular, we show that the Fréchet Inception Distance (FID)
consistently decreases (improves) after denoising. Finally, in Section 5, we build a hybrid training
objective using the properties of the EDS discussed above.

There are interesting links to be made between ALS and the RED algorithm (Romano et al., 2017;
Reehorst and Schniter, 2018). The RED algorithm attempts to find the maximum a posteriori
probability (MAP) denoised sample (i.e., the most plausible real data) given a noisy sample. It does
so by solving an optimization problem to obtain a sample close to the noisy sample for which the
EDS is a fixed point (denoising the sample does not change it because it is a real sample). Thus, just
like ALS, the RED algorithm generates plausible real data given a score network. However, this
algorithm does not ensure that we sample from the distribution and obtain full mode coverage. Thus,
ALS’s key benefit is ensuring that we sample from the full support of the distribution.

3 CONSISTENT SCALING OF THE NOISE

In this section, we present inconsistencies in ALS relating to the noise scaling and introduce Consistent
Annealed Sampling (CAS) as an alternative.
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3.1 INCONSISTENCIES IN ALS

One can think of the ALS algorithm as a sequential series of Langevin Dynamics (inner loop in
Algorithm 1) for decreasing levels of noise (outer loop). If allowed an infinite number of steps nσ,
the sampling process will properly produce samples from the data distribution.

In ALS, the score network is conditioned on geometrically decreasing noise (σi). In the unconditional
case, this corresponds to dividing the score network by the noise level (i.e., sθ(x̃, σi) = sθ(x̃)/σi).
Thus, in both conditional and unconditional cases, we make the assumption that the noise of the
sample at step i will be of variance σ2

i , an assumption upon which the quality of the estimation of
the score depends. While choosing a geometric progression of noise levels seems like a reasonable
(though arbitrary) schedule to follow, we show that ALS does not ensure such schedule.

Assume we have the true score function s∗ and begin sampling using a real image with some added
zero-centered Gaussian noise of standard deviation σ0 = 50. In Figure 1a, we illustrate how the
intensity of the noise in the sample evolves through ALS and CAS, our proposed sampling, for a
given sampling step size ε and a geometric schedule in this idealized scenario. We note that, although
a large nσ approaches the real geometric curve, it will only reach it at the limit (nσ →∞ and ε→ 0).
Most importantly, Figure 1b highlights how even when the annealing process does converge, the
progression of the noise is never truly geometric; we prove this formally in Proposition 1.

(a) Standard deviation of the noise in the image (b) Difference between the standard deviation from
ALS and CAS

Figure 1: Standard deviation during idealized sampling using a perfect score function s∗. The black
curve in (a) corresponds to the true geometric progression, as demonstrated in Proposition 2.

Proposition 1. Let s∗ be the optimal score function from Eq. 3. Following the sampling described
in Algorithm 1, the variance of the noise component in the sample x will remain greater than σ2

t at
every step t.

The proof is presented in Appendix F. In particular, for nσ <∞, sampling has not fully converged
and the remaining noise is carried over to the next iteration of Langevin Sampling. It also follows
that for any sθ different from the optimal s∗, the actual noise at every iteration is expected to be even
higher than for the best possible score function s∗.

3.2 ALGORITHM

We propose Consistent Annealed Sampling (CAS) as a sampling method that ensures the noise level
will follow a prescribed schedule for any sampling step size ε and number of steps L. Algorithm 2
illustrates the process for a geometric schedule. Note that for a different schedule, β will instead
depend on the step t, as in the general case, γt is defined as σt+1/σt.

Proposition 2. Let s∗ be the optimal score function from Eq. 3. Following the sampling described in
Algorithm 2, the variance of the noise component in the sample x will consistently be equal to σ2

t at
every step t.

The proof is presented in Appendix G. Importantly, Proposition 2 holds no matter how many steps
L we take to decrease the noise geometrically. For ALS, nσ corresponds to the number of steps
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per level of noise. It plays a similar role in CAS: we simply dilate the geometric series of noise
levels used during training by a factor of nσ, such that Lsampling = (Ltraining − 1)nσ + 1. Note that
the proposition only holds when the initial sample is a corrupted image (i.e., x0 = I + σ0z0).
However, by defining σ0 as the maximum Euclidean distance between all pairs of training data points
(Song and Ermon, 2020), the noise becomes in practice much greater than the true image; sampling
with pure noise initialization (i.e., x0 = σ0zt) becomes indistinguishable from sampling with data
initialization.

4 BENEFITS OF THE EDS ON SYNTHETIC DATA AND IMAGE GENERATION

As previously mentioned, it has been suggested that one can obtain better samples (closer to the
assumed data manifold) by taking the EDS of the last Langevin sample. We provide further evidence
of this with synthetic data and standard image datasets.

It can first be observed that the sampling steps correspond to an interpolation between the previous
point and the EDS, followed by the addition of noise.

Proposition 3. Given a noise-conditional score function, the update rules from Algorithm 1 and
Algorithm 2 are respectively equivalent to the following update rules:

x← (1− η)x+ ηH(x, σi) +
√

2ησiz for z ∼ N (0, I) and η =
ε

σ2
L

x← (1− η)x+ ηH(x, σi) + βσi+1z

The demonstration is in Appendix H. This result is equally true for an unconditional score network,
with the distinction that η would no longer be independent of σi but rather linearly proportional to it.

Intuitively, this implies that the sampling steps slowly move the current sample towards a moving
target (the EDS). If the sampling behaves appropriately, we expect the final sample x to be very close
to the EDS, i.e., x ≈ H(x, σL). However, if the sampling step size is inappropriate, or if the EDS
does not stabilize to a fixed point near the end of the sampling, these two quantities may be arbitrarily
far from one another. As we will show, the FIDs from Song and Ermon (2020) suffer from such
distance.

From Proposition 3, we see that CAS shares some similarities with the algorithm by Kadkhodaie
and Simoncelli (2020). While the weight we give to the denoiser (η) decreases geometrically (by its
linearity in σ), their schedule appears to be much steeper. They also estimate the residual noise in
their samples by the l2 norm instead of determining it through a schedule, as CAS strives to do. As a
note, we had found weak evidence during development that estimating the residual noise worsened
the FID.

The equivalence showed in Proposition 3 suggests instead to take the expected denoised sample at
the end of the Langevin sampling as the final sample; this would be equivalent to the update rule
x← H(x, σL) at the last step. Synthetic 2D examples shown in Figure 2 demonstrate the immediate
benefits of this technique.

(a) Swiss Roll dataset (b) 25 Gaussians dataset

Figure 2: Langevin sampling on synthetic 2D experiments. Circles are real data points, crosses are
generated data points. On both datasets, taking the EDS brings the samples much closer to the real
data manifold.
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Figure 3: Partial estimate of FID (lower is better) as a function of the sampling step size on CIFAR-10,
with nσ = 1. The interactions between consistent sampling and denoising are shown.

We train a score network on CIFAR-10 (Krizhevsky et al., 2009) and report the FID from both ALS
and CAS as a function of the sampling step size and of denoising in Figure 3. The first observation
to be made is just how critical denoising is to the FID score for ALS, even as its effect cannot be
perceived by the human eye. For CAS, we note that the score remains small for a much wider range
of sampling step sizes when denoising. Alternatively, the sampling step size must be very carefully
tuned to obtain results close to the optimal.

Figure 3 also shows that, with CAS, the FID of the final sample is approximately equal to the FID
of the denoised samples for small sampling step sizes. Furthermore, we see a smaller gap in FID
between denoised and non-denoised for larger sampling step sizes than ALS. This suggests that
consistent sampling is resulting in the final sample being closer to the assumed data manifold (i.e.,
x ≈ Hθ(x, σL)).

Interestingly, when Song and Ermon (2020) improved their score matching method, they could not
explain why the FID of their new model did not improve even though the generated images looked
better visually. To resolve that matter, they proposed the use of a new metric (Zhou et al., 2019) that
did not have this issue. As shown in Figure 3, denoising resolves this mismatch.

5 ADVERSARIAL FORMULATION

The score network is trained to recover an uncorrupted image from a noisy input minimizing the l2
distance between the two. However, it is well known from the image restoration literature that l2 does
not correlate well with human perception of image quality (Zhang et al., 2012; Zhao et al., 2016).
One way to take advantage of the EDS would be to encourage the score network to produce an EDS
that is more realistic from the perspective of a discriminator. Intuitively, this would incentivize the
score network to produce more discernible features at inference time.

We propose to do so by training the score network to simultaneously minimize the score-matching loss
function and maximize the probability of denoised samples being perceived as real by a discriminator.
We use alternating gradient descent to sequentially train a discriminator for a determined number of
steps at every score function update.

In our experiments, we selected the Least Squares GAN (LSGAN) (Mao et al., 2017) formulation as
it performed best (see Appendix B for details). For an unconditional score network, the objective
functions are as follows:

max
φ

Ep(x)
[
(Dφ(x)− 1)2

]
+ Ep(x̃,x,σ)

[
(Dφ(Hθ(x̃, σ) + 1)2

]
(4)

min
θ

Ep(x̃,x,σ)

[
(Dφ(Hθ(x̃, σ))− 1)2 +

λ

2

∥∥∥∥σsθ(x̃, σ) + x̃− x

σ

∥∥∥∥2
2

]
, (5)
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where Hθ(x̃, σ) = sθ(x̃, σ)σ
2 + x̃ is the EDS derived from the score network. Eq. 4 is the objective

function of the LSGAN discriminator, while Eq. 5 is the adversarial objective function of the score
network derived from Eq. 1 and from the LSGAN objective function.

We note the similarities between these objective functions and those of an LSGAN adversarial
autoencoder (Makhzani et al., 2015; Tolstikhin et al., 2017; Tran et al., 2018), with the distinction
of using a denoising autoencoder H as opposed to a standard autoencoder. We can highlight this
difference by reformulating Eq. 5 as:

min
θ

Ep(x̃,x,σ)
[
(Dφ(Hθ(x̃, σ))− 1)2 +

λ

2σ2
‖Hθ(x̃, σ)− x‖22

]
, (6)

As GANs favor quality over diversity, there is a concern that this hybrid objective function might
decrease the diversity of samples produced by the ALS. In Section 6.1, we first study image generation
improvements brought by this method and then address the diversity concerns with experiments on
the 3-StackedMNIST (Metz et al., 2016) dataset in Section 6.2.

6 EXPERIMENTS

6.1 ABLATION STUDY

We ran experiments on CIFAR-10 (Krizhevsky et al., 2009) and LSUN-churches (Yu et al., 2015) with
the score network architecture used by Song and Ermon (2020). We also ran similar experiments with
an unconditional version of the network architecture by Ho et al. (2020), given that their approach
is similar to Song and Ermon (2019) and they obtain very small FIDs. For the hybrid adversarial
score matching approach, we used an unconditional BigGAN discriminator (Brock et al., 2018). We
compared three factors in an ablation study: adversarial training, Consistent Annealed Sampling and
denoising.

Details on how the experiments were conducted are found in Appendix B. Unsuccessful experiments
with large images are also discussed in Appendix C. See also Appendix I for a discussion pertaining
to the use of the Inception Score (Heusel et al., 2017), a popular metric for generative models.

Results for CIFAR-10 and LSUN-churches with Song and Ermon (2019) score network architecture
are respectively shown in Table 1 and 2. Results for CIFAR-10 with Ho et al. (2020) score network
architecture are shown in Table 3.

Table 1: [Non-denoised / Denoised FID] from 10k samples on CIFAR-10 (32x32) with Song and
Ermon (2019) score network architecture

Sampling Non-adversarial Adversarial

non-consistent (nσ = 1) 36.3 / 13.3 30.0 / 11.8
non-consistent (nσ = 5) 33.7 / 10.9 26.4 / 9.5

consistent (nσ = 1) 14.7 / 12.3 11.9 / 10.8
consistent (nσ = 5) 12.7 / 11.2 9.9 / 9.7

Table 2: [Non-denoised / Denoised FID] from 10k samples on LSUN-Churches (64x64) with Song
and Ermon (2019) score network architecture

Sampling Non-adversarial Adversarial

non-consistent (nσ = 1) 43.2 / 40.3 40.9 / 36.7
non-consistent (nσ = 5) 42.0 / 39.2 40.0 / 35.8

consistent (nσ = 1) 41.5 / 40.7 38.2 / 36.7
consistent (nσ = 5) 39.5 / 39.1 36.3 / 35.4

We always observe an improvement in FID from denoising and by increasing nσ from 1 to 5. We
observe an improvement from using the adversarial approach with Song and Ermon (2019) network
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Table 3: [Non-denoised / Denoised FID] from 10k samples on CIFAR-10 (32x32) with Ho et al.
(2020) unconditional score network architecture

Sampling Non-adversarial Adversarial

non-consistent (nσ = 1) 25.3 / 7.5 21.6 / 7.5
non-consistent (nσ = 5) 20.0 / 5.6 17.7 / 6.1

consistent (nσ = 1) 7.8 / 7.1 7.7 / 7.1
consistent (nσ = 5) 6.2 / 6.1 6.1 / 6.5

architecture, but not on denoised samples with the Ho et al. (2020) network architecture. We
hypothesize that this is a limitation of the architecture of the discriminator since, as far as we know, no
variant of BigGAN achieves an FID smaller than 6. Nevertheless, it remains advantageous for more
simple architectures, as shown in Table 1 and 2. We observe that consistent sampling outperforms
non-consistent sampling on the CIFAR-10 task at nσ = 1, the quickest way to sample.

We calculated the FID of the non-consistent denoised models from 50k samples in order to compare
our method with the recent work from Ho et al. (2020). We obtained a score of 3.65 for the non-
adversarial method and 4.02 for the adversarial method on the CIFAR-10 task when sharing their
architecture; these scores are close to their reported 3.17. Although not explicit in their approach, Ho
et al. (2020) denoised their final sample. This suggests that taking the EDS and using an architecture
akin to theirs were the two main reasons for outperforming Song and Ermon (2020). Of note, our
method only trains the score network for 300k iterations, while Ho et al. (2020) trained their networks
for more than 1 million iterations to achieve similar results.

6.2 NON-ADVERSARIAL AND ADVERSARIAL SCORE NETWORKS HAVE EQUALLY HIGH
DIVERSITY

To assess the diversity of generated samples, we evaluate our models on the 3-Stacked MNIST
generation task (Metz et al., 2016) (128k images of 28x28), consisting of numbers from the MNIST
dataset (LeCun et al., 1998) superimposed on 3 different channels. We trained non-adversarial and
adversarial score networks in the same way as the other models. The results are shown in Table 4.

We see that each of the 1000 modes is covered, though the KL divergence is still inferior to PACGAN
(Lin et al., 2018), meaning that the mode proportions are not perfectly uniform. Blindness to mode
proportions is thought to be a fundamental limitation of score-based methods (Wenliang, 2020).
Nevertheless, these results confirm a full mode coverage on a task where most GANs struggle and,
most importantly, that using a hybrid objective does not hurt the diversity of the generated samples.

3-Stacked MNIST
Modes (Max 1000) KL

DCGAN (Radford et al., 2015b) 99.0 3.40
ALI (Dumoulin et al., 2016) 16.0 5.40
Unrolled GAN (Metz et al., 2016) 48.7 4.32
VEEGAN (Srivastava et al., 2017) 150.0 2.95
PacDCGAN2 (Lin et al., 2017b) 1000.0 0.06
WGAN-GP (Kumar et al., 2019; Gulrajani et al., 2017) 959.0 0.73
PresGAN (Dieng et al., 2019) 999.6 0.115
MEG (Kumar et al., 2019) 1000.0 0.03
Non-adversarial DSM (ours) 1000.0 1.36
Adversarial DSM (ours) 1000.0 1.49

Table 4: As in Lin et al. (2018), we generated 26k samples and evaluated the mode coverage and KL
divergence based on the predicted modes from a pre-trained MNIST classifier.
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7 CONCLUSION

We proposed Consistent Annealed Sampling as an alternative to Annealed Langevin Sampling,
which ensures the expected geometric progression of the noise and brings the final samples closer
to the data manifold. We showed how to extract the expected denoised sample and how to use it
to further improve the final Langevin samples. We proposed a hybrid approach between GAN and
score matching. With experiments on synthetic and standard image datasets; we showed that these
approaches generally improved the quality/diversity of the generated samples.

We found equal diversity (coverage of all 1000 modes) for the adversarial and non-adversarial variant
of the difficult StackedMNIST problem. Since we also observed better performance (from lower
FIDs) in our other adversarial models trained on images, we conclude that making score matching
adversarial increases the quality of the samples without decreasing diversity. These findings imply that
score matching performs better than most GANs and on-par with state-of-the-art GANs. Furthermore,
our results suggest that hybrid methods, combining multiple generative techniques together, are a
very promising direction to pursue.

As future work, these models should be scaled to larger batch sizes on high-resolution images, since
GANs have been shown to produce outstanding high-resolution images at very large batch sizes
(2048 or more). We also plan to further study the theoretical properties of CAS by considering its
corresponding stochastic differential equation.
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APPENDICES

A BROADER IMPACT

Unfortunately, these improvements in image generation come at a very high computational cost,
meaning that the ability to generate high-resolution images is constrained by the availability of large
computing resources (TPUs or clusters of 8+ GPUs). This is mainly due to the architectures used in
this paper, while adding a discriminator further adds to the training computational load.

B EXPERIMENTS DETAILS

Table 5: Sampling learning rates for non-adversarial (ε) and adversarial (εadv) score matching

Network architecture Dataset consistent nσ ε εadv

Song and Ermon (2020) CIFAR-10 No 1 1.8e-5 1.725e-5
Song and Ermon (2020) CIFAR-10 No 5 3.6e-6 3.7e-6
Song and Ermon (2020) CIFAR-10 Yes 1 5.6e-6 5.55e-6
Song and Ermon (2020) CIFAR-10 Yes 5 1.1e-6 1.05e-6
Song and Ermon (2020) LSUN-Churches No 1 4.85e-6 4.85e-6
Song and Ermon (2020) LSUN-Churches No 5 9.7e-7 9.7e-7
Song and Ermon (2020) LSUN-Churches Yes 1 2.8e-6 2.8e-6
Song and Ermon (2020) LSUN-Churches Yes 5 4.5e-7 4.5e-7

Ho et al. (2020) CIFAR-10 No 1 1.6e-5 1.66e-05
Ho et al. (2020) CIFAR-10 No 5 4.0e-6 4.25e-6
Ho et al. (2020) CIFAR-10 Yes 1 5.45e-6 5.6e-6
Ho et al. (2020) CIFAR-10 Yes 5 1.05e-6 1e-6

Song and Ermon (2020) 3-StackedMNIST Yes 1 5.0e-6 5.0e-6

Following the recommendations from Song and Ermon (2020), we chose σ1 = 50 and L = 232 on
CIFAR-10, and σ1 = 140, L = 788 on LSUN-Churches, both with σL = 0.01. We used a batch
size of 128 in all models. We first swept summarily the training checkpoint (saved at every 2.5k
iterations), the Exponential Moving Average (EMA) coefficient from {.999, .9999}, and then swept
over the sampling step size ε with approximately 2 significant number precision. The values reported
in Table 1 correspond to the sampling step size that minimized the denoised FID for every nσ (See
Table 5). We used the same sampling step sizes for adversarial and non-adversarial. Empirically,
the optimal sampling step size is found for a certain nσ and is extrapolated to other precision levels
by solving βn′σ = βnσ

√
nσ/n′σ for the consistent algorithm. In the non-consistent algorithm, we

found the best sampling step size at nσ = 1 and divided by 5 to obtain a starting point to find the
optimal value at nσ = 5. The best EMA values were found to be .9999 in CIFAR-10 and .999 in
LSUN-churches. The number of score network training iterations was 300k on CIFAR-10 and 200k
on LSUN-Churches.

Of note, Song and Ermon (2020) used non-denoised non-consistent sampling with nσ = 5 and
nσ = 4 for CIFAR-10 and LSUN-Churches respectively. However, they did not use the same learning
rates (we tuned ours more precisely) and they used bigger images for LSUN-Churches.

Regarding the adversarial approach, we swept for the GAN loss function, the number of discriminator
steps per score network steps (nD ∈ {1, 2}), the Adam optimizer (Kingma and Ba, 2014) parameters,
and the hyperparameter λ (see Eq. 5) based on quick experiments on CIFAR-10. LSGAN (Mao
et al., 2017) yielded the best FID scores among all other loss functions considered, namely the
original GAN loss function (Goodfellow et al., 2014), HingeGAN (Lim and Ye, 2017), as well as
their relativistic counterparts (Jolicoeur-Martineau, 2018; 2019). Note that the saturating variant (see
Goodfellow et al. (2014)) on LSGAN worked as well as its non-saturating version; we did not use it
for simplicity. Following the trend towards zero or negative momentum (Gidel et al., 2019), we used
the Adam optimizer with hyperparameters (β1, β2) = (−.5, .9) for the discriminator and (β1, β2) =
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(0, .9) for the score network. These values were found by sweeping over β1 ∈ {.9, .5, 0,−.5} and
β2 ∈ {.9, .999}. We found the simple setting λ = 1 to perform comparatively better than more
complex weighting schemes. We used nD = 2 on CIFAR-10 and and nD = 1 on LSUN-Churches.

The 3-Stacked MNIST experiment was conducted with an arbitrary EMA of .999. The sampling step
size was broadly swept upon. Following (Song and Ermon, 2020) hyperparameter recommendations,
we obtained σ1 = 50, L = 200.

For the synthetic 2D experiments, we used Langevin sampling with nσ = 10, ε = .2, and σ = .1.

C SUPPLEMENTARY EXPERIMENTS

Due to limited computing resources (4 V100 GPUs), the training of models on FFHQ (70k images) in
256x256 (Karras et al., 2019), with the same setting as previously done by Song and Ermon (2020),
was impossible. Using a reduced model yielded very poor results. The adversarial version performed
worse than the other; we suspect this was the case due to the mini-batch of size 32, our computational
limit, while the BigGAN architecture normally assumes very large batch sizes of 2048 when working
with images of that size (256x256 or higher).

D OPTIMAL CONDITIONAL SCORE FUNCTION

Recall the loss from Eq. 1

L[s] = 1

2L

L∑
i=1

Ex̃∼qσi (x̃|x),x∼p(x)

[
‖s(x̃, σi)−∇x̃ log qσi(x̃)‖

2
2

]
Then, the minimizer s∗ of L[s] would be such that, s∗(x̃, σi) = ∇x̃ log qσi(x̃) ∀i ∈ {1, ..., L}.

∇x̃ log qσ(x̃) =
1

qσ(x̃)
∇x̃

∫
p(x)qσ(x̃|x)dx

=
1

qσ(x̃)

∫
p(x)∇x̃qσ(x̃|x)dx

=
1

qσ(x̃)

∫
p(x)qσ(x̃|x)∇x̃ log qσ(x̃|x)dx

=
1

qσ(x̃)

∫
p(x)qσ(x̃|x)

x− x̃

σ2
dx

=
1

qσ(x̃)

1

σ2

(∫
qσ(x|x̃)qσ(x̃)xdx− x̃qσ(x̃)

)
=

Ex∼qσ(x|x̃)[x]− x̃

σ2

making use of the fact that qσ(x̃|x) = N (x̃|x, σ2I), qσ(x̃) ,
∫
p(x)qσ(x̃|x)dx and that

qσ(x|x̃) = p(x)qσ(x̃|x)
qσ(x̃)

E OPTIMAL UNCONDITIONAL SCORE FUNCTION

As the explicit optimal score function is obtained in Appendix D for the conditional case, a similar
result can be obtained for the unconditional case. Recall the loss from Eq. 1

L[s] = 1

2L

L∑
i=1

Ex̃∼qσi (x̃|x),x∼p(x)

[∥∥∥∥s(x̃) + (x̃− x)

σi

∥∥∥∥2
2

]
(7)

=
1

2
Ex̃∼qσ(x̃|x),x∼p(x),σ∼p(σ)

[∥∥∥∥s(x̃) + (x̃− x)

σ

∥∥∥∥2
2

]
, (8)
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where p(σ) is chosen to be a discrete uniform distribution over a specific set of values. We use this
expectation formulation over σ to obtain a more general result; the choice of p(σ) is not important
for this derivation.

Solving with calculus of variations, we get:

∂L
∂s

=

∫ ∫
qσ(x̃,x, σ)

(
s(x̃) +

x̃− x

σ

)
dxdσ = 0

⇐⇒ s(x̃)q(x̃) =

∫ ∫
qσ(x̃,x)p(σ)

(
x− x̃

σ

)
dxdσ

⇐⇒ s(x̃)q(x̃) = Eσ∼p(σ)
[∫

qσ(x|x̃)q(x̃)
(
x− x̃

σ

)
dx

]
⇐⇒ s(x̃) = Eσ∼p(σ)

[∫
qσ(x|x̃)

(
x− x̃

σ

)
dx

]
⇐⇒ s(x̃) = Eσ∼p(σ)

[Ex∼qσ(x|x̃)[x]− x̃

σ

]
⇐⇒ s(x̃) = Eσ∼p(σ) [s∗(x̃, σ)]

Specifically, for our discrete choice of noise levels, we have that the critical point is achieved when

s(x̃) =
1

L

L∑
i=1

(Ex∼qσi (x|x̃)[x]− x̃

σi

)
.

Let us now consider the scenario where the data distribution is simply a Dirac in x0: p(x) = δx0 . In
that case, the EDS is trivial: H∗(x̃, σ) , Ex∼qσ(x|x̃)[x] = x0. This gives an interesting insight into
the unconditional score network. Letting 1

σ = 1
L

∑L
i=1

1
σi

, we get:

s(x̃) =
x0 − x̃

σ
=⇒ s(x̃, σi) =

s(x̃)

σi
=

x0 − x̃

σσi
.

This should be compared to the true value of the conditional network s(x̃, σi) = x0−x̃
σ2
i

. We see that
in the denominator of the unconditional score network, a noise level is replaced by the harmonic
mean of noise levels. In particular, for σi far from its mean, the approximation will get inaccurate:

• For large noise values, the unconditional score network will overestimate the true score
function, leading to a larger effective step size during sampling.
• For small noise values, the unconditional score network will underestimate the true score

function, leading to samples not diffusing as much as they should.

F ALS NON-GEOMETRIC PROOF

Proposition 1. Let s∗ be the optimal score function from Eq. 3. Following the sampling described
in Algorithm 1, the variance of the noise component in the sample x will remain greater than σ2

t at
every step t.

Proof. Assume at the start of an iteration of Langevin Sampling that the point x is comprised of an
image component and of a noise component denoted v0z0 for z0 ∼ N (0, I). We assume from the
proposition statement that the Langevin Sampling is performed at the level of variance σ2

t , meaning
the update rule is as follows:

x←x+ ησ2
t s
∗(x, σt) + σt

√
2ηz

for z ∼ N (0, I) and 0 < η < 1. From Eq. 3, we get:

x←x+ η(Ex′∼qv0 (x
′|x)[x

′]− x) + σt
√
2ηz

=(1− η)x+ ηEx′∼qv0 (x
′|x)[x

′] + σt
√

2ηz.
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The noise component of (1− η)x and σt
√
2ηz can then be summed as:

(1− η)v0z0 + σt
√
2ηz.

Making use of the fact that both sources of noise follow independent normal distributions, the sum
will be normally distributed, centered and of variance v21 , with

v21 =v20(1− η)2 + 2ησ2
t .

Applying the same steps allows us to examine the variance after multiple Langevin Sampling iterations

v22 =v21(1− η)2 + 2ησ2
t

=v20(1− η)4 + 2ησ2
t + 2ησ2

t (1− η)2

...

v2n =v20(1− η)2n + 2ησ2
t

n−1∑
i=0

(1− η)2i

=v20(1− η)2n +
2σ2

t

2− η
(1− (1− η)2n).

From there, the two following statements can be obtained:

(1) lim
n→∞

vn = σt

√
2

2− η
> σt

(2)
dvn
dn

< 0 ⇐⇒ η < 2− 2σ2
t

v20
.

From these observations, we understand that v2n is monotonically decreasing (under conditions
generally respected in practice) but converges to a point superior to σ2

t after an infinite number of
Langevin Sampling steps. We then conclude that for all n, the variance of the noise component in the
sample will always exceed σ2

t . We also note that this will be true across the full sampling, at every
step t.

In the particular case where σt corresponds to a geometrically decreasing series, it means that even
given an optimal score function, the standard deviation of the noise component cannot follow its
prescribed schedule.

G CAS GEOMETRIC PROOF

Proposition 2. Let s∗ be the optimal score function from Eq. 3. Following the sampling described in
Algorithm 2, the variance of the noise component in the sample x will consistently be equal to σ2

t at
every step t.

Proof. Let us first define β to be equal to
√

1− (1− η)2/γ2 with η = ε/σ2
L and γ defined as Eq.

2. At the start of Algorithm 2, assume that x is comprised of an image component and a noise
component denoted σ0z0, where z0 ∼ N (0, I) and σ0 = σ1/γ. We will proceed by induction to
show that the noise component at step t will be a Gaussian of variance σ2

t for every t.

The first induction step is trivial. Assume the noise component of xt to be σtzt, where zt ∼ N (0, I).
Following Algorithm 2, the update step will be:

xt+1 ← xt + ησ2
t s
∗(xt, σt) + σt+1βz,

with z ∼ N (0, I) and 0 < η < 1. From Eq. 3, we get

xt+1 ←xt + η(Ex∼qσt (x|xt)[x]− xt) + σt+1βz

=(1− η)xt + ηEx∼qσt (x|xt)[x] + σt+1βz.
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The noise component from (1− η)xt and σt+1βz can then be summed as:

σt(1− η)zt + σt+1βz.

Making use of the fact that both sources of noise follow independent normal distributions, the sum
will be normally distributed, centered and of variance:

σ2
t (1− η)2 + σ2

t+1β
2 = σ2

t+1

[(
1− η
γ

)2

+ β2

]
= σ2

t+1.

By induction, the noise component of the sample x will follow a Gaussian distribution of variance
σ2
i ∀i ∈ {0, ..., L}. In the particular case where σi corresponds to a geometrically decreasing series,

it means that given an optimal score function, the standard deviation of the noise component will
follow its prescribed schedule.

H UPDATE RULE

Proposition 3. Given a noise-conditional score function, the update rules from Algorithm 1 and
Algorithm 2 are equivalent to the respective following update rules:

x← (1− η)x+ ηH(x, σi) +
√

2ησiz for z ∼ N (0, I) and η =
ε

σ2
L

x← (1− η)x+ ηH(x, σi) + βσi+1z

Proof. Recall from Algorithm 1 that αi = ε
σ2
i

σ2
L
= ησ2

i . Then, the update rule is as follows:

x← x+ αis(x, σi) +
√
2αi z

= x+ ησ2
i

(
H(x)− x

σ2
i

)
+
√
2αi z

= (1− η)x+ ηH(x) +
√

2ησiz

The same thing can be proven for Algorithm 2 in the very same way.

I INCEPTION SCORE (IS)

While the FID is improved by applying the EDS to image samples, the Inception Score is not.
Convolutional neural networks suffer from texture bias (Geirhos et al., 2018). Since the IS is built
upon convolution layers, this flaw is also strongly present in the metric. Designed to answer the
question of how easy it is to recover the class of an image, it tends to bias towards within-class texture
similarity (Barratt and Sharma, 2018).

Since we denoise the final image, we are evaluating the expected lower level of details across all
classes. Therefore, the denoiser will confound the textures used by the IS to distinguish between
classes, invariably worsening the score. Since the FID has already been shown to be more consistent
with the level of noise than the IS (Heusel et al., 2017), and since ALS methods are particularly prone
to inject class-specific imperceptible noise, we would recommend against its use to compare within
and between score matching models.
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J UNCURATED SAMPLES

(a) CIFAR-10 Non-adversarial non-consistent nσ = 1 (b) CIFAR-10 Adversarial non-consistent nσ = 1

(c) CIFAR-10 Non-adversarial consistent nσ = 1 (d) CIFAR-10 Adversarial consistent nσ = 1

Figure 4: Denoised sample evolving over time for different methods

Figure 5: CIFAR-10 Non-adversarial non-consistent nσ = 1
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Figure 6: CIFAR-10 Adversarial non-consistent nσ = 1

Figure 7: CIFAR-10 Non-adversarial non-consistent nσ = 5
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Figure 8: CIFAR-10 Adversarial non-consistent nσ = 5

Figure 9: CIFAR-10 Non-adversarial consistent nσ = 1
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Figure 10: CIFAR-10 Adversarial consistent nσ = 1

Figure 11: CIFAR-10 Non-adversarial consistent nσ = 5
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Figure 12: CIFAR-10 Adversarial consistent nσ = 5

Figure 13: LSUN-Churches Non-adversarial non-consistent nσ = 1
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Figure 14: LSUN-Churches Adversarial non-consistent nσ = 1

Figure 15: LSUN-Churches Non-adversarial non-consistent nσ = 5
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Figure 16: LSUN-Churches Adversarial non-consistent nσ = 5

Figure 17: LSUN-Churches Non-adversarial consistent nσ = 1
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Figure 18: LSUN-Churches Adversarial consistent nσ = 1

Figure 19: LSUN-Churches Non-adversarial consistent nσ = 5
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Figure 20: LSUN-Churches Adversarial consistent nσ = 5

Figure 21: Ho et al. (2020) network architecture with CIFAR-10 Non-adversarial non-consistent
nσ = 1
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Figure 22: Ho et al. (2020) network architecture with CIFAR-10 Adversarial non-consistent nσ = 1

Figure 23: Ho et al. (2020) network architecture with CIFAR-10 Non-adversarial non-consistent
nσ = 5
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Figure 24: Ho et al. (2020) network architecture with CIFAR-10 Adversarial non-consistent nσ = 5

Figure 25: Ho et al. (2020) network architecture with CIFAR-10 Non-adversarial consistent nσ = 1
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Figure 26: Ho et al. (2020) network architecture with CIFAR-10 Adversarial consistent nσ = 1

Figure 27: Ho et al. (2020) network architecture with CIFAR-10 Non-adversarial consistent nσ = 5
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Figure 28: Ho et al. (2020) network architecture with CIFAR-10 Adversarial consistent nσ = 5
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