
Vision Transformers provably learn spatial structure

Samy Jelassi
Princeton University

sjelassi@princeton.edu

Michael E. Sander
ENS, CNRS

michael.sander@ens.fr

Yuanzhi Li
Carnegie Mellon University
yuanzhil@andrew.cmu.edu

Abstract

Vision Transformers (ViTs) have achieved comparable or superior performance
than Convolutional Neural Networks (CNNs) in computer vision. This empirical
breakthrough is even more remarkable since, in contrast to CNNs, ViTs do not
embed any visual inductive bias of spatial locality. Yet, recent works have shown
that while minimizing their training loss, ViTs specifically learn spatially localized
patterns. This raises a central question: how do ViTs learn these patterns by
solely minimizing their training loss using gradient-based methods from random
initialization? In this paper, we provide some theoretical justification of this
phenomenon. We propose a spatially structured dataset and a simplified ViT model.
In this model, the attention matrix solely depends on the positional encodings.
We call this mechanism the positional attention mechanism. On the theoretical
side, we consider a binary classification task and show that while the learning
problem admits multiple solutions that generalize, our model implicitly learns the
spatial structure of the dataset while generalizing: we call this phenomenon patch
association. We prove that patch association helps to sample-efficiently transfer to
downstream datasets that share the same structure as the pre-training one but differ
in the features. Lastly, we empirically verify that a ViT with positional attention
performs similarly to the original one on CIFAR-10/100, SVHN and ImageNet.

1 Introduction

Transformers are deep learning models built on self-attention [65], and in the past several years
they have increasingly formed the backbone for state-of-the-art models in domains ranging from
Natural Language Processing (NLP) [65, 23] to computer vision [24], reinforcement learning [13, 38],
program synthesis [5] and symbolic tasks [44]. Beyond their remarkable performance, several works
reported the ability of transformers to simultaneously minimize their training loss and learn inductive
biases tailored to specific datasets e.g. in computer vision [55], in NLP [10, 67] or in mathematical
reasoning [73]. In this paper, we focus on computer vision where convolutions are considered to be
an adequate and biologically plausible inductive bias since they capture local spatial information [27]
by imposing a sparse local connectivity pattern. This seems intuitively reasonable: nearby pixels
encode the presence of small scale features, whose patterns in turn determine more abstract features
at longer and longer length scales. Several seminal works [17, 24, 55] empirically show that although
randomly initialized, the positional encodings in Vision transformers (ViTs) [24] actually learn this
local connectivity: closer patches have more similar positional encodings, as shown in Figure 1a.
A priori, learning such spatial structure is surprising. Indeed, in contrast to convolutional neural
networks (CNNs), ViTs are not built with the inductive bias of local connectivity and weight sharing.
They start by replacing an image by a collection of D patches pX1, . . . ,XDq P RdˆD, each of
dimension d. While each Xi represents (an embedding of) a spatially localized portion of the original
image, the relative positions of the patches Xi in the image are disregarded. Instead, relative spatial
information is supplied through image-independent positional encodings P “ pp1, . . . ,pDq P RdˆD.
Unlike CNNs, each layer of a ViT then learns, via trainable self-attention, a non-local set of filters
that non-linearly depend on both the values of all patches Xj and their positional encodings pj .

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

(1)

(2)

0.0

0.2

0.4

0.6

0.8

1.0

(2)

(a)

(1) (2)

X1 X2 X3 X4
X5 X6 X7 X8
X9 X10 X11 X12
X13 X14 X15 X16

X1 X2 X3 X4
X5 X6 X7 X8
X9 X10 X11 X12
X13 X14 X15 X16

(b)
Figure 1: (a) Visualization of the positional encodings similarities PJP “ pxpi,pjyqpi,jqPrDs2 at initialization
(1) and after training on Imagenet (2) using a "ViT-small-patch32-224" [24]. We normalise the values PJP
between ´1 and 1 and apply a threshold of 0.55. In contrast with the initial arrays that are random, the final
ones show local connectivity patterns: nearby patches have similar positional encodings. (b) Partition of the
patches into sets Sℓ as in Definition 2.1. Squares in the same color belong to the same set Sℓ. We refer to (1) as a
"spatially localized set" since all the elements in a Sℓ are spatially contiguous. This is the type of sets appearing
in Figure 1a at the end of training. Definition 2.1 also covers sets with non-contiguous elements as (2).

Contributions. The empirical observation of Figure 1a sets a central question: from a theoretical
perspective, how do ViTs manage to learn these local connectivity patterns by simply minimizing their
training loss using gradient descent from random initialization? While it is known that attention can
express local operations as convolution [17], it remains unclear how ViTs learn it. In this paper, we
present a simple spatially-structured classification dataset for which it is sufficient (but not necessary)
to learn the structure in order to generalize. We also present a simplified ViT model which we prove
implicitly learns sparse spatial connectivity patterns when it minimizes its training loss via gradient
descent (GD). We name this implicit bias patch association (defined in Definition 2.2). We prove that
our ViT model leverages this bias to generalize. More precisely, we make the following contributions:

– In Section 2, we formally define the concept of performing patch association, which refer to the
ability of learning spatial connectivity patterns on a dataset.

– In Section 3, we introduce a structured classification dataset and a simplified ViT model. This
model is simplified in the sense that its attention matrix only depends on the positional encodings.
We then present the learning problems we are interested in: empirical risk (realistic setting) and
population risk (idealized setting) minimization for binary classification.

– In Section 4, we prove that a one-layer single-head ViT model trained with gradient descent on our
synthetic dataset performs patch association and generalizes, in the idealized (Theorem 4.1) and
realistic (Theorem 4.2) settings. We present a detailed proof, based on invariance and symmetries
of coefficients in the attention matrix throughout the learning process.

– In Section 5, we show (Theorem 5.1) that after pre-training in our synthetic dataset, our model can
be sample-efficiently fine-tuned to transfer to a downstream dataset that shares the same structure
as the source dataset (and may have different features).

– On the experimental side, we validate in Section 6 that ViTs learn spatial structure in images from
the CIFAR-100 dataset, even when the pixels of the images are permuted. This result validates that,
in contrast to CNNs, ViTs learn a more general form of spatial structure that is not limited to local
patterns (Figure 5). We finally show that our ViT model –where the attention matrix only depends
on the positional encodings– is competitive with the vanilla ViT on the ImageNet, CIFAR-10/100
and SVHNs datasets (Figure 6 and Figure 7).

Notation. We use lower case letters for scalars, lower case bold for vectors and upper case bold
for matrices. Given an integer D, we define rDs “ t1, . . . , Du. Any statement made "with high
probability" holds with probability at least 1 ´ 1{polypdq. Given a vector a P Rd and k ď d, we
define Topktajudj“1 “ tai1 , . . . , aiku where ai1 , . . . , aik are the k-largest elements. For a function
F that implicitly depend on parameters A and v, we often write FA,v to highlight its parameters.
We use the asymptotic complexity notations when defining the different constants.

Related work

CNNs and ViTs. Many computer vision architectures can be considered as a form of hybridization
between Transformers and CNNs. For example, DeTR [11] use a CNN to generate features that
are fed to a Transformer. [25] show that self-attention can be initialized or regularized to behave
like a convolution and [19, 30] add convolution operations to Transformers. Conversely, [8, 56, 7]
introduce self-attention or attention-like operations to supplement or replace convolution in ResNet-

2

like models. In contrast, our paper does not consider any form of hybridization with CNN, but rather
a simplification of the original ViT to explain how ViTs learn spatially structured patterns using GD.

Empirical understanding of ViTs. A long line of work consists in analyzing the properties of
ViTs, such as robustness [9, 54, 51] or the effect of self-supervision [12, 14]. Closer to our work,
some papers investigate why ViTs perform so well. [55] compare the representations of ViTs and
CNNs and [50, 64] argue that the patch embeddings could explain the performance of ViTs. We
empirically show in Section 6 that applying the attention matrices to the positional encodings – which
contains the structure of the dataset – approximately recovers the baselines. Hence, our work rather
suggests that the structural learning performed by the attention matrices may explain the success of
ViTs.

Theory for attention models. Early theoretical works have focused on the expressivity of attention.
[66, 26] addressed this question in the context of self-attention blocks and [21, 68, 34] for Transform-
ers. On the optimization side, [76] investigate the role of adaptive methods in attention models and
[59] analyze the dynamics of a single-head attention head to approximate the learning of a Seq2Seq
architecture. In our work, we also consider a single-head ViT trained with gradient descent and
exhibit a setting where it provably learns convolution-like patterns and generalizes.

Algorithmic regularization. The question we address concerns algorithmic regularization which
characterizes the generalization of an optimization algorithm when multiple global solutions exist
in over-parametrized models. This regularization arises in deep learning mainly due to the non-
convexity of the objective function. Indeed, this latter potentially creates multiple global minima
scattered in the space that vastly differ in terms of generalization. Algorithmic regularization appears
in binary classification [60, 49, 16], matrix factorization [29, 3], convolutional neural networks
[29, 37], generative adversarial networks [2], contrastive learning [70] and mixture of experts [15].
Algorithmic regularization is induced by and depends on many factors such as learning rate and batch
size [28, 33, 41, 58, 47], initialization [1], momentum [39], adaptive step-size [42, 53, 20, 71, 78, 40],
batch normalization [4, 32, 36] and dropout [61, 69]. However, all these works consider the case of
feed-forward neural networks which does not apply to ViTs.

2 Defining patch association
The goal of this section is to formalize the way ViTs learn sparse spatial connectivity patterns. We
thus introduce the concept of performing patch association for a spatially structured dataset.
Definition 2.1 (Data distribution with spatial structure). Let D be a distribution over RdˆD ˆt´1, 1u

where each patch X “ pX1, . . . ,XDq P RdˆD has label y P t´1, 1u. We say that D is spatially
structured if

– there exists a partition of rDs into L disjoint subsets i.e. rDs “
ŤL

ℓ“1 Sℓ with Sℓ Ĺ D and
|Sℓ| “ C.

– there exists a labeling function f˚ satisfying Pryf˚pXq ą 0s “ 1 ´ d´ωp1q and,

f˚pXq :“
ÿ

ℓPrLs

ϕp
`

Xi

˘

iPSℓ
q, where ϕ : RdˆC Ñ R is an arbitrary function. (1)

0 500 1000
Number of gradient descent steps

5%
10%

T
es

t
er

ro
r

Test error

Figure 2: Left: Test error of the ViT on the
convolution structured dataset. Upper Right:
Grid displaying the input patches. Yellow
squares represent spatially localized sets Sℓ.
Those sets are taken into account when com-
puting the convolutional function f˚. Lower Right:
Learnt PJP looks random compared to upper one.

Examples. A particular case for the sets Sℓ’s is
the one of spatially localized sets as in Figure 1b-
(1). In this case, we have D “ 16, C “ 4
and S1 “ t1, 2, 5, 6u, S2 “ t3, 4, 7, 8u, S3 “

t9, 10, 13, 14u, S4 “ t11, 12, 15, 16u. We empha-
size that Definition 2.1 is not limited to spatially lo-
calized sets and also covers non-contiguous sets as
Figure 1b-(2).

Labelling function Definition 2.1 states that there
exists a labelling function that preserves the under-
lying structure by applying the same function ϕ to
each Sℓ as in (1). For instance, when the sets Sℓ’s

3

are spatially localized, f˚ can be a one-hidden layer convolutional network. In this paper, we are
interested in patch association which refers to the ability of an algorithm to identify the sets Sℓ’s, and
is formally defined as follow.
Definition 2.2 (Patch association for ViTs). Let D be as in Definition 2.1. Let M : RdˆD Ñ

t´1, 1u be a transformer and P pMq its positional encodings matrix. We say that M performs patch
association on D if for all ℓ P rLs and i P Sℓ, we have TopC txp

pMq

i ,p
pMq

j yuDj“1 “ Sℓ.

Definition 2.2 states that patch association is learned when for a given i P Sℓ, its positional encoding
mainly attends those of j such that i, j P Sℓ. In this way, the transformer groups the Xi according
to Sℓ just like the true labeling function. Definition 2.2 formally describes the empirical findings in
Figure 1a-(2), where nearby patches have similar positional encodings. A natural question is then:
would ViTs really learn those Sℓ after training to match the labeling function f˚? Without further
assumptions on the data distribution, we next show that the answer is no.

ViTs do not always learn patch association under Assumption 1. We give a negative answer
through the following synthetic experiment. Consider the case where all the patches Xj are i.i.d.
standard Gaussian and f˚ is a one-hidden layer CNN with cubic activation. The label y of any X is
then given by y “ signpf˚pXqq. As shown in Figure 2, one-layer ViT reaches small test error on the
binary classification task. However, PJP does not match the convolution pattern encoded in f˚.
This is not surprising, since the data distribution D is Gaussian, and thus lacks spatial structure. Thus,
in order to prove that ViTs learn patch association, we need additional assumptions on D, which we
discuss in the next section.

3 Setting to learn patch association

In this section, we introduce our theoretical setting to analyze how ViTs learn patch association. We
first define our binary classification dataset and finally present the ViT model we use to classify it.
Assumption 1 (Data distribution with specific spatial structure). Let D be a distribution as in
Definition 2.1 and w˚ P Rd be an underlying feature. We suppose that each data-point X is defined
as follow

– Uniformly sample an index ℓpXq from rLs and for j P SℓpXq, Xj “ yw˚ ` ξj , where yw˚ is the

informative feature and ξj
i.i.d.
„ N p0, σ2pID ´ w˚w˚ Jqq (signal set).

– For ℓ P rLsztℓpXqu and j P Sℓ, Xj “ δjw
˚ ` ξj , where δj “ 1 with probability q{2, ´1 with

same probability and 0 otherwise, and ξj
i.i.d.
„ N p0, σ2pID ´ w˚w˚ Jqq (random sets).

0 0 -1

0

0

0

+1 +10-1

0 +1 +1 +1

0

0

-1

-1+1

0 0

0-1

-1 00-100

00 0 0 0

+1

-1

Figure 3: Visualization of a data-point
X in D when the Sℓ’s are spatially lo-
calized. Each square depicts a patch
Xj and squares of the same color be-
long to the same set Sℓ. "0" indicates
that the patch does not have a feature,
"1" stands for feature 1¨w˚ and "-1" for
feature ´1 ¨ w˚. The large red square
depicts the signal set ℓpXq. Although
there are more "-1"’s than "+1"’s, the
label of X is `1 since there are only
"+1"’s inside the signal set.

To keep the analysis simple, the noisy patches
are sampled from the orthogonal complement of
w˚. Note that D admits the labeling function
f˚pXq “

ř

ℓPrLs Threshold0.9Cp
ř

iPSℓ
xw˚,Xiyq, where

ThresholdCpzq “ z if |z| ą C and 0 otherwise.

We sketch a data-point of D in Figure 3. Our dataset can
be viewed as an extreme simplification of real-world image
datasets where there is a set of adjacent patches that contain a
useful feature (e.g. the nose of a dog) and many patches that
have uninformative or spurious features e.g. the background of
the image. We make the following assumption on the param-
eters of the data distribution.
Assumption 2. We suppose that d “ polypDq, C “

polylogpdq, q “ polypCq{D, }w˚}2 “ 1 and σ2 “ 1{d. This
implies C ! D and q ! 1.
Assumption 2 may be justified by considering a "ViT-base-
patch16-224" model [24] on ImageNet. In this case, d “ 384,
D “ 196. σ is set to have }ξj}2 « }w˚}2. q is chosen so
that there are more spurious features than informative ones

4

(low signal-to-noise regime) which makes the data non-linearly
separable. Our dataset is non-trivial to learn since generalized linear networks fail to generalize, as
shown in the next theorem (see Appendix J for a proof).

Theorem 3.1. Let D be as in Assumption 1. Let gpXq “ ϕ
´

řD
j“1xwj ,Xjy

¯

be a generalized

linear model. Then, g does not fit the labeling function i.e. Prf˚pXqgpXq ď 0s ě 1{8.

Intuitively, g fails to generalize because it does not have any knowledge on the underlying partition
and the number of random sets is much higher than those with signal. Thus, a model must have a
minimal knowledge about the Sℓ’s in order to generalize. In addition, the following Theorem 3.2
states the existence of a transformer that generalizes without learning spatial structure (see Appendix
J for a proof), thus showing that the learning process has a priori no straightforward reason to lead to
patch association.
Theorem 3.2. Let D be defined as in Assumption 1. There exists a (one-layer) transformer M so that
Prf˚pXqMpXq ď 0s “ d´ωp1q but for all ℓ P rLs, i P Sℓ, TopC txp

pMq

i ,p
pMq

j yuDj“1 X Sℓ “ H.

Simplified ViT model. We now define our simplified ViT model for which we show in Section 4
that it implicitly learns patch association via minimizing its training objective. We first remind the
self-attention mechanism that is ubiquitously used in transformers.
Definition 3.1 (Self-attention [6, 65]). The attention mechanism [6, 65] in the single-head case
is defined as follow. Let X P RdˆD a data point and P P RdˆD its positional encoding. The
self-attention mechanism computes

1. the sum of patches and positional encodings i.e. XXX “ X ` P .

2. the attention matrix A “ QKJ where Q “ XXX J
WQ, K “ XXX J

WK , WQ,WK P Rdˆd.

3. the score matrix S P RDˆD with coefficients Si,j “ exppAi,j{
?
dq{

řD
r“1 exppAi,r{

?
dq.

4. the matrix V “ XXX J
WV , where WV P Rdˆd.

It finally outputs SAppX;P qq “ SV P RdˆD.

In this paper, our ViT model relies on a different attention mechanism –the "positional attention"–
that we define as follows.
Definition 3.2 (Positional attention). Let X P RdˆD and P P RdˆD the positional encoding. The
positional attention mechanism takes as input the pair pX;P q and computes:

1. the attention matrix A “ QKJ where Q “ PJWQ, K “ PJWK and WQ,WK P Rdˆd.

2. the score matrix S P RDˆD with coefficients Si,j “ exppAi,j{
?
dq{

řD
r“1 exppAi,r{

?
dq.

3. the matrix V “ XJWV , where WV P Rdˆd.

It outputs PAppX;P qq “ SV .

Positional attention isolates positional encoding P from data X: A encodes the dynamics of P and
tracks whether patch association is learned. V encodes the data-dependent part and monitors whether
the feature is learned. Indeed, given its highly non-linear nature with respect to the input, directly
analyzing self-attention is difficult. Yet, positional attention is similar to self-attention. As this latter,
positional attention is also permutation-invariant and processes all tokens simultaneously. Besides,
positional attention also computes a score matrix between the different tokens. This similarity matrix
is also normalized in a sparse manner with the Softmax operator. The only aspect that positional
attention misses from self-attention is the fact that S does not depend on the input. Nevertheless, we
empirically show that our positional attention model competes with self-attention in Section 6. Lastly,
we make the following simplification in the parameters to ease our analysis.
Simplification 3.1. In the positional attention mechanism, we set d “ D, WK “ ID and WQ “ ID
which implies A “ PJP . We set WV “ rv, . . . ,vs P RdˆD where v P Rd. Finally, we set A and
v as trainable parameters. Besides, without loss of generality, we train all Ai,j for i ‰ j and leave
the diagonals of A fixed.

In Simplification 3.1, we set WK and WQ to the identity so that A “ PJP . This Gram matrix
encodes the spatial patterns learned by the ViT as shown in Figure 1a. Besides, since fitting the

5

labeling function requires to learn one feature w˚, it is sufficient to parameterize WV with a vector
v. Also, although A “ PJP and P is trainable, we choose for simplicity to only optimize over A.
Besides, we leave the Ai,i’s fixed because Softmax is invariant under the uniform shift of the input.
Under Simplification 3.1, our simplified ViT model is then a two attention layer with a single head:

F pXq “

D
ÿ

i“1

σ

ˆ

D
D
ÿ

j“1

Si,jxv,Xjy

˙

with Si,j “ exppAi,j{
?
dq{

D
ÿ

r“1

exppAi,r{
?
dq, (T)

where σ is an activation function. Since we aim to the simplest ViT model, we opt for a polynomial
activation i.e. σpxq “ xp ` νx where p ě 3 is an odd integer and ν “ 1{polypdq. Note that this
choice of polynomial activation is common in the deep learning theory literature – see e.g. [45, 1, 72]
among others. The degree p is odd to make the ViT model compatible with the labeling function and
strictly larger than 1 because the data is not linearly separable (Theorem 3.1). We add a linear part in
the activation function to ensure that the gradient is non-zero when v has small coefficients. With
these simplifications, we formally prove that F is able to learn patch association and generalize, in
the two following settings.

Idealized and realistic learning problems. Given a dataset Z “ tpXris, yrisquNi“1 sampled from
D, we solve the empirical risk minimization problem for the logistic loss defined by:

min
pA,v̂

1

N

N
ÿ

i“1

log
`

1 ` e´yrisF pXrisq
˘

:“ pLp pA, pvq. (E)

Instead of directly analyzing (E), we introduce a proxy where we minimize the population risk

min
A,v

ED
“

log
`

1 ` e´yF pXq
˘‰

:“ LpA,vq. (P)

We refer to (E) as the realistic problem while (P) as the idealized problem.

Algorithm. We solve (P) and (E) using gradient descent (GD) for T iterations. The update rule in
the case of (P) for t P rT s and i, j P rDs is

A
pt`1q

i,j “ A
ptq
i,j ´ ηBAi,j

LpAptq,vptqq, vpt`1q “ vptq ´ η∇vLpAptq,vptqq, (GD)

where η ą 0 is the learning rate. A similar update may be written for (E). We now detail how to set
the parameters in (GD).

Parametrization 3.1. When running GD on (P) and (E), the number of iterations is any T ě

polypdq{η. We set the learning rate as η P
`

0, 1
polypdq

˘

. The diagonal coefficient of the attention

matrix are set for i P rDs as Ap0q

i,i “ pA
p0q

i,i “ σAID where σA “ polyloglogpdq. The off-diagonal
coefficients of A and the value vector are initialized as:

1. Idealized case: vp0q “ αp0qw˚ where αp0q “ ν1{pp´1q and Ap0q

i,j “ 0 for i ‰ j.

2. Realistic case: pvp0q „ N p0, ω2Idq and pA
p0q

i,j „ N p0, ω2q where i ‰ j and ω “ 1{polypdq.

We remind that in Simplification 3.1, we have A “ PJP . If one initializes P „ N p0, σAID{Dq,
then with high probability, Ap0q

i,i “ }p
p0q

i }22 “ ΘpσAq and Ap0q

i,j “ xp
p0q

i ,p
p0q

j y “ ΘpσA{
?
Dq for

i ‰ j. Since D " 1, it is then reasonable to set Ap0q

i,j “ 0. Note that, also in the idealized setting, we
initialize vp0q in spanpw˚q, even though this latter should be unknown to the algorithm. We remind
that the idealized case is a proxy to ultimately characterize the realistic dynamics.

4 Learning spatial structure via matching the labeling function
As announced above, we show that our ViT (T) implicitly learns patch association and fits the labeling
function by minimizing the training objective. We first study the dynamics in (P). Using the analysis
in the idealized case, we then characterize the solution found in the realistic problem (E).

6

101 103

Number of gradient descent steps

3%
4%
6%

10%

T
es

t
er

ro
r

Test error

101 103

Number of gradient descent steps

0.5

0.99

C
os

in
e

S
im

ila
ri
ty

Cosine similarity

Figure 4: Illustration of Theorem 4.2. We consider the exact same setting (data generation, parameter settings...)
as for the realistic case. From left to right, we first display in grey the tuples pi, jq such that pi, jq P Sℓ. We
then plot the learned matrix A and see that coefficients with high value exactly correspond to their grey scale
counterpart in the left plot. We also display test error and cosine similarity between w˚ and v w.r.t the number
of training steps.

4.1 Learning process in the idealized case

In this section, we analyze the dynamics of (P). Our main result is that after minimizing (P), our
model (T) performs patch association while generalizing.
Theorem 4.1. Assume that we run GD on (P) for T iterations with parameters set as in Parametriza-
tion 3.1. With high probability, the ViT model (T)

1. learns patch association i.e. for all ℓ P rLs and i P Sℓ, TopC tA
pT q

i,j uDj“1 “ Sℓ.

2. learns the labeling function f˚ i.e. PDrf˚pXqFApT q,vpT q pXq ą 0s ě 1 ´ op1q.

We now sketch the main ideas to prove the theorem for which one can refer to Appendix D for a
complete proof.

Invariance and symmetries. In (P), we take the expectation over D. Since (T) is permutation-
invariant and the data distribution is symmetric, we can thus dramatically simplify the variables in (P).
An illustration of this is the next lemma that shows that A can be reduced to three variables in (P).
Lemma 4.1. There exist β “ σA, γptq, ρptq P R such that for all t ě 0:

1. for all i P rDs, Aptq
i,i “ β.

2. for all i, j P rDs such that i, j P Sℓ for some ℓ P rLs, Aptq
i,j “ γptq.

3. for all i, j P rDs such that i P Sℓ and j P Sm for some ℓ,m P rLs with ℓ ‰ m, Aptq
i,j “ ρptq.

Besides, using the initialization in Parametrization 3.1, we can show that v always lies in spanpw˚q.

Lemma 4.2. For all t P rT s, there exists αptq P R such that vptq “ αptqw˚.

In summary, Lemma 4.1 and Lemma 4.2 imply that instead of optimizing over A and v in (P), we
can instead consider the scalar variables αptq, γptq and ρptq. The remaining of this section consists in
analyzing the dynamics of these three quantities.

Learning patch association. We first analyze the dynamics of γptq and ρptq. To this end, we
introduce the following terms:

Λptq “
eβ

eβ ` pC ´ 1qeγptq
` pD ´ Cqeρptq

, Γptq “
eγ

ptq

eβ ` pC ´ 1qeγptq
` pD ´ Cqeρptq

,

Ξptq “
eρ

ptq

eβ ` pC ´ 1qeγptq
` pD ´ Cqeρptq

, Gptq “ DpΛptq ` pC ´ 1qΓptqq.

Note that Λptq, Γptq and Ξptq respectively correspond to the coefficients on the diagonal, those for
which i, j P Sℓ for some ℓ P rLs and all the other coefficients of the attention matrix S. Using these
notations, we first derive the GD updates of γptq and ρptq.

Lemma 4.3. Let t ď T . The attention weights γptq and ρptq satisfy:

γpt`1q “ γptq ` ηpolylogpdqpαptqqp ¨ ΓptqpGptqqp´1,

|ρpt`1q| ď |ρptq| ` ηpolylogpdqpαptqqp
´ 1

D
`

1

D
ΓptqpGptqqp´1

¯

.

7

Lemma 4.3 shows that the increment of γptq is larger than the one of ρptq. Since γp0q “ ρp0q “ 0,
this implies that γptq ě ρptq for all t ě 0. This observation proves the first item of Theorem 4.1. We
now explain how learning patch association leads to v highly correlated with w˚.

– Event I: At the beginning of the process, the update of vptq is larger than the one of Aptq
i,j which

implies that only vptq updates during this first phase. We show that αptq “ xvptq,w˚y increases
until a time T0 ą 0 where it reaches some threshold (Lemma D.2). At this point, the model is
nothing else than a generalized linear model that would not generalize because there are much
more noisy tokens than signal ones (see Theorem 3.1).

– Event II: During this phase, the attention weights must update. Indeed, assume by contradiction
that the Aptq

i,j stay around initialization and that vptq is optimal i.e. vptq “ aptqw˚ where aptq " 1.
Then, the predictor g we would have is

gpXq “

D
ÿ

i“1

D
ÿ

j“1

S
p0q

i,j xvptq,Xjy9

D
ÿ

i“1

D
ÿ

j“1

eA
p0q

i,j xw˚,Xjy (2)

Such predictor g would yield high population loss because there many more data with random
labels (qD “ polypCq) than with the exact label. Therefore, Aptq

i,j ’s start to update. The gradient
increment for γptq (which corresponds to i and j in the same set Sℓ) is much larger than the one for
ρptq (Lemma 4.3). Thus, γptq increases until a time T1 P rT0, T s such that γpT1q ą maxtPrT s |ρptq|.

– Event III: Because we have γpT1q ą maxtPrT s |ρptq|, we again have αpt`1q ą αptq as in Phase I
(Lemma D.11). Thus, αptq increases again until the population risk becomes a op1q.

Main insights of our analysis. Our mechanism highlights two important aspects that are proper to
attention models:

– because of the initialization and the data structure, we have patch association for any time t
(Lemma 4.3).

– our ViT model uses patch association to minimize the population loss (Event III). Without patch
association, the model would only be a generalized linear model that does not minimize the loss.

4.2 From the idealized to the realistic learning process

The real learning process differs from the idealized one in that we have a finite number of samples and
we initialize both pA and pv as Gaussian random variables. Using a polynomial number of samples,
we show that (T) still learns patch association and generalizes.
Theorem 4.2. Assume that we run GD on (E) for T iterations with parameters set as in Parametriza-
tion 3.1. Assume that the number of samples is N “ polypdq. With high probability, the model

1. learns patch association i.e. for all ℓ P rLs and i P Sℓ, TopC t pA
pT q

i,j uDj“1 “ Sℓ.

2. fits the labeling function i.e. PDrf˚pXqF
pApT q,pvpT q pXq ą 0s ě 1 ´ op1q.

Similarly to [46], the proof introduces a "semi-realistic" learning process that is a mid-point between
the idealized and realistic processes. We show that pApT q and pvpT q are close to their semi-realistic
counterparts – see Appendix E for a complete proof. Figure 4 numerically illustrates Theorem 4.2.

5 Patch association yields sample-efficient fine-tuning with ViTs

A fundamental byproduct of our theory is that after pre-training on a dataset sampled from D, our
model (T) sample-efficiently transfers to datasets that are structured as D but differ in their features.
Downstream dataset. Let rD a downstream data distribution defined as in Assumption 1 such that
its underlying feature is rw˚ with } rw˚}2 “ 1 and rw˚ potentially different from w˚. In other words,
the downstream rD and source D distributions share the same structure but not necessarily the same
feature. We sample a downstream dataset rZ “ tpĂXris, ryrisqu

ĂN
i“1 from rD.

8

2 4 8 16 32

Shuffle Grid Size

50

60

70

80

Test accuracy (Permuted CIFAR-100)

VGG

Resnet

ViT

Baseline

(a)

(1) (2) (3) (4)
(b)

(1) (1’) (2) (2’)
(c)

Figure 5: (a): Test accuracy obtained with ViT (patch size 2), ResNet-18 and VGG-19 on permuted (in
solid lines) and on original (in dashed lines) CIFAR-100. While convolutional models are very sensitive to
permutations, the ViT performs equally whether the dataset is permuted or not. (b): (2) CIFAR-100 image (1)
and Permuted CIFAR-100 image when shuffle grid size is 2 (2), 4 (3) and 8 (4). (c): (1-2) Visualization of
positional encoding similarities after training a ViT (patch size 2) on permuted CIFAR-100 (shuffle grid size 2).
Here, we display pJ

i P where i is some fixed index and reshape such vector into a matrix 16 ˆ 16. We observe
that these similarities (1-2) do not have any spatially localized structure. However, when applying the inverse of
the permutation, we recover spatially localized patterns in (1’-2’).

Learning problem. We consider the model (T) pre-trained as in subsection 4.2. We assume that pA
is kept fixed from the pre-trained model and we only optimize the value vector rv to solve:

min
rv

1

rN

ĂN
ÿ

i“1

log
`

1 ` e´ryrisF p ĂXrisq
˘

:“ rLprvq. (rE)

We run GD on (rE) with parameters set as in Parametrization 3.1 except that the pAi,j’s are fixed and
rvp0q „ N p0, ω2Idq with ω “ 1{polypdq. Our main results states that this fine-tuning procedure
requires a few samples to achieve high test accuracy in rD. In contrast, any algorithm without patch
association needs a large number of samples to generalize.

Theorem 5.1. Let pA be the attention matrix obtained after pre-training as in subsection 4.2. Assume
that we run GD for T iterations on (rE) to fine-tune the value vector. Using rN ď polylogpDq samples,
the model (T) transfers to rD i.e. P

rDrf˚pXqF
pA,rvpT q pXq ą 0s ě 1 ´ op1q.

Theorem 5.2. Let A : RdˆD Ñ t´1, 1u be a binary classification algorithm without patch associa-
tion knowledge. Then, it needs DΩp1q training samples to get test error ď op1q on rD.

The proofs of Theorem 5.1 and Theorem 5.2 are in Appendix F. These theorems hightlight that
learning patch association is required for efficient transfer. We believe that they offer a new perspective
on explaining why ViTs are widely used in transferring to downstream tasks. While it is possible that
ViTs learn shared (with the downstream dataset) features during pretraining, our theory hints that
learning the inductive bias of the labeling function is also central for transfer.

6 Numerical experiments
In this section, we first empirically verify that ViTs learn patch association while miniziming their
training loss. We then numerically show that the positional attention mechanism competes with the
vanilla one on small-scale datasets such as CIFAR-10/100 [43], SVHN [52] and large-scale ones such
as ILSVRC-2012 ImageNet [22]. For the small datasets, we use a ViT with 7 layers, 12 heads and
hidden/MLP dimension 384. For ImageNet, we train a "ViT-tiny-patch16-224" [24]. Both models are
trained with standard augmentations techniques [18] and using AdamW with a cosine learning rate
scheduler. We run all the experiments for 300 epochs, with batch size 1024 for Imagenet and 128
otherwise and average our results over 5 seeds. We refer to Appendix A for the training details.

ViTs learn patch association. We consider the CIFAR-100 dataset where we divide each image
into grids of size sˆs pixels. For a fixed s P t2, 4, 8, 16, 32u, we permute the grids according to πs to
create the permuted CIFAR-100 dataset. We call s the grid shuffle size. Figure 5b-(1) shows a CIFAR-
100 image and its corresponding shuffling in the permuted CIFAR-100 dataset Figure 5b-(2-3-4).
We train a ViT and CNNs ResNet18 [31] and VGG-19 [57] on the permuted CIFAR-100 dataset.

9

0 100 200 300

Number of epochs

10

30

50

68.9
71.9

Test Accuracy (Imagenet)

ViT

Ours

0 100 200 300

Number of epochs

3.5
3.9

5

6

7
Training loss (Imagenet)

ViT

Ours

(1) (2)

Figure 6: Training loss (1) and test accuracy (2)
obtained using a ViT-tiny-patch16-224 on Imagenet.
ViT using positional attention (Ours) gets 68.9% test
accuracy while vanilla ViT (ViT) gets 71.9%.

For the ViT, we set the patch size to 2, although
this is sub-optimal in terms of accuracy, because
the patch size needs to stay smaller or equal to
s. Indeed, intuitively, when we permute the grids
in Figure 5b, we lose the local aspect of the spa-
tial structure and create new sets Sℓ’s and a new
labeling function f˚. Figure 5a reports the test
accuracy of these three models for different values
of s. When s is small, the image does not have
a coherent structure e.g. Figure 5b-(2) and thus,
CNNs struggle to generalize. As s increases e.g.
Figure 5b-(4), the information inside a patch is
meaningful and thus, the CNNs well-perform. Unsurprisingly, since ViTs are permutation invariant,
their performance remains unchanged for all s – see Figure 5a. Despite this change, we verify that
the ViT is able to recover the new Sℓ’s: we feed the ViT with the shuffled pear image (Figure 5b-(2))
and consider for some i the similarity matrix pJ

i P . We see that it does not exhibit a local spatial
structure in Figure 5c-(1,2). We then apply π´1

s to pJ
i P and observe that we recover the spatially

localized patterns Figure 5c-(1’,2’). This experiment highlights that ViTs do not just group nearby
pixels together as convolutions. They learn a more general spatial structure, in accordance to our
theoretical results.

ViT Ours

67.5

68.0

68.5

CIFAR-100

ViT Ours

97

98

99
SVHN

ViT Ours

90

91

CIFAR-10

(1) (2) (3)

Figure 7: Test accuracy obtained with a ViT using
vanilla attention (ViT) and positional attention (Ours)
on CIFAR-10 (1), CIFAR-100 (2) and SVHN (3). Our
model competes with the vanilla ViT. Patch size 4 and
average over 10 seeds for this experiment.

ViTs with positional attention are competitive.
We numerically verify that ViTs using positional
attention compete with those with vanilla attention.
In Section 3, we introduced positional attention to
define our theoretical learner model. Figure 6 and
Figure 7 show that ViTs using positional attention
compete with vanilla ViTs on a range of datasets.
These experiments strengthen our intuition that
for images, having an attention matrix that only
depends on the positional encodings is sufficient
to have a good test accuracy.

Conclusion, limitations and future works

Our work is a first step towards understanding how Transformers learn tailored inductive biases when
trained with gradient descent. Our analysis heavily relies on the positional attention mechanism that
disentangles patches and positional encodings. In practice, self-attention mixes these two quantities.
An interesting direction is to understand the impact of patch embeddings on the inductive bias learned
by ViTs. Moreover, our experiment on the Gaussian data shows that ViTs do not always learn the
correct inductive bias under Definition 2.1: characterizing the distributions under which ViTs recover
the structure of the function is an important question. Lastly, this work also paves the way to many
extensions beyond convolution. For example, can ViTs learn other inductive biases? What are
the inductive biases learnt by Transformers in NLP? Answering those questions is central to better
understand the underlying mechanism of attention.

Acknowledgments and Disclosure of Funding

The authors would like to thank Boris Hanin for helpful discussions and feedback on this work.

References
[1] Zeyuan Allen-Zhu and Yuanzhi Li. Towards understanding ensemble, knowledge distillation

and self-distillation in deep learning. arXiv preprint arXiv:2012.09816, 2020.

[2] Zeyuan Allen-Zhu and Yuanzhi Li. Forward super-resolution: How can gans learn hierarchical
generative models for real-world distributions. arXiv preprint arXiv:2106.02619, 2021.

10

[3] Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
factorization. arXiv preprint arXiv:1905.13655, 2019.

[4] Sanjeev Arora, Zhiyuan Li, and Kaifeng Lyu. Theoretical analysis of auto rate-tuning by batch
normalization. arXiv preprint arXiv:1812.03981, 2018.

[5] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large
language models. arXiv preprint arXiv:2108.07732, 2021.

[6] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[7] Irwan Bello. Lambdanetworks: Modeling long-range interactions without attention. arXiv
preprint arXiv:2102.08602, 2021.

[8] Irwan Bello, Barret Zoph, Ashish Vaswani, Jonathon Shlens, and Quoc V Le. Attention
augmented convolutional networks. In Proceedings of the IEEE/CVF international conference
on computer vision, pages 3286–3295, 2019.

[9] Srinadh Bhojanapalli, Ayan Chakrabarti, Daniel Glasner, Daliang Li, Thomas Unterthiner, and
Andreas Veit. Understanding robustness of transformers for image classification. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 10231–10241, 2021.

[10] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[11] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In European conference on
computer vision, pages 213–229. Springer, 2020.

[12] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski,
and Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 9650–9660, 2021.

[13] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling. Advances in neural information processing systems, 34, 2021.

[14] Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised
vision transformers. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 9640–9649, 2021.

[15] Zixiang Chen, Yihe Deng, Yue Wu, Quanquan Gu, and Yuanzhi Li. Towards understanding
mixture of experts in deep learning. arXiv preprint arXiv:2208.02813, 2022.

[16] Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural
networks trained with the logistic loss. In Conference on Learning Theory, pages 1305–1338.
PMLR, 2020.

[17] Jean-Baptiste Cordonnier, Andreas Loukas, and Martin Jaggi. On the relationship between
self-attention and convolutional layers. arXiv preprint arXiv:1911.03584, 2019.

[18] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation policies from data. arXiv preprint arXiv:1805.09501, 2018.

[19] Zihang Dai, Hanxiao Liu, Quoc V Le, and Mingxing Tan. Coatnet: Marrying convolution and
attention for all data sizes. Advances in Neural Information Processing Systems, 34:3965–3977,
2021.

[20] Amit Daniely. Sgd learns the conjugate kernel class of the network. In Advances in Neural
Information Processing Systems, pages 2422–2430, 2017.

11

[21] Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Uni-
versal transformers. arXiv preprint arXiv:1807.03819, 2018.

[22] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[23] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[24] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[25] Stéphane d’Ascoli, Hugo Touvron, Matthew L Leavitt, Ari S Morcos, Giulio Biroli, and Levent
Sagun. Convit: Improving vision transformers with soft convolutional inductive biases. In
International Conference on Machine Learning, pages 2286–2296. PMLR, 2021.

[26] Benjamin L Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases and
variable creation in self-attention mechanisms. arXiv preprint arXiv:2110.10090, 2021.

[27] Kunihiko Fukushima. Neocognitron for handwritten digit recognition. Neurocomputing, 51:161–
180, 2003.

[28] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training
imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

[29] Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit bias of gradient
descent on linear convolutional networks. Advances in Neural Information Processing Systems,
31, 2018.

[30] Jianyuan Guo, Kai Han, Han Wu, Chang Xu, Yehui Tang, Chunjing Xu, and Yunhe Wang. Cmt:
Convolutional neural networks meet vision transformers. arXiv preprint arXiv:2107.06263,
2021.

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European conference on computer vision, pages 630–645. Springer, 2016.

[32] Elad Hoffer, Ron Banner, Itay Golan, and Daniel Soudry. Norm matters: efficient and accurate
normalization schemes in deep networks, 2019.

[33] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the
generalization gap in large batch training of neural networks. arXiv preprint arXiv:1705.08741,
2017.

[34] Jiri Hron, Yasaman Bahri, Jascha Sohl-Dickstein, and Roman Novak. Infinite attention: Nngp
and ntk for deep attention networks. In International Conference on Machine Learning, pages
4376–4386. PMLR, 2020.

[35] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with
stochastic depth. In European conference on computer vision, pages 646–661. Springer, 2016.

[36] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[37] Meena Jagadeesan, Ilya Razenshteyn, and Suriya Gunasekar. Inductive bias of multi-channel
linear convolutional networks with bounded weight norm. In Conference on Learning Theory,
pages 2276–2325. PMLR, 2022.

[38] Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big
sequence modeling problem. Advances in neural information processing systems, 34, 2021.

12

[39] Samy Jelassi and Yuanzhi Li. Towards understanding how momentum improves generalization
in deep learning. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang
Niu, and Sivan Sabato, editors, Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pages 9965–10040.
PMLR, 17–23 Jul 2022.

[40] Samy Jelassi, Arthur Mensch, Gauthier Gidel, and Yuanzhi Li. Adam is no better than normal-
ized SGD: Dissecting how adaptivity improves GAN performance, 2022.

[41] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping
Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp minima.
arXiv preprint arXiv:1609.04836, 2016.

[42] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[43] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[44] Guillaume Lample and François Charton. Deep learning for symbolic mathematics. arXiv
preprint arXiv:1912.01412, 2019.

[45] Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-parameterized
matrix sensing and neural networks with quadratic activations. In Conference On Learning
Theory, pages 2–47. PMLR, 2018.

[46] Yuanzhi Li, Tengyu Ma, and Hongyang R Zhang. Learning over-parametrized two-layer relu
neural networks beyond ntk. arXiv preprint arXiv:2007.04596, 2020.

[47] Yuanzhi Li, Colin Wei, and Tengyu Ma. Towards explaining the regularization effect of initial
large learning rate in training neural networks. arXiv preprint arXiv:1907.04595, 2019.

[48] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[49] Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural
networks. arXiv preprint arXiv:1906.05890, 2019.

[50] Luke Melas-Kyriazi. Do you even need attention? a stack of feed-forward layers does surpris-
ingly well on imagenet. arXiv preprint arXiv:2105.02723, 2021.

[51] Muhammad Muzammal Naseer, Kanchana Ranasinghe, Salman H Khan, Munawar Hayat,
Fahad Shahbaz Khan, and Ming-Hsuan Yang. Intriguing properties of vision transformers.
Advances in Neural Information Processing Systems, 34, 2021.

[52] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.
Reading digits in natural images with unsupervised feature learning. 2011.

[53] Behnam Neyshabur, Ruslan Salakhutdinov, and Nathan Srebro. Path-sgd: Path-normalized
optimization in deep neural networks. arXiv preprint arXiv:1506.02617, 2015.

[54] Sayak Paul and Pin-Yu Chen. Vision transformers are robust learners. arXiv preprint
arXiv:2105.07581, 2(3), 2021.

[55] Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and Alexey Dosovitskiy.
Do vision transformers see like convolutional neural networks? Advances in Neural Information
Processing Systems, 34, 2021.

[56] Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan Bello, Anselm Levskaya, and Jon
Shlens. Stand-alone self-attention in vision models. Advances in Neural Information Processing
Systems, 32, 2019.

[57] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

13

[58] Samuel L. Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V. Le. Don’t decay the learning
rate, increase the batch size, 2018.

[59] Charlie Snell, Ruiqi Zhong, Dan Klein, and Jacob Steinhardt. Approximating how single head
attention learns. arXiv preprint arXiv:2103.07601, 2021.

[60] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The
implicit bias of gradient descent on separable data. The Journal of Machine Learning Research,
19(1):2822–2878, 2018.

[61] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

[62] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 2818–2826, 2016.

[63] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International Conference on Machine Learning, pages 10347–10357. PMLR, 2021.

[64] Asher Trockman and J Zico Kolter. Patches are all you need? arXiv preprint arXiv:2201.09792,
2022.

[65] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[66] James Vuckovic, Aristide Baratin, and Remi Tachet des Combes. A mathematical theory of
attention. arXiv preprint arXiv:2007.02876, 2020.

[67] Alex Warstadt and Samuel R Bowman. Can neural networks acquire a structural bias from raw
linguistic data? arXiv preprint arXiv:2007.06761, 2020.

[68] Colin Wei, Yining Chen, and Tengyu Ma. Statistically meaningful approximation: a case study
on approximating turing machines with transformers. arXiv preprint arXiv:2107.13163, 2021.

[69] Colin Wei, Sham Kakade, and Tengyu Ma. The implicit and explicit regularization effects of
dropout, 2020.

[70] Zixin Wen and Yuanzhi Li. Toward understanding the feature learning process of self-supervised
contrastive learning. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th Inter-
national Conference on Machine Learning, volume 139 of Proceedings of Machine Learning
Research, pages 11112–11122. PMLR, 18–24 Jul 2021.

[71] Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nathan Srebro, and Benjamin Recht.
The marginal value of adaptive gradient methods in machine learning. arXiv preprint
arXiv:1705.08292, 2017.

[72] Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro Savarese, Itay
Golan, Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models.
In Conference on Learning Theory, pages 3635–3673. PMLR, 2020.

[73] Yuhuai Wu, Markus N Rabe, Wenda Li, Jimmy Ba, Roger B Grosse, and Christian Szegedy.
Lime: Learning inductive bias for primitives of mathematical reasoning. In International
Conference on Machine Learning, pages 11251–11262. PMLR, 2021.

[74] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon
Yoo. Cutmix: Regularization strategy to train strong classifiers with localizable features. In
Proceedings of the IEEE/CVF international conference on computer vision, pages 6023–6032,
2019.

[75] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond
empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017.

14

[76] Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi,
Sanjiv Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? Advances
in Neural Information Processing Systems, 33:15383–15393, 2020.

[77] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data
augmentation. In Proceedings of the AAAI conference on artificial intelligence, volume 34,
pages 13001–13008, 2020.

[78] Difan Zou, Yuan Cao, Yuanzhi Li, and Quanquan Gu. Understanding the generalization of
adam in learning neural networks with proper regularization. arXiv preprint arXiv:2108.11371,
2021.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] See Section 4 and Section 5.
(b) Did you describe the limitations of your work? [Yes] See Section 6.
(c) Did you discuss any potential negative societal impacts of your work? [N/A] This is a

theory paper.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 3.
(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] See supplemen-
tary material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Section 6

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

15

(a) (b)
Figure 8: (a) Visualization of the positional encodings similarities when feeding the ViT with Permuted CIFAR-
100 data. Each array represents txpi,pjyu

D
j“1 for a fixed i. (b) displays the positional encodings similarities

obtained after inverting the permutation. We see that the ViT is able to recover the convolution-like structure in
all the cases.

A Additional experimental details

In this section, we provide additional details on our experiments and additional plots.

A.1 Details on the implementation

We used Pytorch and Nvidia Tesla V100 GPUs. We conduct experiments on small-scale (CIFAR-
10/100 and SVHN) and large-scale datasets (ImageNet). The choice of architecture and training
parameters depend on the size of the dataset as we detail below.

Small-scale experiments. We use the code available at https://github.com/omihub777/
ViT-CIFAR. The model is made of 7 layers, 12 heads, hidden and MLP dimension 384, dropout
0. We use "mean-pooling" and not the CLS pooling. We set the patch size to 2 in the experiment
Figure 5 and to 4 in the experiment Figure 7. Indeed, we empirically found that setting patch size
4 was the optimal choice. We apply label smoothing [62] with coefficient 0.1 and do not apply
any cutmix [75] nor mixup [74]. We use Adam [42] as optimizer and set the learning rate to 10´3,
minimum learning rate to 10´5, β1 to 0.9, β2 to 0.999, batch size to 128, weight decay to 5 ¨ 10´5,
number of warmup epochs to 5 and number of total epochs to 200. The scheduler is a cosine learning
rate. We used the AutoAugment procedure [18] as in the repository to generate data augmentations.
The model has been trained over a single GPU.

Regarding the convolutional models in the experiment Figure 5, we trained a ResNet-18 and a VGG-
19 with batch normalization. We trained the two architectures using the same training procedure and
hyperparameters as for the ViT.

Large-scale experiments. We use the code available at https://github.com/
facebookresearch/deit. Due to limited computational resources, we train a ViT-tiny-
patch16-224 [24] where "CLS-pooling" is applied. A detailed table with the hyperparameters used
for the ImageNet experiment may be found in Table 9 (column "DeiT-B") in [63]. We set no dropout
but set stochastic depth [35] 0.1. We used label smoothing 0.1. Regarding the augmentations, we set
RandAugment [18] 9/0.5, mixup 0.8, cutmix 1, erasing probability [77] 0.25. Lastly, we trained the
model using AdamW [48] and set the batch size to 1024, learning rate to 5 ¨ 10´4 ¨ batchsize

512 as in
[28], weight decay to 0.05, warmup epochs 5 and number of total epochs to 300. The total number of
epochs is 300. The model has been trained over 16 GPUs (8 nodes and 2 GPUs per node) and batch
size for each device is 64.

A.2 Additional plots

In Figure 5, we plot the positional encoding similarities for a few patches. Figure 8 provides these
plots for all the patches. One should think of Figure 5 as a Figure displaying just two of the arrays
present in Figure 8. We consistently verify that the ViT is always able to recover the convolution-like
patterns which shows that it is able to learn the right patch association.

16

https://github.com/omihub777/ViT-CIFAR
https://github.com/omihub777/ViT-CIFAR
https://github.com/facebookresearch/deit
https://github.com/facebookresearch/deit

B Induction hypothesis

In this section, we present the induction hypothesis that we use in the analysis of the idealized case.
This hypothesis is ultimately proved in subsection D.7.
Induction hypothesis B.1. During the idealized learning process, the following holds for t ď T .

– the sofmax denominator is large i.e. Λptq ` pC ´ 1qΓptq ` pD ´ CqΞptq “ ΘpDq.

– Ξptq is not too small i.e. Ξptq “ Θp1{Dq.

– Γptq and Λptq are in a good range i.e.

Λptq “
epolyloglogpdq

D
, pC ´ 1qΓptq P

„

ΩpCq

D
,
λ0
D

ȷ

,

where λ0 “ ΘpD0.01q.

C Notations

In this section, we introduce the different notations used in the proofs.

General purpose. We first define notations that are used everywhere in the appendix.

– Sigmoid function: Given z P R, Spzq “ 1{p1 ` e´zq.

– Softmax function: Given z “ pz1, . . . , zDq P RD, psoftmaxpz1, . . . , zDqqm “ ezm
řD

j“1 ezj
.

– Loss for a data-point pX, yq: LpXq “ logp1 ` e´yF pXqq.

Analysis in idealized case. We now provide notations used in the analysis of the idealized case.

– κpXq “
ř

ℓ‰ℓpXq

ř

jPSℓ
δj ` C.

– for i P rDs, Optq
i “

řD
j“1 S

ptq
i,jXj .

Analysis in realistic case. We now provide notations used in the analysis of the realistic case.

– Score matrix: S P RDˆD with coefficients pSi,j “ expp pAi,j{
?
dq{

řD
r“1 expp pAi,r{

?
Dq.

– Given a data-point pXris, yrisq and j P rDs, Optq
j ris “

řD
k“1 S

ptq
j,kXkris

D Learning process in the idealized setting

D.1 Roadmap of the proof

From Lemma 4.2, we know that vptq P spanpw˚q for all t P rT s. The main idea of the proof consists
in analyzing the GD dynamics of αptq “ xvptq,w˚y that satisfy

αpt`1q “ αptq ` η E

«

ySp´yFAptq,vptq pXqq
ÿ

iPSℓpXq

σ1
´

D
ÿ

j“1

S
ptq
i,j xvptq,Xjy

¯

D
ÿ

k“1

S
ptq
i,kxw˚,Xmy

ff

l jh n

SSS ptq

` η E

«

ySp´yFAptq,vptq pXqq
ÿ

iRSℓpXq

σ1
´

D
ÿ

j“1

S
ptq
i,j xvptq,Xjy

¯

D
ÿ

m“1

S
ptq
i,mxw˚,Xmy

ff

l jh n

NNN ptq

. (GD-α)

We divide the idealized learning process as follows.

17

– Event I (t P r0, T0s, subsection D.2): at initialization, αp0q is small. Therefore, the sigmoid
Sp´yF pXqq is large. Besides, around αp0q, it stays constant i.e. Sp´yFAptq,vptq pXqq «

Sp´yFAp0q,vp0q pXqq in (GD-α). This implies that NNN ptq
“ 0 which yields αptq to increase

until reaching a specific value where the sigmoid is not constant anymore.
– Event II (t P rT0, T1s, subsection D.3): at time T0, αptq is large. This fact along with Lemma 4.3

imply that γptq increases. Eventually, ΓpT1q becomes large enough so that SSS ptq
ě maxτďT |NNN pτq

|.

– Event III (t P rT1, T s, subsection D.4): Since SSS ptq
ě maxτďT |NNN pτq

|, αptq increases again. It
increases until the population risk is at most op1q.

After T iterations, αptq is large and the population risk thus converges (subsection D.5). Since the
logistic loss is a surrogate for the 0-1 loss, we prove that the learner model fits the labeling function
(subsection D.6) which implies the first statement of Theorem 4.1.

Remark : Since we initialize αp0q ě ν1{pp´1q, Lemma D.7 implies that we can overlook the linear
part of the activation in this section. Therefore, we only consider σpxq “ xp in the idealized process.

D.2 Event I: αptq initially increases

A first question that arises is: starting from αp0q, what is the value of αptq that makes the sigmoid
non-constant? The following lemma addresses this question.

Lemma D.1. The value αptq at which the sigmoid Sp´yF pXqq becomes non-constant is:

α̃ “
Θp1q

C2λ0
.

Proof of Lemma D.1. The update of αptq is

αpt`1q “ αptq ` ηErySp´yF pXqqG ptqs

“ αptq ` ηErySp´αp0qqG ptqs ` ηE
“

y
`

Sp´yF pXqq ´ Sp´αp0qq
˘

G ptq
‰

,
(3)

where G ptq :“
řD

j“1xO
ptq
j ,w˚yp. Since x ÞÑ Sp´xq is 1{4-Lipschitz, we rewrite (3) as:

ˇ

ˇαpt`1q ´ αptq ´ ηErySp´αp0qqG ptqs
ˇ

ˇ ď
η

4
E

“

|F pXq ´ yαp0q| ¨ |yG ptq|
‰

ď ΘpCηqpαptqqpE
“

pC1`1{pλ0qp|yG ptq|
‰

ď ΘpηqpαptqqpE
“

pC2λ0qp|yG ptq|
‰

,

(4)

where we applied Lemma D.3, Induction Hypothesis B.1 and the fact that αp0q is small in the
penultimate inequality. Using Lemma D.4 and Lemma D.5, we have Er|yG ptq|s ď Θp1qEryG ptqs

which yields
ˇ

ˇαpt`1q ´ αptq ´ ηErySp´αp0qqG ptqs
ˇ

ˇ ď ΘpηqpαptqqpE
“

pC2λ0qpyG ptq
‰

. (5)

(4) shows that when αptq is small, we have αpt`1q « αptq ` ηErySp´αp0qqAs. Besides, we have
EryG ptqs ě 0 so αptq increases. However, during this increase, the right-hand side of (4) increases
and this approximation does not hold anymore. Therefore, the sigmoid is approximately constant
when αptq satisfies:

Θp1qpαptqqpErpC2λ0qpyG ptqs ď ErSp´αp0qqyG ptqs ðñ αptq ď
Θp1q

C2λ0
. (6)

Lemma D.2. Let T0 “ Θ
´

1
ηCpαp0qqp´1

¯

. For all t P r0, T0s, we have NNN ptq “ 0. Therefore, αptq is
updated as

αpt`1q “ αptq ` ΘpηCqpGptqqppαptqqp´1.

Consequently, αptq is non-decreasing and after T0 iterations, we have αptq ě
Ωp1q

C2λ0
for t ě T0.

18

Proof of Lemma D.2. For t P r0, T0s, we know that the sigmoid Sp´yF pXqq is constant. We apply

Lemma D.4 and Lemma D.6 to respectively bound SSS ptq and NNN ptq
in the update of αptq.

αpt`1q “ αptq ` ΘpηCqpαptqqp´1pGptqqp. (7)

We apply Induction Hypothesis B.1 and ΩpCq ě 0 and epolyloglogpdq ď λ0 in (7) and obtain:
"

αpt`1q ě αptq ` ΘpηCqepolyloglogpdqpαptqqp´1

αpt`1q ď αptq ` ΘpηCqλp0pαptqqp´1 . (8)

(8) indicates that αptq is a non-decreasing sequence. Therefore, there exists a time T0 such that
αpT0q “

Θp1q

C2λ0
. Using Lemma K.1, the time T0 is equal to:

T0 “
1

ηCpαp0qqp´1epolyloglogpdq
` pλ0qpe´polyloglogpdq

Q

´ log
`

C2λ0α
p0q

˘

U

. (9)

D.2.1 Auxiliary lemmas

In this section, we present the auxiliary lemmas needed to prove the main results of subsection D.2.
We first present a lemma that bounds the learner model.

Lemma D.3. Let t P r0, T s. The learner model F is bounded for all pX, yq „ D as:

yFAptq,vptq pXq ď Θp1qpC1`1{pαptqλ0qp.

Proof of Lemma D.3. By definition, the learner model is:

yFAptq,vptq pXq “ y
D
ÿ

i“1

xvptq,O
ptq
i yp “

ÿ

iPSℓpXq

xvptq,O
ptq
i yp `

ÿ

iRSℓpXq

xvptq,O
ptq
i yp. (10)

We successively apply Lemma D.4, Induction Hypothesis B.1 and Lemma D.5 to bound (10).

yFAptq,vptq pXq ď pαptqqp
´

CΘpDCΓptqqp ` opλ0qp
¯

. (11)

Finally, we apply Induction Hypothesis B.1 in (11) to obtain the desired result.

We now present lemmas that bound SSS ptq and NNN ptq
.

Lemma D.4. Let t P rT s and i P SℓpXq. We have yxw˚,O
ptq
i yp “ ΘpGptqqp. As long as the

population risk is not op1q, we have SSS ptq
“ CΘpGptqqp for all t ď T.

Proof of Lemma D.4. We apply Lemma G.3 and obtain:

yxw˚,O
ptq
i yp “ Dp

ˆ

pΛptq ` pC ´ 1qΓptqq ` yΞptq
ÿ

hPrLsztℓpXqu

ÿ

rPSh

δr

˙p

“ Θ
´

D
`

Λptq ` pC ´ 1qΓptq
˘

¯p

“ ΘpGptqqp.

Lemma D.5. Let t P rT s. We have
ř

iRSℓpXq
yxw˚,O

ptq
i yp ď opλ0qp. In particular, this implies

NNN ptq
ď opλ0qp for all t ď T.

19

Proof of Lemma D.5. We have:
ÿ

kPrLsztℓpXqu

ÿ

iPSk

yxw˚,O
ptq
i yp

“Dp
ÿ

kPrLsztℓpXqu

ÿ

mPSk

y

ˆ

Λptqδm ` Γptq
ÿ

sPSkztmu

δs ` Ξptq
”

Cy `
ÿ

hPrLsztℓpXq,ku

ÿ

rPSh

δr

ı

˙p

.
(12)

We distinguish two cases.

– δr “ 0 for all r P Sℓ : we apply Lemma K.3 and obtain:
ÿ

k‰ℓpXq

ÿ

iPSk

yxw˚,O
ptq
i yp “

ÿ

k‰ℓpXq

ÿ

mPSk

y
´

DΞptq
”

Cy `
ÿ

h‰tℓpXq,ku

ÿ

rPSh

δr

ı¯p

ď D ¨ ΘpDΞptqqD logpdqqp.

(13)

– Dr P Sℓ such that δr ‰ 0: let i P Sk. We apply Lemma K.4 and obtain:

yxw˚,O
ptq
i yp ď Θ

`

DpΛptq `Op1qΓptqq
˘p

¨ 1DrPSk,δr‰0. (14)

We now sum (14) and apply Lemma K.3 to obtain:
ÿ

k‰ℓpXq

ÿ

iPSk

yxw˚,O
ptq
i yp ď Θ

`

DpΛptq `Op1qΓptqq
˘p ÿ

k‰ℓpXq

ÿ

iPSk

|δr|

ď Θ
`

DpΛptq `Op1qΓptqq
˘p
qD logpdq.

(15)

We finally apply Induction Hypothesis B.1 to have Γptq ď λ0{C in (15) and get
ÿ

k‰ℓpXq

ÿ

iPSk

yxw˚,O
ptq
i yp ď Θpλ0{CqpqD logpdq. (16)

We finally plug (13) and (16) in (12) and obtain:
ÿ

k‰ℓpXq

ÿ

iPSk

yxw˚,O
ptq
i yp ď D ¨ ΘpDΞptqqD logpdqqp ` Θpλ0{CqpqD logpdq ď opλ0qp.

Lemma D.6. Let t P r0, T0s. We have NNN ptq
“ 0.

Proof of Lemma D.6. By definition of NNN ptq
, we have:

NNN ptq

“
1

2

ˆ

E
„

Sp´F pXqq
ÿ

jRSℓpXq

xw˚,O
ptq
j yp

ˇ

ˇ

ˇ
y “ 1

ȷ

´ E
„

SpF pXqq
ÿ

jRSℓpXq

xw˚,O
ptq
j yp

ˇ

ˇ

ˇ
y “ ´1

ȷ˙

“Θp1q

ˆ

E
„

ÿ

jRSℓpXq

xw˚,O
ptq
j yp

ˇ

ˇ

ˇ
y “ 1

ȷ

´ E
„

ÿ

jRSℓpXq

xw˚,O
ptq
j yp

ˇ

ˇ

ˇ
y “ ´1

ȷ˙

,

(17)

where we use Sp´F pXqq « Sp´FAp0q,vp0q pXqq for t P r0, T0s in the last equality of (17). We now
show that each of the summands in (17) is zero. Without loss of generality, let’s focus on the first
summand. The same reasoning holds for the second one. In particular, for j P Sk with k ‰ j, we
now compute Erxw˚,O

ptq
j yp|y “ 1s. Using the binomial theorem and the independence of the δr’s,

we have:

Erxw˚,O
ptq
j yp|y “ 1s

“

p
ÿ

a“0

ˆ

p

a

˙

pΛptqqp´aErpδjqp´asE
„ˆ

Γptq
ÿ

sPSkztju

δs ` Ξptq

„

C `
ÿ

h‰tℓpXq,ku

ÿ

rPSh

δr

ȷ˙aȷ

.
(18)

20

For a even, we have p ´ a odd which implies Erpδuqp´as “ 0. Therefore, the summands with
even a are zero. We now focus on the case a odd. We again apply the binomial theorem and the
independence of the δr’s to get:

E
„ˆ

Γptq
ÿ

sPSkztju

δs ` Ξptq

„

C `
ÿ

h‰tℓpXq,ku

ÿ

rPSh

δr

ȷ˙aȷ

“

a
ÿ

b“0

ˆ

a

b

˙

pΓptqqa´bE
„ˆ

ÿ

sPSkztju

δs

˙a´bȷ

pΞptqqbE
„ˆ

Cy `
ÿ

h‰tℓpXq,ku

ÿ

rPSh

δr

˙bȷ

.

(19)

For b even, we have a´ b odd. This implies that E
“`

ř

sPSkztju δs
˘a´b‰

“ 0. In the case b odd, we
exactly use the same argument and obtain:

E
„ˆ

Cy `
ÿ

h‰tℓpXq,ku

ÿ

rPSh

δr

˙bȷ

“ 0. (20)

(20) implies (19) is zero and which lastly implies (18) is zero. We conclude that Erxw˚,O
ptq
j yp|y “

1s “ Erxw˚,O
ptq
j yp|y “ ´1s “ 0 and thus NNN ptq

“ 0.

Lemma D.7. Let pX, ¨q „ D and j P rDs. Assume that αptq ě ν1{pp´1q. Then, we have:

σ1
´

D
D
ÿ

k“1

S
ptq
j,kxv,Xky

¯

“ Θp1q

´

D
D
ÿ

k“1

S
ptq
j,kxv,Xky

¯p´1

.

Proof of Lemma D.7. We remind that the derivative of the activation function σ1pxq “ pxp´1 ` ν.
We first remark that for all x, σ1pxq ě pxp´1. Besides, we have:

pxp´1 ` ν ď
3pxp´1

2
ðñ x ě

´2ν

p

¯1{pp´1q

. (21)

In our case, we have x “ Dαptq
řD

k“1 S
ptq
j,kxw˚,Xky. Using Induction Hypothesis B.1, we have

x ď Cλ0α
ptq. Therefore, a sufficient condition for (21) to hold is αptq ě ν1{pp´1q{pCλ0q. Since

λ0, C ! polypdq, we can simplify this condition as αptq ě ν1{pp´1q.

D.3 Event II: Γptq significantly increases

In this section, we show the increase of αptq for t P r0, T0s leads to the increase of Γptq. At time
T1 ą T0, Γptq is significantly large.

Lemma D.8. Let T1 “ T0 ` Θ
´

λp
0

ηepolyloglogpdq

¯

. For all t P rT1, T s, we have Γptq ě
Ωpλ0q

D . This

implies SSS ptq
ě maxτďT |NNN pτq

|.

Proof of Lemma D.8. Let t P rT0, T s and τ P rT0, ts. Using Corollary G.1 and Induction Hypothe-
sis B.1, γpτq satisfies:

γpτ`1q ě γpτq ` ΩpηCqpαpτqqpepolyloglogpdq. (22)

Summing (22) for τ “ T0, . . . , t´ 1 yields

γptq ě γpT0q ` epolyloglogpdqΩpηCq

t´1
ÿ

τ“T0

pαpτqqp. (23)

21

We successively apply Lemma D.9 and pa´ bqp ě ap ´ pb for a ! b to lower bound (23) to obtain:

γptq ě γpT0q ` epolyloglogpdqΩpηCq

t´1
ÿ

τ“T0

´ Ωp1q

C2pλp0
´ opηq

¯

. (24)

We apply Induction Hypothesis B.1 in (24) to obtain a bound on Γptq.

CΓptq ě CΓpT0q exp
´

epolyloglogpdqΩpηCq

t´1
ÿ

τ“T0

` Ωp1q

C2pλp0
´ opηq

˘

¯

ě
ΩpC2q

D
exp

´

epolyloglogpdqΩpηCq

t´1
ÿ

τ“T0

` Ωp1q

C2pλp0
´ opηq

˘

¯

.

(25)

(25) shows that Γptq is an non-decreasing sequence. We thus deduce the time T1 such that CΓptq ě

Ωpλ0q{D.
C2

D
exp

´

epolyloglogpdqΩpηCq
` Ωp1q

C2pλp0
´ opηq

˘

pT1 ´ T0q

¯

“
λ0
D

ùñ T1 “ T0 ` Θ

˜

C2pλp0
ηepolyloglogpdq

log
´ λ0
C2

¯

¸

.

(26)

We now prove the second part of the lemma. We respectively apply Lemma D.4 and Lemma D.5 to
bound SSS ptq and maxτďT |NNN pτq

|.

SSS ptq
ě Ωpλ0qp and max

τďrT s
|NNN pτq

| ď opλ0qp. (27)

(27) implies for all t P rT1, T s, SSS ptq
ě maxτďrT s |NNN pτq

|.

D.3.1 Auxiliary lemmas

In this section, we present the auxiliary lemmas needed to prove the main results in subsection D.3.

Lemma D.9. Let t ě T0. Then, we always have αptq ě
Ωp1q

C2λ0
´ opηq.

Proof of Lemma D.9. For t P r0, T0s, αptq increases and eventually satisfies αptq ě
Ωp1q

C2λ0

(Lemma D.2). However, for t ě T0, αptq may be non-increasing. Here, we want to quantify
the maximum amount of decrease for t ą T0. The worst-case scenario is when αptq “

Ωp1q

C2λ0
. We

bound αpt`1q by using Lemma D.4, Lemma D.10 and Lemma D.5.

αpt`1q ě αptq ` ΘpCηqpαptqGptqqp ´ ηpαptqqpopλ0qp. (28)

We now apply Induction Hypothesis B.1 in (28) and get:

αpt`1q ě
Ωp1q

C2λ0
` Θpηq

epolyloglogpdq

C2p´1λp0
´
opηq

C2p

ě
Ωp1q

C2λ0
´
opηq

C2p
.

(29)

At time t`1, we potentially have αpt`1q ă
Ωp1q

C2λ0
. In this case, αpt`1q starts to increase again because

it is in the range of α’s that satisfies Event I (and therefore the update rule in Lemma D.2 holds).
Thus, for all t ě T0, we have αptq ě

Ωp1q

C2λ0
´ opηq.

Lemma D.10. When the population risk is Ωp1q, we have ErSp´yF pXqqs ě Ωp1q.

Proof of Lemma D.10. Let pX, yq be a data-point. We distinguish two cases:

22

– yF pXq ą 0: we apply Lemma K.6 which implies Sp´yF pXq ě logp1 ` eyF pXqq. Since
the population loss is Ωp1q, this implies the aimed result.

– yF pXq ď 0: we have necessarily Sp´yF pXqq ě Ωp1q since the sigmoid function is large
for non-positive values.

Therefore, we have ErSp´yF pXqqs ě Ωp1q.

D.4 Event III: αptq keeps increases again

For t P rT0, T1s, Γptq increases until reaching CΓptq ě Ωpλ0q{D. In this section, we show that this
implies that αptq increases again.

Lemma D.11. Let T1 “ T0 `Θ
´

λp
0

ηepolyloglogpdq

¯

and t P rT1, T s. Since SSS ptq
ě maxτďT |NNN pτq

|, αptq

updates as

αpt`1q “ αptq ` ΘpηCqpGptqqppαptqqp´1.

Consequently, αptq is non-decreasing until the population risk satisfies LpAptq,vptqq ď op1q. Eventu-
ally, αpT q is as large as αpT q “

polylogpdq

C2λ0
.

Proof of Lemma D.11. Since SSS ptq
ě maxτďT |NNN pτq

| (Lemma D.8), the update of αptq is:

αpt`1q ´ αptq “ ΘpηCqpαptqqp´1pGptqqpErSp´yF pXqqs, (30)

Since the population loss is at least Ωp1q for t P rT1, T s, Lemma D.10 implies that
ErSp´yF pXqqs ě Ωp1q. Besides, we apply Induction Hypothesis B.1 and ΩpCq ě 0 and
epolyloglogpdq ď λ0 in (30) and obtain:

"

αpt`1q ě αptq ` ΘpηCqepolyloglogpdqpαptqqp´1

αpt`1q ď αptq ` ΘpηCqλp0pαptqqp´1 . (31)

(31) and Lemma D.12 show that αptq increases until reaching αptq ď
polylogpdq

C2λ0
.

D.4.1 Auxiliary results

Lemma D.12. The values of α such that ErSp´yF pXqqs ě Ωp1q is

α ď
polylogpdq

C2λ0
.

Proof of Lemma D.12. We say that the sigmoid term is small for a constant κ that satisfies

T
ÿ

τ“0

1

1 ` exppκq
ď polylogpdq ùñ κ ě logpT q ðñ κ ě polylogpdq. (32)

Intuitively, (32) means that the sum of the sigmoid terms for all time steps is bounded (up to a
logarithmic dependence). In our case, by using (32) and Lemma D.3, the sigmoid Sp´yF pXqq is
small when

pC2αλ0qp ě polylogpdq ùñ α ě
polylogpdq

C2λ0
. (33)

23

D.5 Convergence rate of the population loss

Lemma D.13. Let t P rT1, T s. Then, the population loss linearly converges to zero i.e.

LpAptq,vptqq ď
polylogpdq

ηλ2p0 pt´ T1 ` 1q
(34)

Proof of Lemma D.13. To ease the explanation in this proof, we use the Ω̃, Θ̃, Õ notations to hide the
logarithmic dependence. We hide for instance the constant C under this notation. From Lemma D.11,
we know that αptq is lower bounded as:

αpt`1q ě αptq ` ΘpηCqpαptqqp´1pGptqqpErSp´yF pXqqs. (35)

Using Lemma D.3, we have ErSp´yF pXqqs ě Sp´pαptqGptqqpq. Plugging this in (35) yields:

αpt`1q ě αptq ` ΘpηqGptq pαptqqp´1pGptqqp´1

1 ` expppαptqGptqqpq
. (36)

Since 0 ă αptqGptq ď Õpλp´1
0 q,we apply Lemma K.5 and get:

αpt`1q ě αptq `
Ω̃pηq

λp0
Gptq logp1 ` e´pαptqGptq

q
p

q. (37)

Lemma D.8 implies that Gptq ě Ω̃pλ0q. Therefore, we have:

αpt`1q ě αptq `
Ω̃pηq

λp0
logp1 ` e´pαptqGptq

q
p

q. (38)

Let’s now assume by contradiction that for t P rT1, T s, we have:

logp1 ` e´pαptqGptq
q
p

q ą
Ω̃p1q

ηλ2p0 pt´ T1 ` 1q
. (39)

For t P rT1, T s, we know that αptqGptq is non-decreasing which implies that pαptqGptqqp is also
non-decreasing. Since x ÞÑ logp1 ` expp´xqq is non-increasing, this implies for s ď t that

Ω̃p1q

ηλ2p0 pt´ T1q
ă logp1 ` e´pαptqGptq

q
p

q ď logp1 ` e´pαpsqGpsq
q
p

q. (40)

Plugging (40) in the update (36) yields for s P rT1, ts:

αps`1q ą αpsq `
Ω̃p1q

λp0pt´ T1 ` 1q
. (41)

Let t P rT1, T s. We now sum (41) for s “ T1, . . . , t and obtain:

αpt`1q ą αpT1q `
Ω̃p1qpt´ T1 ` 1q

λp0pt´ T1 ` 1q
ą

Ω̃p1q

λp0
, (42)

where we used the fact that αpT1q ě αpT0q ě Ω̃p1q{pCλ0q ą 0 (Lemma D.2) in the last inequality.
Therefore, we have for t P rT1, T s, αptq ě Ω̃p1{λp0q ą 0. Let’s now show that (42) implies a
contradiction. Indeed, we have:

ηλ2p0 pt´ T1 ` 1q logp1 ` e´pαptqGptq
q
p

q ď ηλ2p0 T logp1 ` e´pαptqGptq
q
p

q

ď ηλ2p0 T logp1 ` e´Ω̃p1qq, (43)

where we used Gptq ě Ωpλ0q (Lemma D.8) and (42) in the last inequality. We now apply Lemma K.6
and obtain:

ηλ2p0 pt´ T1 ` 1q logp1 ` e´pαptqGptq
q
p

q ď
ηλ2p0 T

1 ` exppΩ̃p1qq
. (44)

Given the values of T, η, λ0, we finally have:

ηλ2p0 pt´ T1 ` 1q logp1 ` e´pαptqGptq
q
p

q ă Õp1q, (45)
which contradicts (39). Therefore, we obtain the convergence rate:

logp1 ` e´pαptqGptq
q
p

q ď
Õp1q

ηλ2p0 pt´ T1 ` 1q
(46)

We apply Lemma D.14 to bound the left-hand side of (46) and get the aimed result.

24

D.5.1 Auxiliary lemmas

Lemma D.14. Let t P rT1, T s. We have:

Θp1q logp1 ` e´pαptqGptq
q
p

q ě LpAptq,vptqq.

Proof of Lemma D.14. The proof is similar to the one of Lemma D.3. We apply Lemma D.4,
Lemma D.8 and Lemma D.5 and get:

yFAptq,vptq pXq ě pαptqqp
´

CpGptqqp ´ opλ0qp
¯

ě Θp1qpαptqGptqqp. (47)

Using (47), we deduce:

Erlogp1 ` e
´yF

Aptq,vptq pXq
qs ď logp1 ` e´Θp1qpαptqGptq

q
p

q ď Θp1q logp1 ` e´pαptqGptq
q
p

q, (48)

where we applied Lemma K.7 in the last inequality.

D.6 Fitting the labeling function

We now show that the learner model fits the labeling function.

Lemma D.15. After T iterations, the population risk converges i.e. LpApT q,vpT qq ď Op1{polypdqq.
Therefore, PDrf˚pXqFAptq,vptq pXq ą 0s ě 1 ´ op1q.

Proof of Lemma D.15. Since the logistic loss is a surrogate for the 0-1 loss, we have:

EDr1yF
Aptq,vptq pXqă0s ď EDrlogp1 ` e

´yF
Aptq,vptq pXq

qs. (49)

We now apply Lemma D.13 to bound the right-hand side of (49). Given the value of T , we have:

PDryFApT q,vpT q pXqs “ EDr1yF
ApT q,vpT q pXqă0s ď

polylogpdq

ηλ2p0 T
ď

1

polypdq
. (50)

We now use (50) and Definition 2.1 to show that the learner model fits the labeling function. Indeed,
we rewrite PDrf˚pXqFApT q,vpT q pXqs as

PDrf˚pXqFApT q,vpT q pXqs ě PDryf˚pXq ą 0sPDryFApT q,vpT q pXq ą 0s

ě p1 ´ d´ωp1qq

´

1 ´
1

polypdq

¯

“ 1 ´ op1q. (51)

D.7 Proof of the induction hypothesis

In this section, we prove Induction Hypothesis B.1.

Proof of Induction Hypothesis B.1. We start by proving that |ρptq| “ Θp1q for all t P rT s.
Let t P rT1, T s and τ P rts. Using Corollary G.2 and Induction Hypothesis B.1, we upper bound
|ρpτq| as:

|ρpτ`1q| ď |ρpτq| `
ηΘpCq

D
pαpτqqp

ˆ

1 `
λp`1
0

D

˙

. (52)

Summing (52) for τ “ 0, . . . , t´ 1 and using ρp0q “ 0 lead to

|ρptq| ď
ηΘpCq

D

ˆ

1 `
λp`1
0

D

˙ T
ÿ

τ“0

pαpτqqp (53)

We now apply Lemma D.16 to bound the sum of αptq’s in (53).

|ρptq| ď Θ

ˆ

1

Dpαp0qqp´1pλ0qpepolyloglogpdq
`

1

epolyloglogpdq

˙

. (54)

25

Given the values of the different parameters, (54) implies that |ρptq| ď Θp1q.

We now prove eγ
ptq

P rΩp1q, λ0s. Since eγ
ptq

is non-decreasing (Corollary G.1), we have eγ
ptq

ě

eγ
p0q

ě Ωp1q for all t ě 0. We now prove the upper bound on eγ
ptq

. We assume that for all τ ď t,
eγ

pτq

ď λ0. Let’s show this inequality for t` 1. Using Corollary G.1, we have:

eγ
pt`1q

ď eγ
ptq

exp
´

ΘpCηqpαptqqpΓptqpGptqqp´1
¯

“ exp
´

ΘpCηq

t
ÿ

τ“0

pαpτqqpΓpτqpGpτqqp´1
¯

.
(55)

We now apply the induction hypothesis in (55) and get:

eγ
pt`1q

ď eγ
ptq

exp
`

ΘpCηqpαptqqpΓptqpGptqqp´1
˘

“ exp
´Θpλp0Cηq

Dp

t
ÿ

τ“0

pαpτqqp
¯

ď exp
´Θpλp0Cηq

Dp

T
ÿ

τ“0

pαpτqqp
¯

.

(56)

We apply Lemma D.16 in (56) and obtain:

eγ
pt`1q

ď exp

ˆ

Θ
´ 1

Dppαp0qqp´1epolyloglogpdq
`

λp0
Dp´1epolyloglogpdq

¯

˙

“ Θp1q exp

ˆ

λp0
Dp´1epolyloglogpdq

˙

ď Θ

ˆ

1 `
λp0

Dp´1epolyloglogpdq
`

λ2p0
D2pp´1qepolyloglogpdq

˙

, (57)

where we used the inequality ex ď 1 ` x` x2 for x ď 1 in (57). Given the values of the different
parameters, we deduce that eγ

pt`1q

ď λ0.

We now prove eβ
ptq

“ epolyloglogpdq for t P r0, T s. Since βptq is not updated i.e. βptq “ βp0q and
βp0q “ σM “ polyloglogpdq, we therefore have the aimed result.

Lastly, we prove that eβ
ptq

` pC ´ 1qeγ
ptq

` pD ´Cqeρ
ptq

“ ΘpDq for t P rT s. Since eγ
ptq

ě Θp1q,
eρ

ptq

“ Θp1q and eβ
ptq

ě Θp1q, we have:

eβ
ptq

` pC ´ 1qeγ
ptq

` pD ´ Cqeρ
ptq

ě ΘpDq. (58)

On the other hand, we have eγ
ptq

ď λ0, eβ
ptq

“ epolyloglogpdq and eρ
ptq

“ Θp1q which imply:

eβ
ptq

` pC ´ 1qeγ
ptq

` pD ´ Cqeρ
ptq

ď epolyloglogpdq ` pC ´ 1qλ0 ` pD ´ CqΘp1q

ď Cλ0 ` pD ´ CqΘp1q

ď ΘpDq.

(59)

D.7.1 Auxiliary lemmas

Lemma D.16. The sum of the αptq’s is bounded as:

T
ÿ

τ“0

pαpτqqp “ Θ

ˆ

1

ηCpαp0qqp´1pλ0qpepolyloglogpdq
`

D

Cηepolyloglogpdq

˙

.

26

Proof of Lemma D.16. We first decompose the sum of αptq’s.
T

ÿ

τ“0

pαpτqqp “

T0´1
ÿ

τ“0

pαpτqqp `

T1´1
ÿ

τ“T0

pαpτqqp `

T
ÿ

τ“T1

pαpτqqp. (60)

We apply Lemma D.2 and Lemma D.8 to rewrite (60).
T

ÿ

τ“0

pαpτqqp “
Θp1q

ηCpαp0qqp´1pλ0qpepolyloglogpdq
`

log pλ0q

ηepolyloglogpdq
`

T
ÿ

τ“T1

pαpτqqp. (61)

Now, we aim to obtain the value of the last summand in (61). Using Corollary G.1, we have

CΓpT q ě CΓpT1q exp

˜

Cη

D
epolyloglogpdq

T
ÿ

τ“T1

pαpτqqp

¸

. (62)

We finally apply Lemma D.8 and Induction Hypothesis B.1 in (62) to get:
T

ÿ

τ“T1

pαpτqqp ď
ΘpDq

Cηepolyloglogpdq
. (63)

To obtain the aimed result, we plug (63) in (61) and use logpλ0q

ηepolyloglogpdq ď
ΘpDq

Cηepolyloglogpdq .

E From idealized to real learning process

In Appendix D, we analyzed the ideal learning process. We now aim to bridge the gap between the
idealized and realistic cases. Given our initialization, pvptq has a component in spanpw˚qK i.e.

pvptq “ pαptqw˚ ` εptq
v uptq

where uptq P Rd such that uptq K w˚ and }uptq}2 “ 1. Thus, one main difference between the two
cases is that we initialize αp0q ě ν1{pp´1q in the idealized case while pαp0q ď ω. Thus, the proof
strategy consists in i) t P r0,T s, pαptq increases until having pαptq ě ν1{pp´1q (subsubsection E.1.1)
while εptq

v (subsubsection E.1.2) and pA
ptq
i,j (subsubsection E.1.3) stay tiny. ii) t P rT , T s, compare the

realistic and idealized iterates. We remind the GD update of pαptq.

pαpt`1q ´ pαptq

“ η
D

N

N
ÿ

i“1

yrisS
`

´ yrisF pXrisq
˘

ÿ

jPSℓpXrisq

σ1
´

D
ÿ

k“1

pS
ptq
j,kxpvptq,Xkrisy

¯

D
ÿ

r“1

pS
ptq
j,rxw˚,Xrrisy

l jh n

pSSS
ptq

` η
D

N

N
ÿ

i“1

yrisS
`

´ yrisF pXrisq
˘

σ1
´

D
ÿ

k“1

pS
ptq
j,kxpvptq,Xkrisy

¯

D
ÿ

r“1

pS
ptq
j,rxw˚,Xrrisy

l jh n

xNNN
ptq

.

(GD-pα)

E.1 Bound on the iterates during the initial steps (t P r0,T s)

Since we randomly initialize pvp0q with tiny variance, we need to take into account the linear part of
the activation function. Lemma E.8 shows that we can overlook the power part of the activation and
consider σpxq “ νx as long as pαptq ě ν1{pp´1q.

E.1.1 pαptq initially increases

Lemma E.1. Let T “ Θ
´

1
ηνpp´2q{pp´1qepolyloglogpdq

¯

. For all t P r0,T s, pαptq is updated as

pαpt`1q “ pαptq ` Θpηνqeβ .

Consequently, pαptq is non-decreasing and after T iterations, we have pαptq ě ν1{pp´1q for t ě T .

27

Proof of Lemma E.1. Let t ě 0. We apply Lemma E.5 and Lemma E.6 to respectively bound pSSS
ptq

and xNNN
ptq

in the update of pαptq.

pαpt`1q “ pαptq ` ΘpCηνqeβ . (64)

(64) indicates that pαptq is a non-decreasing sequence. Therefore, there exists a time T such that
pαpT q “ ν1{pp´1q. Summing (64) for t “ 0, . . . ,T ´ 1 yields T “ Θ

´

1
ηνpp´2q{pp´1qeβ

¯

.

E.1.2 Bound on εv

We now show that for t P r0,T s, the orthogonal component εptq
v stays small.

Lemma E.2. Assume that we run GD on the empirical risk (E) for T iterations with parameters set
as in Parametrization 3.1. For t P r0,T s, the orthogonal component εv satisfies

εpt`1q
v ď

´

1 ` ην
polypDq

?
d

¯

εptq
v ` ηζ,

where ζ “
polypDq

?
N

.

Proof of Lemma E.2. Let P “ pI´w˚w˚Jq and ˝
vptq “ pαptqw˚. The projected update of pv satisfies:

}Ppvpt`1q ´ Ppvptq}2

ďDην

›

›

›

›

1

N

N
ÿ

i“1

yrisSp´yrisF
pvpXrisqq

D
ÿ

m“1

D
ÿ

b“1

pS
ptq
m,bPXbris (65)

´ E
„

ySp´yF
pvpXqq

D
ÿ

m“1

D
ÿ

b“1

pS
ptq
m,bPXb

ȷ
›

›

›

›

2

(66)

`Dην

›

›

›

›

E
„

ySp´yF
pvpXqq

D
ÿ

m“1

D
ÿ

b“1

pS
ptq
m,bPXb

ȷ

(67)

´ E
„

ySp´yF˝
vpXqq

D
ÿ

m“1

D
ÿ

b“1

pS
ptq
m,bPXb

ȷ
›

›

›

›

2

. (68)

Summand 1: }(65) ´ (66)}2. Using the matrix Hoeffding inequality, we have with high probability,

}(81) ´ (82)}2 ď 16

b

logpdq
řN

i“1M
2
i , where

›

›

›

ηνDyris
N Sp´yrisF

pvpXpiqqq
řD

m“1

řD
b“1

pS
ptq
m,bPX

piq
b

›

›

›

2

2
ď M2

i . Induction Hypothesis B.1 and

}PX
piq
u }2 ď σ2d logpdq imply M2

i ď
η2ν2polypDq

N2 . We deduce that }(65) ´ (66)}2 ď ην polypDq
?
N

.

Summand 2: }(67) ´ (68)}2. We use the 1-Lipschitzness of the sigmoid function and get:

}(67) ´ (68)}2

ďην

›

›

›

›

›

E

«

Dy
D
ÿ

m“1

D
ÿ

b“1

pS
ptq
m,bPXu¨

„

S

ˆ

´ yνD
D
ÿ

a“1

D
ÿ

a1“1

pS
ptq
a,a1 xpvptq,Xa1 y

˙

´ S

ˆ

´ yνD
D
ÿ

a“1

D
ÿ

a1“1

pS
ptq
a,a1 x

˝
vptq,Xa1 y

˙ȷ

ff
›

›

›

›

›

2

ďΘpηνDqE
„ D

ÿ

m“1

D
ÿ

r“1

pSptq
m,r

D
ÿ

a“1

ˇ

ˇ

ˇ

ˇ

D
D
ÿ

a1“1

pS
ptq
a,a1 x

˝
vptq ´ pvptq,Xa1 y

ˇ

ˇ

ˇ

ˇ

D
ÿ

b“1

pSptq
m,u}PXb}2

ȷ

ďΘpηνDqE
„ D

ÿ

m“1

λ0ε
ptq
v ¨

ˇ

ˇ

ˇ

ˇ

xuptq,
D
ÿ

a1“1

ξa1 y

ˇ

ˇ

ˇ

ˇ

¨

D
ÿ

b“1

λ0}ξb}2

ȷ

. (69)

28

where we applied Induction Hypothesis B.1 in (69). Since with high probability, }ξb}2 ď σ
a

d logpdq,
ˇ

ˇxuptq,
řD

r“1 ξry
ˇ

ˇ ď
a

D logpdqσ, we finally have:

}(67) ´ (68)}2 ď ην ¨ polypDqεptq
v σ “ ην

polypDq
?
d

εptq
v .

Combining the bounds on Summands 1 and 2 yields the aimed result.

We now use Lemma E.2 to show that εv stays small.

Lemma E.3. For all t ď T , εptq
v ď ω

a

d logpdq ` ν1{pp´1q polypDq
?
N

. By setting N “ polypdq, we

have: εptq
v ď 1{polypdq.

Proof of Lemma E.3. Unraveling Lemma E.2 for t “ 0, . . . ,T and using εp0q
v ď ω

a

d logpdq (with
high probability) leads to:

εpT q
v ď ω

a

d logpdq ` ηνζ

´

1 ` ην polypDq
?
d

¯T

´ 1

ην polypDq
?
d

ď ω
a

d logpdq ` 2T ηνζ, (70)

where we used p1 ` xqy ď 1 ` 2yx for x ! 1 and y ě 0. Plugging the value of T in (70) yields the
aimed result.

E.1.3 pA
ptq
a,b stays small

We finally show that pA
ptq
a,b remains tiny for t P r0,T s.

Lemma E.4. Let a, b P rDs. We have | pA
ptq
a,b| ď ω

a

d logpdq `
Θpν2{pp´1q

q

Deβ
.

Proof of Lemma E.4. We remind that the GD update of pA
ptq
a,b is

pA
pt`1q

a,b “ pA
ptq
a,b `

νη

N

N
ÿ

i“1

S
`

´ yrisF pXrisq
˘

pS
ptq
a,b

ÿ

m‰b

pSptq
a,mxpvptq,Xmris ´ Xbrisy. (71)

The proof is by induction. We assume that pA
ptq
a,b ď ω

a

d logpdq `
Θpν2{pp´1q

q

Deβ
. We first apply

Cauchy-Schwarz on (71) and get:

| pA
pt`1q

a,b | ď | pA
ptq
a,b| ` νη pS

ptq
a,b

ÿ

m‰b

pSptq
a,m}pvptq}2. (72)

Using the induction hypothesis, we have pS
ptq
a,b ď Θp1q{D. Thus, we have

| pA
pt`1q

a,b | ď | pA
ptq
a,b| `

Θpνηq

D
}pvptq}2 ď | pA

ptq
a,b| `

Θpνηq

D

b

ppαptqq2 ` pε
ptq
v q2. (73)

We sum (73) and get:

| pA
pT q

a,b | ď | pA
p0q

a,b| `
Θpνηq

D

T ´1
ÿ

t“0

b

ppαptqq2 ` pε
ptq
v q2. (74)

We now use Lemma E.1 and Lemma E.3 in (74) and get:

| pA
pT q

a,b | ď ω
a

d logpdq `
Θpν1{pp´1qq

Deβ

d

ν2{pp´1q `

ˆ

ω
a

d logpdq ` ν1{pp´1q
polypDq

?
N

˙2

ď ω
a

d logpdq `
Θpν2{pp´1qq

Deβ
. (75)

29

E.1.4 Auxiliary lemmas

Lemma E.5. Let T be the time where pαptq ě ν1{pp´1q. Let t P r0,T s, i P rN s and j P SℓpXrisq.
We have:

yrisxw˚,O
ptq
j risy “ eβ .

This implies pSSS
ptq

“ Ceβ for all t P r0,T s.

Proof of Lemma E.5. We successively apply Lemma E.4 and Lemma K.3 to get:

yrisxw˚,O
ptq
j risy “ D

ˆ

pS
ptq
j,j `

ÿ

kPSℓpXrisq

pS
ptq
j,k ` yris

ÿ

h‰ℓpXrisq

ÿ

rPSh

pS
ptq
j,rδr

˙

ě Θ

ˆ

epolyloglogpdq ` ΘpC ´ 1q ´ Θp1q
ÿ

h‰ℓpXrisq

ÿ

rPSh

δh,r

˙

(76)

ě Θ

ˆ

epolyloglogpdq ` ΘpC ´ 1q ´ ΘpqD logpdqq

˙

(77)

ě epolyloglogpdq.

Similarly, we also have yrisxw˚,O
ptq
j risy ď epolyloglogpdq.

Lemma E.6. Let t P r0,T s. Assume that N “ polypdq. With high probability, xNNN
ptq

ď 1{polypdq.

Proof of Lemma E.6. During this time phase, the sigmoid stays constant. Therefore, we have

Er
xNNN

ptq

s “ 0. Therefore, we apply Hoeffding inequality and Lemma D.6 to get:

xNNN
ptq

ď

c

8N logpdq max
iPrNs

M2
i , (78)

where Ai is a constant such that
ˇ

ˇ

ˇ

1
N

ř

jRSℓpXrisq
yrisxw˚,O

ptq
j risy

ˇ

ˇ

ˇ
ď Mi ď

polypDq

N2 . Since N “

polypdq, we finally proved xNNN
ptq

ď 1{polypdq.

Lemma E.7. Let t ď T . The sum of pαptq’s is bounded as:
t

ÿ

τ“0

pαpτq “ tpαp0q ` Θpηνqeβt2. (79)

Proof of Lemma E.7. Let τ P r0,T s. We sum the update rule of pαptq (Lemma E.1) and obtain:
pαpτq “ pαp0q ` ΘpCηνqeβτ. Summing again this update yields the aimed result.

Lemma E.8. Let pX, ¨q „ D and j P rDs. Assume that pαptq ď ν1{pp´1q. Then, we have:

σ1
´

D
D
ÿ

k“1

pS
ptq
j,kxpv,Xky

¯

“

#

Θpνq if pαptq ď ν1{pp´1q

Θppq

´

D
řD

k“1
pS

ptq
j,kxpv,Xky

¯p´1

otherwise
.

Proof of Lemma E.8. We remind that the derivative of the activation function σ1pxq “ pxp´1 ` ν.
We first remark that for all x, σ1pxq ě ν. Besides, we have since p´ 1 is even,

pxp´1 ` ν ď 3ν ðñ |x| ď

´2ν

p

¯1{pp´1q

. (80)

In our case, we have x “ Dpαptq
řD

k“1
pS

ptq
j,kxw˚,Xky. Using Induction Hypothesis B.1, we

have |x| ě epolyloglogpdqαptq. Therefore, a sufficient condition for (80) to hold is pαptq ď

ν1{pp´1qe´polyloglogpdq. Since epolyloglogpdq ! polypdq, we can simplify this condition as pαptq ď

ν1{pp´1q. Proving the second part of the lemma can be done as in the proof of Lemma D.7.

30

E.2 Coupling between the semi-idealized and realistic processes (t P rT , T s)

In this section, we aim to bound the realistic iterates pA
ptq
i,j and pvptq for t P rT , T s. For this reason,

we introduce a "semi-idealized" learning process (subsubsection E.2.1) which may be viewed as a
mid-point between the idealized and realistic process. We first bound the iterates in this process.
Then, using this process, we show that εptq

v (subsubsection E.2.2) and ∆
ptq
A :“ maxi‰j | pA

ptq
i,j ´ qA

ptq
i,j |

(subsubsection E.2.4) stay small. Here, qA
ptq
i,j is the semi-idealized attention matrix coefficient. Finally,

since εpT q
v and ∆

pT q

A are small, the final iterates pαpT q and αpT q are equal (subsubsection E.2.6) and
thus, the model fits the labeling function (subsubsection E.2.7).

E.2.1 Defining the semi-idealized process

We define an intermediate learning process that we refer to as the "semi-idealized" process. This
process starts at time t “ T involves two parameters: the semi-idealized value vector qv and
semi-idealized attention matrix qA defined as

– the value vector qv is fixed and satisfies qvpt´T q “ pαptqw˚ for t P rT , T s.

– qA
pt´T q

i,j is a trainable parameter and is initialized as qA
p0q

i,j “ 0 for i ‰ j.

Therefore, the only trainable parameter in this process is qA. In the semi-idealized process, we
minimize the population risk

min
qA

ED
“

log
`

1 ` e´yF pXq
˘‰

:“ qLpqv, qAq. (P̃)

We remark that such process present similarities to the idealized case. In particular, it satisfies all the
invariance and symmetry properties from Lemma 4.1. We thus define

– qA
ptq
i,j “ qγptq for all ℓ P rLs and i, j P Sℓ.

– qA
ptq
i,j “ qρptq for all ℓ,m P rLs such that m ‰ ℓ and i P Sℓ and j P Sm.

Therefore, qγptq and qρptq are respectively updated as in Lemma G.1 and Lemma G.2. We define also
the softmax terms

qΛptq “
eβ

eβ ` pC ´ 1qeqγptq
` pD ´ Cqeqρptq

, qΓptq “
eqγptq

eβ ` pC ´ 1qeqγptq
` pD ´ Cqeqρptq

,

qΞptq “
eqρptq

eβ ` pC ´ 1qeqγptq
` pD ´ Cqeqρptq

, qGptq “ DpqΛptq ` pC ´ 1qqΓptqq.

We finally assume Induction Hypothesis B.1 for this process. This latter can be proved using the
same arguments as in subsection D.7.

E.2.2 Realistic dynamics are mainly on spanpw˚q

We previously showed in Lemma E.3 that εptq
v is small in the initial steps. We now show that it stays

small during the whole process.
Lemma E.9. Assume that we run GD on the empirical risk (E) for T iterations with parameters
set as in Parametrization 3.1 and the number of samples is N “ polypdq. Then, pvptq mainly lies in
spanpw˚q i.e. for t ď T , εptq

v ď 1{polypdq.

We now proceed to the proof of Lemma E.9. We first characterize the recursion satisfied by εptq
v .

Lemma E.10. Assume that we run GD on the empirical risk (E) for T iterations with parameters set
as in Parametrization 3.1. Then, εptq

v satisfies for t P rT , T s

εpt`1q
v ď

`

1 ` ηppαptqqp´1 polypDq
?
d

˘

εptq
v ` ηζ, where ζ “

polypDq
?
N

.

31

Proof of Lemma E.10. Let P :“ pI ´ w˚w˚Jq, ˝
vptq :“ pαptqw˚ and t P rT , T s. The projected

update of pv satisfies:

}Ppvpt`1q ´ Ppvptq}2

ďη

›

›

›

›

1

N

N
ÿ

i“1

DyrisSp´yrisF
pvpXrisqq

D
ÿ

m“1

ˆ

D
D
ÿ

r“1

pSptq
m,rxpvptq,Xpiq

r y

˙p´1 D
ÿ

b“1

pS
ptq
m,bPXbris (81)

´E
„

DySp´yF
pvpXqq

D
ÿ

m“1

ˆ

D
D
ÿ

r“1

pSptq
m,rxpvptq,Xry

˙p´1 D
ÿ

b“1

pS
ptq
m,bPXb

ȷ
›

›

›

›

2

(82)

`η

›

›

›

›

E
„

DySp´yF
pvpXqq

D
ÿ

m“1

ˆ

D
D
ÿ

r“1

pSptq
m,rxpvptq,Xry

˙p´1 D
ÿ

b“1

pS
ptq
m,bPXb

ȷ

(83)

´E
„

DySp´yF
pvpXqq

D
ÿ

m“1

ˆ

D
D
ÿ

r“1

pSptq
m,rx

˝
vptq,Xry

˙p´1 D
ÿ

b“1

pS
ptq
m,bPXb

ȷ
›

›

›

›

2

(84)

`η

›

›

›

›

E
„

DySp´yF
pvpXqq

D
ÿ

m“1

ˆ

D
D
ÿ

r“1

pSptq
m,rx

˝
vptq,Xry

˙p´1 D
ÿ

b“1

pS
ptq
m,bPXb

ȷ

(85)

´E
„

DySp´yF˝
vpXqq

D
ÿ

m“1

ˆ

D
D
ÿ

r“1

pSptq
m,rx

˝
vptq,Xry

˙p´1 D
ÿ

b“1

pS
ptq
m,bPXb

ȷ
›

›

›

›

2

. (86)

Remark that (86) is equal to zero because ErPXus “ 0 for all u P rDs.

Summand 1: }(81) ´ (82)}2. Using the matrix Hoeffding inequality, we have with high probability,

}(81) ´ (82)}2 ď 16

b

logpdq
řN

i“1M
2
i , where

›

›

›

ηDyris
N Sp´yrisF

pvpXrisqq
řD

m“1

´

D
řD

r“1
pS

ptq
m,rxpvptq,Xrrisy

¯p´1
řD

u“1
pS

ptq
m,uPXuris

›

›

›

2

2
ď M2

i .

Induction Hypothesis B.1, Lemma D.11 and }PXuris}2 ď σ2d logpdq imply M2
i ď

η2polypDq

N2 . We
deduce that }(81) ´ (82)}2 ď η polypDq

?
N

.

Summand 2: }(83) ´ (84)}2. The function x ÞÑ xp´1 is pp ´ 1qMp´2 Lipschitz on a bounded
domain r0,M s. We apply this property and pp ´ 1qmaxmPrDs

`

D
řD

r“1
pS

ptq
m,rxpvptq,Xry

˘p´2
ď

ppαptqqp´2polypDq to get:

}(83) ´ (84)}2

ďηppαptqqp´2polypDqE

«

D
ÿ

m“1

D
ÿ

r“1

pSptq
m,r|xpvptq ´

˝
vptq,Xry| ¨

D
ÿ

b“1

pS
ptq
m,b}PXb}2

ff

ďηppαptqqp´2polypDqE

«

D
ÿ

m“1

D
ÿ

r“1

pSptq
m,rε

ptq
v |xuptq,Xry| ¨

D
ÿ

b“1

pS
ptq
m,b}PXb}2

ff

. (87)

With high probability, }ξb}2 ď σ
a

logpdq ď
a

logpdq{d, |xuptq, ξry| ď
a

logpdqσ. We thus get:

}(83) ´ (84)}2 ď ηppαptqqp´2 polypDq
?
d

εptq
v . (88)

32

Summand 3: }(85) ´ (86)}2. We have:

}(85) ´ (86)}2

ďη

›

›

›

›

›

E

«

Dy
D
ÿ

m“1

ˆ

D
D
ÿ

r“1

pSptq
m,rx

˝
vptq,Xry

˙p´1 D
ÿ

b“1

pS
ptq
m,bPXu¨

„

S

ˆ

´ y
D
ÿ

a“1

`

D
D
ÿ

a1“1

pS
ptq
a,a1 x

˝
vptq,Xa1 y

˘p
˙

´ S

ˆ

´ y
D
ÿ

a“1

`

D
D
ÿ

a1“1

pS
ptq
a,a1 xpvptq,Xa1 y

˘p
˙ȷ

ff
›

›

›

›

›

2

.

(89)

We apply Lemma E.12 to bound the local change of the sigmoid in (89) which yields:

}(85) ´ (86)}2

ďΘpηDqE
„ D

ÿ

m“1

ˆ

D
D
ÿ

r“1

pSptq
m,rx

˝
vptq,Xry

˙p´1D
ÿ

a“1

ˇ

ˇ

ˇ

ˇ

D
D
ÿ

a1“1

pS
ptq
a,a1 x

˝
vptq ´ pvptq,Xa1 y

ˇ

ˇ

ˇ

ˇ

¨

D
ÿ

b“1

pSptq
m,u}PXb}2

ȷ

ďΘpηD2qE
„ D

ÿ

m“1

ˆ

D
D
ÿ

r“1

pSptq
m,rx

˝
vptq,Xry

˙p´1D
ÿ

a“1

D
ÿ

a1“1

pS
ptq
a,a1ε

ptq
v |xuptq,Xa1 y|

D
ÿ

b“1

pSptq
m,u}PXb}2

ȷ

.

(90)

We apply Induction Hypothesis B.1 to bound the softmax terms in (90). Besides, with high probability,
we have }ξb}2 ď σ

a

d logpdq, |xuptq, ξa1 y| ď
a

logpdqσ. Thus, we have:

}(85) ´ (86)}2 ď η ¨ polypDqppαptqqp´1εptq
v σ ď η

polypDq
?
d

ppαptqqp´1εptq
v . (91)

We combine the bounds on the three summands to obtain the recursion of εptq
v .

We now prove Lemma E.11 that gives the final bound on εptq
v for t ď T.

Lemma E.11. For all t ď T , εptq
v ď Op

polypdq
?
N

q. By setting N “ polypdq, εptq
v ď 1

polypdq
.

Proof of Lemma E.11. We bound εptq
v in the following two regimes: t P rT ,T ` qT0s and t P

rT ` qT0, T s.

First phase: t P rT ,T ` qT0s. Unraveling Lemma E.10 for t “ T , . . . ,T ` qT0 leads to:

εptq
v ď

”

εpT q
v ` ηζ qT0

ı

T ` qT0
ź

τ“T

ˆ

1 ` ηppαpτqqp´1 polypDq
?
d

˙

ď rεpT q
v ` ηζ qT0s

qT0´1
ź

τ“0

ˆ

1 ` ηppαpτqqp´1 polypDq
?
d

˙

.

(92)

Lemma E.20 provides the update of pαptq during this time phase. We thus apply Lemma K.2 to bound
the product term in (92).

qT0´1
ź

τ“0

ˆ

1 ` ηppαpτqqp´1 polypDq
?
d

˙

ď

ˆ

1 `
Θp1q

C2pp´2qλp´2
0

˙

ηpolypDq
?

d

ď Op1q. (93)

Plugging (93) in (92) yields a bound on εpT ` qT0q
v .

εpT ` qT0q
v ď Op1q

`

εpT q
v ` ηζ qT0

˘

. (94)

33

Second phase: t P pT ` qT0, T s. Lemma E.23 shows that pαptq gets updated until t “ qT2 ă T.

Therefore, we have εpT q
v “ ε

pT ` qT2q
v . Unraveling Lemma E.10 for t “ T ` qT0, . . . ,T ` qT2 and

using pαptq ď
polylogpdq

C2λ0
for t ď T leads to:

εpT ` qT2q
v ď

ˆ

1 `
ηpolylogpdq

λp´1
0

polypDq
?
d

˙
qT2´ qT0

εpT ` qT0q
v ` ηζ

ˆ

1 `
ηpolylogpdq

λp´1
0

polypDq
?
d

˙
qT2´ qT0

´ 1

ηpolylogpdq

λp´1
0

polypDq
?
d

.

(95)

Since qT2 ´ qT0 ď
λp
0

ηepolyloglogpdq , we have
´

1 `
ηpolylogpdq

λp´1
0

polypDq
?
d

¯
qT2´ qT0

ď Op1q. Simplifying (95)
yields:

εpT ` qT2q
v ď O

ˆ

polypdq
?
N

˙

. (96)

(96) implies that we need N “ polypdq samples to have εpT q
v ď 1{polypdq.

E.2.3 Auxiliary lemmas

In this section, we prove the Lipschitzness of the function appearing in the proof of Lemma E.10.

Lemma E.12. Let ψ : Rd Ñ R defined as ψpxq :“ Sp´
řD

m“1 x
p
mq and p ě 3 be an odd integer.

Assume that xpm ě ´1{D. Then, ψ is p-Lipschitz i.e. for all x,y P Rd, |ψpxq ´ψpyq| ď p}x´y}1.

Proof of Lemma E.12. Let l P rDs. The derivative of ψ with respect to a variable xl is:
ˇ

ˇ

ˇ

ˇ

Bψ

Bxl

ˇ

ˇ

ˇ

ˇ

“ p
xp´1
l expp

řD
m“1 x

p
mq

p1 ` expp
řD

m“1 x
p
mqq2

ď
pxp´1

l

1 ` expp
řD

m“1 x
p
mq
. (97)

(97) implies a bound on }∇ψpxq}1. Indeed, since
řD

m“1 x
p
m ě ´1, we have:

}∇ψpxq}1 ď p

řD
m“1pyxmqp´1

1 ` expp
řD

m“1pyxmqpq
ď p. (98)

(98) shows that ψ is p-Lipschitz.

E.2.4 ∆
ptq
A stays small during the learning process

Here, we bound the gap in attention coefficients between the realistic and semi-idealized cases.

Lemma E.13. Assume that we run GD on the empirical risk (E) for T iterations with parameters set
as in Parametrization 3.1 and the number of samples is N “ polypdq. Then, the attention matrix in
the realistic case is very close to the semi-idealized one i.e. for t P rT , T s,

∆
ptq
A :“ max

i‰j
| pA

ptq
i,j ´A

ptq
i,j | ď

1

polypdq
.

We now detail the steps to prove Lemma E.13. We first provide the recursion that ∆ptq
A satisfies.

Lemma E.14. Assume that we run GD on the empirical risk (E) for T iterations with parameters set
as in Parametrization 3.1. Then, the discrepancy ∆A satisfies for t P pT , T s,

∆
pt`1q

A ď
`

1 ` ηRptq
˘

∆
ptq
A ` ηpolypDqσεptq

v ` ηζ,

where ∆
pT q

A ď | pA
pT q

i,j |, Rptq “ OpCqpGptqqp´1
qΓptqppαptqqp and ζ “

polypDq
?
N

.

34

Proof of Lemma E.14. In this proof, we maintain the hypothesis that ∆ptq
A is small. We will eventually

prove this statement in Lemma E.15. Let a, b P rDs such that a ‰ b. Using GD, pA
pt`1q

a,b ´ qA
pt`1´T q

a,b

satisfies:

ˇ

ˇ pA
pt`1q

a,b ´ qA
pt`1´T q

a,b

ˇ

ˇ ď
ˇ

ˇ pA
ptq
a,b ´ qA

pt´T q

a,b

ˇ

ˇ

` η

ˇ

ˇ

ˇ

ˇ

D

N

N
ÿ

i“1

yrisS
`

´ yrisF
pv, pApXrisq

˘

ˆ

D
D
ÿ

c“1

pSptq
a,cxpvptq,Xcrisy

˙p´1

pS
ptq
a,b

ÿ

r‰b

pSptq
a,rxpvptq,Xbris ´ Xrrisy

(99)

´E
„

DySp´yF
pv, pApXqq

ˆ

D
D
ÿ

c“1

pSptq
a,cxpvptq,Xcy

˙p´1

pS
ptq
a,b

ÿ

r‰b

pSptq
a,rxpvptq,Xb ´ Xry

ȷ
ˇ

ˇ

ˇ

ˇ

(100)

` η

ˇ

ˇ

ˇ

ˇ

E
„

DySp´yF
pv, pApXqq

ˆ

D
D
ÿ

c“1

pSptq
a,cxpvptq,Xcy

˙p´1

pS
ptq
a,b

ÿ

r‰b

pSptq
a,rxpvptq,Xb ´ Xry

ȷ

(101)

´E
„

DySp´yF
qv, pApXqq

ˆ

D
D
ÿ

c“1

pSptq
a,cxqvpt´T q,Xcy

˙p´1

pS
ptq
a,b

ÿ

r‰b

pSptq
a,rxqvpt´T q,Xb ´ Xry

ȷ
ˇ

ˇ

ˇ

ˇ

(102)

`Dη

ˇ

ˇ

ˇ

ˇ

E
„

ySp´yF
qv, pApXqq

ˆ

D
D
ÿ

c“1

pSptq
a,cxqvpt´T q,Xcy

˙p´1

pS
ptq
a,b

ÿ

r‰b

pSptq
a,rxqvptq,Xb ´ Xry

ȷ

(103)

´ E
„

ySp´yF
qv, qApXqq

ˆ

D
D
ÿ

c“1

qSpt´T q
a,c xqvpt´T q,Xcy

˙p´1

qS
pt´T q

a,b

ÿ

r‰b

qSpt´T q
a,r xqvpt´T q,Xb ´ Xry

ȷ
ˇ

ˇ

ˇ

ˇ

.

(104)

We now bound the three summands above.

Summand 1: |(99) ´ (100)|. We apply the Hoeffding inequality. With high probability, we have:
|(99) ´ (100)| ď η polypDq

?
N

.

Summand 2: |(101) ´ (102)|. Since εptq
v is small (Lemma E.11), we can show that:

|(101) ´ (102)| ď ηDE
„

´

D
D
ÿ

c“1

pSptq
a,cxqvptq,Xcy

¯p´1
pS

ptq
a,b ¨

ÿ

r‰b

pSptq
a,r|xuptq,Xb ´ Xry|

ȷ

εptq
v . (105)

With high probability, we have xuptq, ξby ď σ
a

logpdq. Using this fact along with

D
ˇ

ˇ

ˇ

´

D
řD

c“1
pS

ptq
a,cxqvptq,Xcy

¯p´1
pS

ptq
a,b ¨

ř

r‰b
pS

ptq
a,r

ˇ

ˇ

ˇ
ď polypDq, we further bound (105) as:

|(101) ´ (102)| ď ηpolypDqεptq
v σ

a

logpdq. (106)

35

Summand 3: |(103) ´ (104)|. We have the following decomposition.
|(103) ´ (104)|

ď η

ˇ

ˇ

ˇ

ˇ

E
„

DySp´yF
qv, pApXqq

ˆ

D
D
ÿ

c“1

pSptq
a,cxqvptq,Xcy

˙p´1

pS
ptq
a,b

ÿ

r‰b

pSptq
a,rxqvptq,Xb ´ Xry

ȷ

(107)

´ E
„

DySp´yF
qv, qApXqq

ˆ

D
D
ÿ

c“1

pSptq
a,cxqvptq,Xcy

˙p´1

pS
ptq
a,b

ÿ

r‰b

pSptq
a,rxqvptq,Xb ´ Xry

ȷ

(108)

` η

ˇ

ˇ

ˇ

ˇ

E
„

DySp´yF
qv, qApXqq

ˆ

D
D
ÿ

c“1

pSptq
a,cxqvptq,Xcy

˙p´1

pS
ptq
a,b

ÿ

r‰b

pSptq
a,rxqvptq,Xb ´ Xry

ȷ

(109)

´ E
„

DySp´yF
qv, qApXqq

ˆ

D
D
ÿ

c“1

qSpt´T q
a,c xqvptq,Xcy

˙p´1

pS
ptq
a,b

ÿ

r‰b

pSptq
a,rxqvptq,Xb ´ Xry

ȷ
ˇ

ˇ

ˇ

ˇ

(110)

` η

ˇ

ˇ

ˇ

ˇ

E
„

DySp´yF
qv, qApXqq

ˆ

D
D
ÿ

c“1

qSpt´T q
a,c xqvptq,Xcy

˙p´1

pS
ptq
a,b

ÿ

r‰b

pSptq
a,rxqvptq,Xb ´ Xry

ȷ

(111)

´ E
„

DySp´yF
qv, qApXqq

ˆ

D
D
ÿ

c“1

Spt´T q
a,c xqvptq,Xcy

˙p´1

pS
ptq
a,b

ÿ

r‰b

qSpt´T q
a,r xqvptq,Xb ´ Xry

ȷ
ˇ

ˇ

ˇ

ˇ

(112)

` η

ˇ

ˇ

ˇ

ˇ

E
„

DySp´yF
qv, qApXqq

ˆ

D
D
ÿ

c“1

qSpt´T q
a,c xqvptq,Xcy

˙p´1

pS
ptq
a,b

ÿ

r‰b

qSpt´T q
a,r xqvptq,Xb ´ Xry

ȷ
ˇ

ˇ

ˇ

ˇ

(113)

´ E
„

DySp´yF
qv, qApXqq

ˆ

D
D
ÿ

c“1

qSpt´T q
a,c xqvptq,Xcy

˙p´1

qS
pt´T q

a,b

ÿ

r‰b

qSpt´T q
a,r xqvptq,Xb ´ Xry

ȷ
ˇ

ˇ

ˇ

ˇ

.

(114)

We need to distinguish two sub-cases: a, b P Sℓ and a P Sℓ, b P Sm with ℓ ‰ m.

Subcase 1: a, b P Sℓ. The proof of Lemma G.1 highlights that when a, b P Sℓ the event with
largest gradient is event a: "ℓ “ ℓpπpXqq" which happens with probability 1{L. Therefore, to
simplify the calculations, we will only take into account this event. We first bound |(107) ´ (108)|.
We successively apply Lemma E.12 (Lipschitzness of sigmoid) and Lemma E.17 (Lipschitzness of
softmax) and get:

|(107) ´ (108)|

ď
ΘpηDq

L
E

„ˆ

D
D
ÿ

c“1

pSptq
a,cxqvptq,Xcy

˙p´1

pS
ptq
a,b

D
ÿ

c“1

D
ÿ

c1“1

| qS
pt´T q

c,c1 ´ pS
ptq
c,c1 | ¨ |xqvptq,Xc1 y|

ÿ

r‰b

pSptq
a,r|xqvptq,Xb ´ Xry|

ˇ

ˇ

ˇ

ˇ

a

ȷ

ď
ΘpηDq

L
E

„ˆ

D
D
ÿ

c“1

pSptq
a,cxqvptq,Xcy

˙p´1

pS
ptq
a,b

D
ÿ

c“1

D
ÿ

c1“1

qS
pt´T q

c,c1 |e2∆
ptq

A ´ 1||xqvptq,Xc1 y|
ÿ

r‰b

pSptq
a,r|xqvptq,Xb ´ Xry|

ˇ

ˇ

ˇ

ˇ

a

ȷ

ď
ΘpηDq

L
E

„ˆ

D
D
ÿ

c“1

pSptq
a,cxqvptq,Xcy

˙p´1

pS
ptq
a,b

D
ÿ

c“1

D
ÿ

c1“1

qS
pt´T q

c,c1 |xqvptq,Xc1 y|
ÿ

r‰b

pSptq
a,r|xqvptq,Xb ´ Xry|

ˇ

ˇ

ˇ

ˇ

a

ȷ

∆
ptq
A

(115)

ď
Θpηpαptqλ0D

2q

L
E

„ˆ

D
D
ÿ

c“1

pSptq
a,cxqvptq,Xcy

˙p´1

pS
ptq
a,b

ÿ

r‰b

pSptq
a,r|xqvptq,Xb ´ Xry|

ˇ

ˇ

ˇ

ˇ

a

ȷ

∆
ptq
A . (116)

where we used e∆
ptq

A ´ 1 ď 2∆
ptq
A in (115) and Induction Hypothesis B.1 in (116). Using Lipschitz

inequalities, we can further expand (116) as a function of the coefficients from qSptq and ∆
ptq
A .

36

However, ∆ptq
A is small and we only want terms of order 1 in ∆

ptq
A in (116). Therefore, the only term

of order 1 that remains is:
|(107) ´ (108)|

ď
Θpηpαptqλ0D

2q

L
E

„ˆ

D
D
ÿ

c“1

qSpt´T q
a,c xqvptq,Xcy

˙p´1

qS
pt´T q

a,b

ÿ

r‰b

qSpt´T q
a,r |xqvptq,Xb ´ Xry|

ˇ

ˇ

ˇ

ˇ

a

ȷ

∆
ptq
A .

(117)
Bounding the expectation in (117) as in the proof of Lemma G.1 yields |(107) ´ (108)| ď ηRptq∆

ptq
A .

We now bound |(109) ´ (110)|. We therefore apply (Lemma E.16) and get:

|(109) ´ (110)| (118)

ď
ΘpηDq

L
E

„ˆ

D
D
ÿ

c“1

qSpt´T q
a,c xqvptq,Xcy

˙p´1

|e2pp´1q∆
ptq

A ´ 1| pS
ptq
a,b

ÿ

r‰b

pSptq
a,rxqvptq,Xb ´ Xry

ˇ

ˇ

ˇ

ˇ

a

ȷ

(119)

ď
ΘpηDq

L
E

„ˆ

D
D
ÿ

c“1

qSpt´T q
a,c xqvptq,Xcy

˙p´1

pS
ptq
a,b

ÿ

r‰b

pSptq
a,rxqvptq,Xb ´ Xry

ˇ

ˇ

ˇ

ˇ

a

ȷ

∆
ptq
A . (120)

where we used e2pp´1q∆
ptq

A ´ 1 ď 4pp ´ 1q∆
ptq
A in (120). We can further expand (120), keep the

terms of first order in ∆A and get |(111) ´ (112)| ď ηRptq∆
ptq
A .

We now bound |(111) ´ (112)|. Using the Lipschitz property of the softmax (Lemma E.17), we have:

|(111) ´ (112)|

ď
ηD

L
E

„ˆ

D
D
ÿ

c“1

qSpt´T q
a,c xqvptq,Xcy

˙p´1

pS
ptq
a,b

ÿ

r‰b

|e2∆
ptq

A ´ 1| ¨ qSpt´T q
a,r ¨ |xqvptq,Xb ´ Xry|

ˇ

ˇ

ˇ
a

ȷ

ď
ΘpηDq

L
E

„ˆ

D
D
ÿ

c“1

qSpt´T q
a,c xqvptq,Xcy

˙p´1

pS
ptq
a,b

ÿ

r‰b

qSpt´T q
a,r |xqvptq,Xb ´ Xry|

ˇ

ˇ

ˇ
a

ȷ

∆
ptq
A , (121)

where we used |e2∆
ptq

A ´ 1| ď 4∆
ptq
A in (121). Using the same arguments as above, we obtain

|(111) ´ (112)| ď ηRptq∆
ptq
A .

The bound on |(113)´ (114)| can be derived as above. We again use the Lipschitz property of softmax
(Lemma E.17) which leads to

|(113) ´ (114)| ď
ΘpηDq

L
E

„ˆ

D
D
ÿ

c“1

qSpt´T q
a,c xqvptq,Xcy

˙p´1

qS
pt´T q

a,b

ÿ

r‰b

qSpt´T q
a,r |xqvptq,Xb ´ Xry|

ˇ

ˇ

ˇ
a
ȷ

∆
ptq
A

ď ηRptq∆
ptq
A . (122)

Subcase 2: a P Sℓ and b P Sm with ℓ ‰ m. The proof is analogous to
the Subcase 1. We only take into account event a: "ℓ “ ℓpπpXqq and δj “ 0"
and Event e: "ℓ,m ‰ ℓpπpXqq and δj “ 0 and δs “ 0 and show that |(103) ´

(104)| ď ηR̃ptq∆
ptq
A where R̃ptq :“ Oppαptqq

`

DpαptqpΛptq ` pC ´ 1qΓptqq
˘p´1

Ξptq λ0

D `

Oppαptqq
`

DpαptqqD logpdqΞptq
˘p´1

ΞptqqD logpdq.

Putting all the pieces together. Given the value of the parameters, we know that R̃ptq ď Rptq

for all t P rT s. Therefore, Summand 3 is bounded as:

|(103) ´ (104)| ď ηRptq∆
ptq
A . (123)

Conclusion. Plugging the bounds on Summands 1, 2 and 3 in the original decomposition of
ˇ

ˇ pA
pt`1q

a,b ´ qA
pt`1´T q

a,b

ˇ

ˇ yields the bound on ∆
ptq
A . The second part of the lemma is obtained using

Lemma E.15.

37

Lemma E.15. Let N “ polypdq. Then, for all t ď T , ∆ptq
A ď 1

polypdq
.

Proof of Lemma E.15. Let Ev ą 0 such that εptq
v ď Ev for t P rT s – we proved the existence of Ev

in Lemma E.11. We bound ∆
ptq
A when t P rT ,T ` qT0s and t P rT ` qT0, T s.

First phase: t P rT ,T ` qT0s. Unraveling Lemma E.14 for t “ T , . . . ,T ` qT0 leads to:

∆
pT ` qT0q

A

ď

´

∆
pT q

A ` η qT0
`

EvpolypDqσ ` ζq

T̄ ` qT0´1
ź

τ“T

ˆ

1 `
ηDppαpτqqp

L
O

`

DpqΛptq ` pC ´ 1qqΓptqq
˘p´1

qΓptq

˙

.

(124)
We now apply Induction Hypothesis B.1 to simplify (124) and get:

∆
pT ` qT0q

A ď

´

∆
pT q

A ` η qT0
`

EvpolypDqσ ` ζq

¯

T ` qT0´1
ź

τ“T

ˆ

1 `
Opηλp0q

L
ppαptqqp

˙

. (125)

We then apply Lemma K.2 to bound the product term in (125). We obtain:

∆
pT `T0q

A ď

´

∆
pT q

A ` η qT0
`

EvpolypDqσ ` ζq

¯

ˆ

1 `
Θp1q

C2pp´2qλp´2
0

˙

ηλ
2p
0

L

ď O
´

∆
pT q

A ` η qT0
`

EvpolypDqσ ` ζq

¯

. (126)

Second phase: t P rT ` qT0, T s. Unraveling Lemma E.14 for t “ T ` qT0, . . . ,T ` qT2 and and
using pαptq ď

polylogpdq

C2λ0
for t ď T leads to:

∆
pT ` qT2q

A ď

ˆ

1 `
ηpolylogpdq

L

˙
qT2´ qT0´

∆
pT ` qT0q

A ` L ¨ polylogpdq
`

EvpolypDqσ ` ζ
˘

¯

. (127)

Using qT2 ´ qT0 ď
λp
0

ηepolyloglogpdq , we have
´

1 `
ηpolylogpdq

L

¯
qT2´ qT0

ď Op1q. We thus bound (126) as:

∆
pT ` qT2q

A ď Op∆
pT q

A q ` polylogpdq

„

Evσ `
1

?
N

ff«

1

CppαpT qqp´1epolyloglogpdq
` L

ȷ

ď O
´ ν

?
N

¯

.

(128)

We deduce that setting N “ polypdq yields ∆pT q

A “ ∆
pT ` qT2q

A ď 1{polypdq.

E.2.5 Auxiliary lemmas

Lemma E.16. Let ψ : RD Ñ R defined as ψpxq :“ pD
řD

m“1 Smxv,Xmyqp´1 where Sm “

psoftmaxpx1, . . . , xDqqm, tXmuDm“1 and v are fixed vectors and p ě 3 is an odd integer. Then, we
have:

|ψpxq ´ ψpyq| ď ψpxq
ˇ

ˇe2pp´1q maxcPrDs |xc´yc| ´ 1
ˇ

ˇ.

Proof of Lemma E.16. Let Sc “ psoftmaxpx1, . . . , xDqqc, pSc “ psoftmaxpy1, . . . , yDqqc. We
have:

|ψpxq ´ ψpyq| ď ψpxq

ˇ

ˇ

ˇ

ˇ

ˇ

«

řD
c“1 Scxv,Xcy

řD
c“1

pScxv,Xcy

ffp´1

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

(129)

ď ψpxq

ˇ

ˇ

ˇ

ˇ

ˇ

«

řD
c“1 e

xcxv,Xcy
řD

c“1 e
ycxv,Xcy

¨

řD
r“1 e

yr

řD
r“1 e

xr

ffp´1

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

, (130)

38

We finally apply the generalized mediant inequality in (130) and get:

|ψpxq ´ ψpyq| ď ψpxq

ˇ

ˇ

ˇ

´

max
cPrDs

e|xc´yc| ¨ max
rPrDs

e|xr´yr|
¯p´1

´ 1
ˇ

ˇ

ˇ

ď ψpxq
ˇ

ˇe2pp´1q maxcPrDs |xc´yc| ´ 1
ˇ

ˇ.

Lemma E.17 (Lipschitzness of Softmax). Let a, b P RD. For all i P rDs, we have:

|softmaxpaqi ´ softmaxpbqi| ď
ˇ

ˇe2maxkPrDs |bk´ak| ´ 1
ˇ

ˇ ¨ softmaxpaqi.

Proof of Lemma E.17. Let i P rDs. The difference of softmax is bounded as:

|softmaxpaqi ´ softmaxpbqi| ď
eai

řD
j“1 e

aj

¨

ˇ

ˇ

ˇ

ˇ

ebi

eai

řD
j“1 e

aj

řD
j“1 e

bj
´ 1

ˇ

ˇ

ˇ

ˇ

ď
eai

řD
j“1 e

aj

¨

ˇ

ˇ

ˇ
ebi´ai max

kPrDs
eak´bk ´ 1

ˇ

ˇ

ˇ
, (131)

where we used the mediant inequality in the last inequality of (131). Since the exponential function
is non-decreasing, we deduce:

|softmaxpaqi ´ softmaxpbqi| ď
ˇ

ˇe2maxkPrDs |bk´ak| ´ 1
ˇ

ˇ ¨ softmaxpaqi. (132)

E.2.6 Dynamics of pvptq

Lastly, since ∆
ptq
A remains small and pvptq mainly lies in spanpw˚q, we show that pαptq satisfies the

same updates as the ideal αptq (up to some constant factors).

Lemma E.18. Assume that we run GD on the empirical risk (E) for T iterations with parameters
set as in Parametrization 3.1 and the number of samples is N “ polypdq. Then, there exist times
T , pT0, pT1 ą 0 such that

1. Analog of Event I (Lemma D.2): pαpt`1q “ pαptq`Θpηqp pGptqqpppαptqqp´1 for t P rT ,T ` pT0s.

2. Analog of Event III (Lemma D.11): pαpt`1q “ pαptq ` Θpηqp pGptqqpppαptqqp´1 for t P rT `

pT1, T s.

Consequently, pαptq is non-decreasing and eventually, pαpT q “ αpT q “
polylogpdq

C2λ0
.

These three lemmas imply that at time T , the realistic iterates are very close to the ideal ones.
Therefore, they incur nearby test loss and thus the realistic model generalizes. We now proceed to the
proof of

In order to analyze the dynamics of pvptq, we first show that the gradient (with respect to pv) in the
realistic learning process is very close to the one in the semi-idealized one.

Lemma E.19. Let t P rT , T s. With high probability, we have

}∇
pv

pLppvptq, pAptqq ´ ∇
qv

qLpqvpt´T q, qApt´T qq}2 ď polypDq

´ 1
?
N

` εptq
v ` ∆

ptq
A

¯

. (133)

By choosing N “ polypdq, we have }∇
pv

pLppvptq, pAptqq ´ ∇
qv

qLpqvpt´T q, qApt´T qq}2 ď 1{polypdq.

39

Proof of Lemma E.19. We have:

}∇
pv

pLppv, pAq ´ ∇
qv

qLpqv, qAq}2 (134)

“

ˇ

ˇ

ˇ

D

N

N
ÿ

i“1

yrisS
`

´ yrisF
pAptq,pvptq pXrisq

˘

D
ÿ

j“1

σ1
´

D
ÿ

k“1

pS
ptq
j,kxpvptq,Xkrisy

¯

D
ÿ

r“1

pS
ptq
j,rxXrris,w˚y

(135)

´DE
”

yS
`

´ yF
pAptq,pvptq pXq

˘

D
ÿ

j“1

σ1
´

D
ÿ

k“1

pS
ptq
j,kxpvptq,Xky

¯

D
ÿ

r“1

pS
ptq
j,rxXr,w

˚y

ı
ˇ

ˇ

ˇ
(136)

`D

ˇ

ˇ

ˇ

ˇ

ˇ

E
”

yS
`

´ yF
pAptq,pvptq pXq

˘

D
ÿ

j“1

σ1
´

D
ÿ

k“1

pS
ptq
j,kxpvptq,Xky

¯

D
ÿ

r“1

pS
ptq
j,rxXr,w

˚y

ı

(137)

´ E
”

yS
`

´ yF
pAptq,qvptq pXq

˘

D
ÿ

j“1

σ1
´

D
ÿ

k“1

pS
ptq
j,kxqvptq,Xky

¯

D
ÿ

r“1

pS
ptq
j,rxXr,w

˚y

ı
ˇ

ˇ

ˇ
(138)

`D
ˇ

ˇ

ˇ
E

”

yS
`

´ yF
pAptq,qvptq pXq

˘

D
ÿ

j“1

σ1
´

D
ÿ

k“1

pS
ptq
j,kxqvptq,Xky

¯

D
ÿ

r“1

pS
ptq
j,rxXr,w

˚y

ı

(139)

´ E
”

yS
`

´ yF
qAptq,qvptq pXq

˘

D
ÿ

j“1

σ1
´

D
ÿ

k“1

qS
ptq
j,kxqvptq,Xky

¯

D
ÿ

r“1

qS
ptq
j,rxXr,w

˚y

ı
ˇ

ˇ

ˇ
(140)

` εptq
v

ˇ

ˇ

ˇ

D

N

N
ÿ

i“1

yrisS
`

´ yrisF
pAptq,pvptq pXrisq

˘

D
ÿ

j“1

σ1
´

D
ÿ

k“1

pS
ptq
j,kxpvptq,Xkrisy

¯

D
ÿ

r“1

pS
ptq
j,rxXrris,uptqy

ˇ

ˇ

ˇ
.

(141)
We bound each of the terms above using concentration or lipschitz inequalities. Using the same
arguments as in the proof of Lemma E.10, we have |(134) ´ (135)| ď polypDq{

?
N and |(137) ´

(138)| ď polypDqε
ptq
v . Using the same steps as in the proof of Lemma E.14, we have |(139)´(140)| ď

polypDq∆
ptq
A . Lastly, |(141)| ď polypDqε

ptq
v . Summing up all these terms yields the aimed result.

Lemma E.19 shows that we can use the gradient from the semi-idealized process to analyze the
dynamics of pαptq in the real process. Therefore, we can derive similar updates for pαptq as in
Lemma D.2, Lemma D.8 and Lemma D.11.

Lemma E.20. Let qT0 “ Θ
´

1
ηCppαpT qqp´1

¯

. Therefore, pαptq is updated as

pαpt`1q “ pαptq ` ΘpηCqp qGptqqpppαptqqp´1.

Consequently, pαptq is non-decreasing and after qT0 iterations, we have pαptq ě
Ωp1q

C2λ0
for t ě qT0.

Lemma E.21. Let qT1 “ qT0 ` Θ
´

λp
0

ηepolyloglogpdq

¯

. For all t P r qT1, T s, we have qΓptq ě
Ωpλ0q

D .

Lemma E.22. Let qT1 “ qT0 ` Θ
´

λp
0

ηepolyloglogpdq

¯

and t P r qT1, T s. pαptq updates as

pαpt`1q “ pαptq ` ΘpηCqp qGptqqpppαptqqp´1. (142)

Consequently, pαptq is non-decreasing and eventually pαpT q “
polylogpdq

C2λ0
.

Auxiliary lemma. The following lemma is useful to prove Lemma E.10 and Lemma E.14.

Lemma E.23. The time at which pαptq stops increasing is qT2 “ qT1 ` Θ
´

λp´2
0

ηpolylogpdq

¯

.

Proof of Lemma E.23. The result is obtained by applying Lemma K.1 to (142). We have:

qT2 “ qT1 `
3pλ0qp´2

ηpolylogpdqepolyloglogpdq
`

2pλp0
epolyloglogpdq

log logpdq.

40

E.2.7 The realistic model fits the labeling function

Lemma E.24. In the realistic case, the model fits the labeling function i.e.
PDrf˚pXqF

pApT q,pvpT q pXq ą 0s ě 1 ´ op1q. (143)

Proof of Lemma E.24. We bound the population risk Lp pApT q, pvpT qq. We have:

Lp pApT q, pvpT qq ď

ˇ

ˇ

ˇ
Lp pApT q, pvpT qq ´ Lp qApT q, qvpT qq

ˇ

ˇ

ˇ
` Lp qApT q, qvpT qq. (144)

Using Lemma E.25, we have Lp qApT q, qvpT qq ď 1{polypdq. We now bound the first summand in (144)
using the 1-Lipschitzness of the logistic function and get:

ˇ

ˇ

ˇ
Lp pApT q, pvpT qq ´ Lp qApT q, qvpT qq

ˇ

ˇ

ˇ
ď E

”

ˇ

ˇF
pApT q,pvpT q pXq ´ F

qApT q,qvpT q pXq
ˇ

ˇ

ı

(145)

Using Lemma E.26, we have E
”

ˇ

ˇF
pApT q,pvpT q pXq ´ F

qApT q,qvpT q pXq
ˇ

ˇ

ı

ď 1{polypdq. Therefore, we

deduce that Lp pApT q, pvpT qq ď 1{polypdq. Since the 0-1 loss is a convex surrogate, we have

PpX,yq„DryF
pApT q,pvpT q pXq ă 0s ď Lp pApT q, pvpT qq ď 1{polypdq. (146)

We can further expand (146) as in the proof of Lemma D.15 and deduce the aimed result.

To prove Lemma E.24, we use the following auxiliary lemma.
Lemma E.25. After T iterations, the population risk in the semi-idealized case converges i.e.
qLp qApT q, qvpT qq ď op1q.

Proof of Lemma E.25. The proof is similar to the one of Lemma D.15.

Lemma E.26. For all X sampled from D, we have
ˇ

ˇF
pApT q,pvpT q pXq ´ F

qApT q,qvpT q pXq
ˇ

ˇ ď 1{polypdq.

Proof of Lemma E.26. We have:
ˇ

ˇF
pApT q,pvpT q pXq ´ FQpT q,qvpT q pXq

ˇ

ˇ ď
ˇ

ˇF
pApT q,pvpT q pXq ´ F

pApT q,qvpT q pXq
ˇ

ˇ (147)

`
ˇ

ˇF
pApT q,qvpT q pXq ´ F

qApT q,qvpT q pXq
ˇ

ˇ. (148)

We now separately bound (147) and (148).

Bound on (147). Since x ÞÑ xp ` νx is Lipschitz on a bounded domain, we have:

(147) ď

D
ÿ

m“1

σ1
´

D
D
ÿ

r“1

pSpT q
m,r|xpvpT q,Xry|

¯

D
D
ÿ

r“1

pSpT q
m,r|xpvpT q ´ qvpT q,Xry| (149)

ď εpT q
v

D
ÿ

m“1

σ1
´

D
D
ÿ

r“1

pSpT q
m,r|xpvpT q,Xry|

¯

D
D
ÿ

r“1

pSpT q
m,r|xuptq,Xry|, (150)

since xpvpT q,w˚y “ xqvpT q,w˚y. Using Cauchy-Schwarz inequality, (149) simplifies as:

(147) ď

D
ÿ

m“1

σ1
´

D
D
ÿ

r“1

pSpT q
m,r|xpvpT q,Xry|

¯p´1

D
D
ÿ

r“1

pSpT q
m,rε

pT q
v ď polypDqεpT q

v . (151)

Using Lemma E.10, we conclude that (147) ď 1{polypdq.

Bound on (148). We again use the Lipschitzness of the power function and get:

(148) ď

D
ÿ

m“1

σ1
´

D
D
ÿ

r“1

maxt qSpT q
m,r,

pSpT q
m,ru|xvpT q,Xry|

¯

D
D
ÿ

r“1

| pSpT q
m,r ´ qSpT q

m,r| ¨ |xpvpT q,Xry|.

(152)

We apply Lemma E.17 in (152) to get (148) ď polypDq∆
pT q

A . Finally, we apply Lemma E.14 to get
(148) ď 1{polypdq.

41

F Transfer Learning

In this section, we show that a transformer that has been pre-trained on a structured dataset require a
few samples to generalize in a new dataset sharing the same structure.

Theorem 5.1. Let pA be the attention matrix obtained after pre-training as in subsection 4.2. Assume
that we run GD for T iterations on (rE) to fine-tune the value vector. Using rN ď polylogpDq samples,
the model (T) transfers to rD i.e. P

rDrf˚pXqF
pA,rvpT q pXq ą 0s ě 1 ´ op1q.

Proof of Theorem 5.1. Actually, even one step of the update using normalized gradient descent on
v can already achieve test accuracy ě 1 ´ op1q. We know that for a datum pX, yq, the gradient of
LpXq with respect to v is

∇vLpXq “ ´ySp´yF pXqq

D
ÿ

m“1

σ1pxOptq
m , rvptqyqOptq

m (153)

Since rvp0q “ 0,we have F
rvp0q pXq “ 0 and σ1pxO

p0q
m , rvp0qyq “ ν. Thus, the gradient (153) simplifies

to

∇vLpXq “ ´
νy

2

D
ÿ

j“1

Xj

D
ÿ

m“1

pS
ptq
m,j (154)

By symmetry of the pS
ptq
j,m , we know that

ˇ

ˇ

ˇ

D
ÿ

m“1

pS
ptq
m,j ´D

ˇ

ˇ

ˇ
ď

D

polypdq
, (155)

where 1
polypdq

comes from the εQ part in the previous section. Moreover, since the noise and feature
noise has mean zero independent of y, we know that there exists some value c0 ą 0 (roughly equal to
αDC)) such that:

Er∇vLpXqs “ c0 rw˚. (156)

Now, by standard concentration inequality, we know that for N i.i.d. samples Xris, yris, with high
probability

∇0 :“
N
ÿ

i“1

∇vLpXrisq “ c0 rw˚ ` ε0 rw˚ ` χ0, (157)

where ε0 comes from the feature noise

|ε0| ď
c0qD logpdq

?
N

, (158)

and χ0 comes from the noise:

}χ0}2 ď
c0σ

?
d

?
D

?
N

. (159)

Therefore, if we update using normalized GD:

rvp1q “ rvp0q `
∇0

}∇0}2
(160)

we have that:

rvp1q “ c1 rw˚ ` χ1, (161)

where χ1 K rw˚, }χ1}2 “ Op1q and c1 ě Ω̃p1q{
?
D. Now, for a new datum Xnew with noises

tξnewi uDi“1, we know that w.h.p

|xξnewi , rvp1qy| ď
Õp1q
?
d
, |x rw˚, rvp1qy| ě

Ω̃p1q
?
D
. (162)

42

We can prove the test accuracy is small using the same proof as in Lemma D.15, where we show that:

yσpxrvp1q,Op1q
m yq ě 0, (163)

for m P SℓpXq and it dominates the other yσpxrvp1q,O
p1q

j yq for j P Sℓ with ℓ ‰ ℓpXq. Therefore, we
prove that P

rDryF pXq ą 0s ě 1 ´ op1q which implies the aimed result.

Theorem 5.2. Let A : RdˆD Ñ t´1, 1u be a binary classification algorithm without patch associa-
tion knowledge. Then, it needs DΩp1q training samples to get test error ď op1q on rD.

Proof of Theorem 5.2. Let A be an algorithm. Assume that at training time the algorithm A has
access to Dop1q training data, Since each input X is made of D patches, this means that there exist at
least Ωp1q fraction of k P rDs such that A has not seen training samples with ℓpXq “ k. Consider
the following two distributions over t´1, 0, 1um:

1. D1: Sample z P t0, 1um where each zi i.i.d. 1 w.p. q{2, ´1 w.p. q{2 and 0 otherwise.

2. D2: Sample a set S uniformly at random from rms of size C, set all zi “ 1 for i P S, and
sample other zj i.i.d. 1 w.p. q{2, ´1 w.p. q{2 and 0 otherwise.

We can easily see that as long as qm “ polypCq, then

TVpD1,D2q “ op1q

This implies that A must have bad generalization error (Ωp1q) on D̃.

G Gradient descent updates in the idealized process

In this section, we derive the gradient descent updates of Ai,j in the idealized learning process.

G.1 Indices in the same set: i, j P Sℓ

Lemma G.1. Let T ą 0 be the time where the population loss is at most op1q and t P r0, T s. Then,
γptq satisfies the update

γpt`1q “ γptq ` ηΘpCqαptq
´

Dαptq
“

Λptq ` pC ´ 1qΓptq
‰

¯p´1

Γptq.

Proof of Lemma G.1. Let ℓ P rLs and i, j P Sℓ with i ‰ j. The main idea of the proof is to bound
the gradient of LpXq with respect to Ai,j . This gradient is given by Lemma H.2 and is made of two
terms: the σ1 term and the sum outside σ1. We distinguish the following cases and bound these two
terms.

1. ℓ “““ ℓpppXqqq. We first bound the outside sum. Using Lemma K.3, we have
ˇ

ˇ

ˇ

ÿ

h‰ℓpXq

ÿ

rPSh

p1 ´ yδrq ´ pD ´ Cq

ˇ

ˇ

ˇ
ď

ÿ

h‰ℓpXq

ÿ

rPSh

|δr| ď qD logpdq. (164)

Since pD ´ Cq{2 ´ qD logpdq ě 0, we rewrite (164) as:

1

2
pD ´ Cq ď

ÿ

h‰ℓpXq

ÿ

rPSh

p1 ´ yδrq ď 2pD ´ Cq. (165)

Regarding the sum inside σ1, we use Lemma G.3 which shows:

Λptq ` pC ´ 1qΓptq ` Ξptq
ÿ

h‰ℓpXq

ÿ

rPSh

δh,r “ Θp1q

´

Λptq ` pC ´ 1qΓptq
¯

. (166)

43

By using (165) and (166), we finally obtain:

´
BLpXq

BAi,j
“ ΘpDαptqqSp´yF pXqq

´

DαptqpΛptq ` pC ´ 1qΓptqq

¯p´1

ΓptqpD ´ CqΞptq. (167)

2. ℓ ‰‰‰ ℓpppXqqq and δs “““ 0 for all s PPP Sℓ. We first bound the outside sum. Since δs “ 0, the only
non-zero term is the one with factor Ξptq. Using triangle inequality, we have:

Ξptq
ˇ

ˇ

ˇ
Cy `

ÿ

h‰tℓpXq,ℓu

ÿ

rPSh

δr

ˇ

ˇ

ˇ
ď Ξptq

ˆ

C `
ÿ

h‰tℓpXq,ℓu

ÿ

rPSh

|δr|

˙

“ ΞptqκpXq. (168)

We now bound the sum inside σ1. This sum is actually equal to the outside sum and we can therefore
use the bound (168). Therefore, the overall gradient is bounded as:

ˇ

ˇ

ˇ

BLpXq

BAi,j

ˇ

ˇ

ˇ
ď ΘpDαptqqSp´yF pXqq

´

DΞptqαptqκpXq

¯p´1

ΓptqΞptqκpXq. (169)

3. ℓ ‰‰‰ ℓpppXqqq and at least one δs ‰‰‰ 0 and δi “““ 0. We first bound the outside sum. Using
Lemma K.3 and Λptq ` Γptq ` Ξptq “ 1, we have:

αptq

ˇ

ˇ

ˇ

ˇ

Λptqδj ` Γptq
ÿ

rPSℓztiu

pδj ´ δrq ` ΞptqCpδj ´ yq ` Ξptq
ÿ

h‰tℓpXq,ℓu

ÿ

mPSh

pδj ´ δmq

ˇ

ˇ

ˇ

ˇ

ďαptq
”

pC ´ 1qΓptq ` Ξptq pC ` ΘpqDq logpdqq ` 1δj‰0

ı

.

(170)

We lastly apply Induction Hypothesis B.1 to show that (170) is less or equal to Θpαptqq. We now
bound the sum inside σ1.

αptq

ˇ

ˇ

ˇ

ˇ

Γptq
ÿ

rPSℓzti,ju

δr ` Ξptq
´

Cy `
ÿ

h‰tℓpXq,ℓu

ÿ

mPSh

δm

¯

ˇ

ˇ

ˇ

ˇ

ď αptq

ˆ

Γptq
ÿ

rPSℓzti,ju

|δr| ` ΞptqκpXq

˙

ď αptq
´

pC ´ 1qΓptq ` ΞptqκpXq

¯

.

(171)
The overall bound on the derivative is:

ˇ

ˇ

ˇ

BLpXq

BAi,j

ˇ

ˇ

ˇ
ď ΘpDαptqqSp´yF pXqq

´

Dαptq
`

pC ´ 1qΓptq ` ΞptqκpXq
˘

¯p´1

Γptq. (172)

4. ℓ ‰‰‰ ℓpppXqqq where δs ‰‰‰ 0 for all s. We first bound the outside sum as follows.

αptq

ˇ

ˇ

ˇ

ˇ

Λptqpδj ´ δiq ` Γptq
ÿ

rPSℓzti,ju

pδj ´ δrq ` Ξptq
”

Cpδj ´ yq `
ÿ

h‰tℓpXq,ℓu

ÿ

mPSh

pδj ´ δmq

ı

ˇ

ˇ

ˇ

ˇ

ď αptqpΛptq ` pC ´ 1qΓptq ` ΞptqκpXq ` 1δj‰0q.
(173)

We now bound the sum inside σ1.

αptq

ˇ

ˇ

ˇ

ˇ

Λptqδi ` Γptq
ÿ

rPSℓzti,ju

δr ` Ξptq
”

Cy `
ÿ

h‰tℓpXq,ℓu

ÿ

mPSh

δm

ı

ˇ

ˇ

ˇ

ˇ

ďαptq
´

Λptq ` pC ´ 1qΓptq ` ΞptqκpXq

¯

.

(174)

We lastly apply Lemma G.3 to show that (174) is bounded by ΘpαptqqpΛptq `pC´1qΓptqq. Therefore,
the overall gradient is bounded as

ˇ

ˇ

ˇ

BLpXq

BAi,j

ˇ

ˇ

ˇ
ď ΘpDαptqqSp´yF pXqq

´

DαptqppC ´ 1qΓptq ` Λptqq

¯p´1

Γptq¨

´

Λptq ` pC ´ 1qΓptq ` ΞptqκpXq ` 1δj‰0

¯

.

(175)

44

Putting all the pieces together. We now bound the derivative of the population loss. Using Tower
property and Lemma I.1, we have:

EX

„

BLpXq

BAi,j

ȷ

“ EX

„

BLpπpXqq

BAi,j

ȷ

“ EX

„

Eπ1,π2

”

BLpπpXqq

BAi,j

ˇ

ˇ

ˇ
X

ı

ȷ

. (176)

For a fixed X , we now bound the derivative of the loss evaluated in X . For i, j P Sℓ, we distinguish
the four possible events depending on the randomness of π.

– Event a: "ℓ “ ℓpπpXqq" occurs with probability 1{L.

– Event b: "ℓ ‰ ℓpπpXqq and δs “ 0 for all s P Sℓ" occurs with probability p1´1{Lqp1´qqC .

– Event ck: "ℓ ‰ ℓpπpXqq and #ts : δs ‰ 0u “ k for 1 ď k ď C ´ 1 and δi “ 0" occurs
with probability p1 ´ 1{Lq

`

C´1
k

˘

qkp1 ´ qqC´k.

– Event d: "ℓ ‰ ℓpπpXqq and δs ‰ 0 for all s" occurs with probability p1 ´ 1{Lq ¨ qC .

Therefore, the derivative of the loss in X is:

Eπ1,π2

”

BLpπpXqq

BAi,j

ˇ

ˇ

ˇ
X

ı

“
1

L
Eπ1,π2

”

BLpπpXqq

BAi,j

ˇ

ˇ

ˇ
X, a

ı

`

ˆ

1 ´
1

L

˙

p1 ´ qqCEπ1,π2

”

BLpπpXqq

BAi,j

ˇ

ˇ

ˇ
X,b

ı

`

ˆ

1 ´
1

L

˙ C´1
ÿ

k“1

ˆ

C ´ 1

k

˙

qkp1 ´ qqC´kEπ1,π2

”

BLpπpXqq

BAi,j

ˇ

ˇ

ˇ
X, ck

ı

`

ˆ

1 ´
1

L

˙

qCEπ1,π2

”

BLpπpXqq

BAi,j

ˇ

ˇ

ˇ
X,d

ı

.

(177)
Event a is the event that is the most likely to happen. Therefore, we only take into account
Eπ1,π2

”

BLpπpXqq

BAi,j

ˇ

ˇ

ˇ
a

ı

in (177) and obtain:

EX

„

BLpXq

BAi,j

ȷ

“
ΘpDαptqq

L
EX rSp´yF pXqqs

´

DαptqpΛptq ` pC ´ 1qΓptqqq

¯p´1

Γptq. (178)

Since the population loss is a Ωp1q for t ď T , this implies that EX rSp´yF pXqqs “ Θp1q

(Lemma D.10). We thus plug (178) in the update of γptq to obtain the desired result.

Corollary G.1. Let T ą 0 be the time where the population loss is op1q and t ď T. Let Gptq :“
DpΛptq ` pC ´ 1qΓptqq. The update of γptq satisfies:

γpt`1q “ γptq ` ΘpCηqpαptqqpΓptqpGptqqp´1.

Proof of Corollary G.1. Lemma G.1 provides the update rule of γptq.

γpt`1q “ γptq ` ηΘpCqpαptqqpΓptqpGptqqp´1.

G.2 Update for i P Sℓ and j P Sm

Lemma G.2. Let T ą 0 be the time where the population loss is at most op1q and t P r0, T s. Then,
ρptq satisfies the update

ˇ

ˇ

ˇ

ˇ

ρpt`1q ´ ρptq

η

ˇ

ˇ

ˇ

ˇ

ď ΘpC2αptqq

´

DαptqpΛptq ` pC ´ 1qΓptqq

¯p´1

Ξptqλ0
D

` Θpαptqq

´

DαptqqD logpdqΞptq
¯p´1

ΞptqqD logpdq.

45

Proof of Lemma G.1. Let ℓ,m P rLs such that ℓ ‰ m and i P Sℓ, j P Sm. The main idea of the
proof is to bound the gradient of LpXq with respect to Ai,j . This gradient is given by Lemma H.2
and is made of two terms: the σ1 term and the sum outside σ1. We distinguish the following cases and
bound these two terms.

1. ℓ “““ ℓpppXqqq and δj “““ 0. We first bound the outside sum. We apply Lemma G.3 to obtain:

αptq
ˇ

ˇ

ˇ

`

Λptq ` pC ´ 1qΓptq
˘

y ` Ξptq
ÿ

h‰ℓpXq

ÿ

rPSh

δr

ˇ

ˇ

ˇ
ď 2αptq

´

Λptq ` pC ´ 1qΓptq
¯

. (179)

We now bound the sum inside σ1. This sum is actually equal to the outside sum and we can therefore
use the bound (179). Therefore, the overall gradient is bounded as:
ˇ

ˇ

ˇ

ˇ

BLpXq

BAi,j

ˇ

ˇ

ˇ

ˇ

ď ΘpDαptqqSp´yF pXqq

´

DαptqpΛptq ` pC ´ 1qΓptqq

¯p´1

ΞptqpΛptq ` pC ´ 1qΓptqq.

(180)

2. ℓ “““ ℓpppXqqq and δj ‰‰‰ 0. We first bound the outside sum. We successively apply Λptq ` Γptq `

Ξptq “ 1, Lemma K.3 and Induction Hypothesis B.1 to obtain:

αptq

ˇ

ˇ

ˇ

ˇ

Λptqpδj ´ yq ` pC ´ 1qΓptqpδj ´ yq ` Ξptq
ÿ

h‰ℓpXq

ÿ

rPSh

pδj ´ δrq

ˇ

ˇ

ˇ

ˇ

ď αptq

„

Λptq ` pC ´ 1qΓptq ` Ξptq
ÿ

h‰ℓpXq

ÿ

rPSh

|δr| ` 1δj‰0

ȷ

ď αptq
”

Λptq ` pC ´ 1qΓptq ` ΞptqqD logpdq ` 1δj‰0

ı

ď αptq

„

epolyloglogpdq ` λ0
D

` Θpq logpdqq ` 1δj‰0

ȷ

“ Θpαptqq. (181)

We now bound the sum inside σ1. We successively apply Lemma K.3, triangle inequality and
Lemma G.3 to obtain:

αptq

ˇ

ˇ

ˇ

ˇ

ypΛptq ` pC ´ 1qΓptqq ` Ξptq
ÿ

h‰ℓpXq

ÿ

rPSh

δr

ˇ

ˇ

ˇ

ˇ

ď 2αptqpΛptq ` pC ´ 1qΓptqq. (182)

Thus, we use (181) and (182) to obtain a bound on the derivative.
ˇ

ˇ

ˇ

ˇ

BLpXq

BAi,j

ˇ

ˇ

ˇ

ˇ

ď ΘpDαptqqSp´yF pXqq

´

DαptqpΛptq ` pC ´ 1qΓptqq

¯p´1

Ξptq. (183)

3. ℓ ‰‰‰ ℓpppXqqq and δs “““ 0 for all s and m “““ ℓpppXqqq. We first bound the outside sum. Since Λptq `

pC ´ 1qΓptq ` pD ´ CqΞptq “ 1, we have:

Ξptq

ˇ

ˇ

ˇ

ˇ

y
´

Λptq ` pC ´ 1qΓptq
¯

` Ξptq
ÿ

h‰tℓpXq,ℓu

ÿ

rPSh

py ´ δrq

ˇ

ˇ

ˇ

ˇ

ď Ξptq
´

ΞptqκpXq ` 1m“ℓpXq

¯

. (184)

We now bound the sum inside σ1.

Ξptq

ˇ

ˇ

ˇ

ˇ

y `
ÿ

h‰tℓpXq,ℓu

ÿ

rPSh

δrpXq

ˇ

ˇ

ˇ

ˇ

ď ΞptqκpXq. (185)

Using (184) and (185), we obtain a bound on the derivative.
ˇ

ˇ

ˇ

ˇ

BLpXq

BAi,j

ˇ

ˇ

ˇ

ˇ

ď ΘpDαptqqSp´yF pXqq

´

DαptqκpXqΞptq
¯p´1

Ξptq
´

ΞptqκpXq ` 1m“ℓpXq

¯

. (186)

46

4. ℓ ‰‰‰ ℓpppXqqq and δs ‰‰‰ 0 for some s and m “““ ℓpppXqqq. We first bound the outside sum. We apply
Λptq ` pC ´ 1qΓptq ` pD ´ CqΞptq “ 1 and Lemma G.4 to get:

Ξptq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Λptqpy ´ δiq ` Γptq
ÿ

rPSℓztiu

py ´ δrq ` Ξptq
ÿ

h‰tℓpXq,ℓu

ÿ

rPSh

py ´ δrq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď Ξptq

¨

˝Λptq ` pC ´ 1qΓptq ` Ξptq
ÿ

h‰tℓpXq,ℓu

ÿ

rPSh

|δr| ` 1m“ℓpXq

˛

‚

ď ΘpΞptqq. (187)

We now bound the sum inside σ1. We apply Lemma G.3 to obtain:
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ΛptqδipXq ` Γptq
ÿ

rPSℓztiu

δrpXq ` Ξptq

¨

˝Cy `
ÿ

hPrLsztℓpXq,ℓu

ÿ

rPSh

δh,rpXq

˛

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď Λptq ` pC ´ 1qΓptq ` ΞptqκpXq

ď 2
´

Λptq ` pC ´ 1qΓptq
¯

.

(188)

We combine (187) and (188) and obtain:
ˇ

ˇ

ˇ

ˇ

BLpXq

BAi,j

ˇ

ˇ

ˇ

ˇ

ď ΘpDαptqqSp´yF pXqq

´

Dαptq
`

Λptq ` pC ´ 1qΓptq
˘

¯p´1

Ξptq. (189)

5. ℓ,m ‰‰‰ ℓpppXqqq and δs “““ 0 for all s and δj “““ 0. We first bound the outside sum.

Ξptq
ˇ

ˇ

ˇ
Cy `

ÿ

h‰tℓ,ℓpXqu

ÿ

rPSh

δr

ˇ

ˇ

ˇ
ď ΞptqκpXq. (190)

We now bound the sum inside σ1. This sum is actually equal to the outside sum outside and we can
therefore use the bound (190). Thus, the derivative is bounded as:

ˇ

ˇ

ˇ

ˇ

BLpXq

BAi,j

ˇ

ˇ

ˇ

ˇ

ď ΘpDαptqqSp´yF pXqq

´

DαptqκpXqΞptq
¯p´1

pΞptqq2κpXq. (191)

6. ℓ,m ‰‰‰ ℓpppXqqq and δs ‰‰‰ 0 for some s and δj “““ 0. We first bound the outside sum. We apply
Lemma G.3 and obtain:

αptq
ˇ

ˇ

ˇ
Λptqδi ` Γptq

ÿ

rPSℓztiu

δr ` Ξptq
“

Cy `
ÿ

h‰tℓ,ℓpXqu

ÿ

rPSh

δr
‰

ˇ

ˇ

ˇ

ď αptq
´

Λptq ` pC ´ 1qΓptq ` Ξptq
“

C `
ÿ

h‰tℓ,ℓpXqu

ÿ

rPSh

|δr|
‰

¯

ď 2αptq
´

Λptq ` pC ´ 1qΓptq
¯

.

(192)

We now bound the sum inside the power term. This sum is actually equal to the sum outside the
power term and we can therefore use the bound (192). Thus, the derivative is bounded as:

ˇ

ˇ

ˇ

ˇ

BLpXq

BAi,j

ˇ

ˇ

ˇ

ˇ

ď ΘpDαptqqSp´yF pXqq

´

DαptqpΛptq ` pC ´ 1qΓptqq

¯p´1

ΞptqpΛptq ` pC ´ 1qΓptqq.

(193)

7. ℓ,m ‰‰‰ ℓpppXqqq and δs “““ 0 for all s and δj ‰‰‰ 0. We first bound the outside sum.

Ξptq

ˇ

ˇ

ˇ

ˇ

Λptqδj ` pC ´ 1qΓptqδj ` Ξptq
”

Cpδj ´ yq `
ÿ

h‰tℓpXq,ℓu

ÿ

rPSh

pδj ´ δrq

ı

ˇ

ˇ

ˇ

ˇ

ďΞptq
´

ΞptqκpXq ` 1δj‰0

¯

.

(194)

47

We now bound the sum inside σ1.

Ξptq
ˇ

ˇ

ˇ
Cy `

ÿ

h‰tℓpXq,ℓu

ÿ

rPSh

δr

ˇ

ˇ

ˇ
ď ΞptqκpXq. (195)

Using (194) and (195), the bound on the derivative is:
ˇ

ˇ

ˇ

BLpXq

BAi,j

ˇ

ˇ

ˇ
ď ΘpDαptqqSp´yF pXqq

´

DαptqΞptqκpXq

¯p´1

Ξptq
´

ΞptqκpXq ` 1δj‰0

¯

. (196)

8. ℓ,m ‰‰‰ ℓpppXqqq and δspppXqqq ‰‰‰ 0 for some s and δj ‰‰‰ 0: We first bound the outside sum. We
apply Lemma G.4 to get:

Ξptq

ˇ

ˇ

ˇ

ˇ

Λptqpδj ´ δiq ` Γptq
ÿ

rPSℓztiu

pδj ´ δrq ` Ξptq
”

Cpδj ´ yq `
ÿ

h‰tℓpXq,ℓu

ÿ

rPSh

pδj ´ δrq

ı

ˇ

ˇ

ˇ

ˇ

ď Ξptq
´

Λptq ` pC ´ 1qΓptq ` ΞptqκpXq ` 1δj‰0

¯

ď ΘpΞptqq.
(197)

We now bound the sum inside the power term. We apply Lemma G.3 and get:
ˇ

ˇ

ˇ

ˇ

Λptqδi ` Γptq
ÿ

rPSℓztiu

δr ` Ξptq
´

Cy `
ÿ

h‰tℓpXq,ℓu

ÿ

rPSh

δr

¯

ˇ

ˇ

ˇ

ˇ

ď Λptq ` pC ´ 1qΓptq ` ΞptqκpXq

ď Θ
´

Λptq ` pC ´ 1qΓptq
¯

.

(198)
We plug (197) and (198) to obtain the derivative.

ˇ

ˇ

ˇ

ˇ

BLpXq

BAi,j

ˇ

ˇ

ˇ

ˇ

ď ΘpDαptqqSp´yF pXqq

´

Dαptq
`

Λptq ` pC ´ 1qΓptq
˘

¯p´1

Ξptq. (199)

Putting all the pieces together. We now bound the derivative of the population loss. Using Tower
property and and Lemma I.1, we have:

EX

„

BLpXq

BAi,j

ȷ

“ EX

„

Eπ1,π2

„

BLpπpXqq

BAi,j

ˇ

ˇ

ˇ

ˇ

X

ȷȷ

. (200)

For a fixed X , we now bound the derivative of the loss evaluated in X . For i P Sℓ and j P Sm, we
distinguish the eight possible events depending on the randomness of π.

– Event a: "ℓ “ ℓpπpXqq and δj “ 0" occurs with probability p1 ´ qq{L.

– Event b: "ℓ “ ℓpπpXqq and δj ‰ 0" occurs with probability q{L.

– Event c: "ℓ ‰ ℓpπpXqq and δs “ 0 for all s and m “ ℓpπpXqq" occurs with probability
p1 ´ qqC{L.

– Event dk: "ℓ ‰ ℓpπpXqq and #ts : δs ‰ 0u “ k for 1 ď k ď C and m “ ℓpπpXqq"
occurs with probability

`

C
k

˘

qkp1 ´ qqC´k{L.

– Event e: "ℓ,m ‰ ℓpπpXqq and δj “ 0 and δs “ 0 for all s" occurs with probability
p1 ´ 2{Lqp1 ´ qqC`1.

– Event fk: "ℓ,m ‰ ℓpπpXqq and #ts : δs ‰ 0u “ k for 1 ď k ď C and δj “ 0" occurs
with probability p1 ´ 2{Lqp1 ´ qq

`

C
k

˘

qkp1 ´ qqC´k.

– Event g: "ℓ,m ‰ ℓpπpXqq and δs “ 0 for all s and δj ‰ 0" occurs with probability
p1 ´ 2{Lqp1 ´ qqCq.

– Event hk: "ℓ,m ‰ ℓpπpXqq and #ts : δs ‰ 0u “ k for 0 ď k ď C and δj ‰ 0" occurs
with probability p1 ´ 2{Lqq

`

C
k

˘

qkp1 ´ qqC´k

48

Since events a and e are the ones with highest probabilities, the derivative of the loss is bounded by
the expectations conditioned on these events. We have:

Eπ1,π2

”
ˇ

ˇ

ˇ

BLpπpXqq

BAi,j

ˇ

ˇ

ˇ

ı

ď
ΘpDαptqq

L
ΞptqSp´yF pXqq

`

DαptqpΛptq ` pC ´ 1qΓptqq
˘p´1

pΛptq ` pC ´ 1qΓptqq

` ΘpDαptqqΞptqSp´yF pXqqEπ1,π2

“`

DαptqκpπpXqqΞptq
˘p´1

ΞptqκpπpXqq

ˇ

ˇ

ˇ
e

ı

.

(201)

We now apply Induction Hypothesis B.1 and Lemma K.3 and finally obtain:

EX

”
ˇ

ˇ

ˇ

BLpXq

BAi,j

ˇ

ˇ

ˇ

ı

ď ΘpC2αptqqEX rSp´yF pXqqs
`

DαptqpΛptq ` pC ´ 1qΓptqq
˘p´1

Ξptqλ0
D

` ΘpαptqqEX rSp´yF pXqqs
`

DαptqqD logpdqΞptq
˘p´1

ΞptqqD logpdq.

(202)

Since EX rSp´yF pXqqs ď 1, we thus plug (202) in the update of ρptq to obtain the aimed result.

Corollary G.2. Let T ą 0 be the time where the population loss is op1q and t ď T. The update of
ρptq satisfies:

|ρpt`1q| ď |ρptq| ` η ¨ polylogpdqpαptqqp
ˆ

1

D
`
λ0
D

ΞptqpGptqqp´1

˙

.

Proof of Corollary G.2. Using Lemma G.2, C “ polylogpdq and qD ď 1, ρptq’s update is:

|ρpt`1q| ď |ρptq| ` ηpαptqqppolylogpdq

ˆ

pDΞptqqp´1Ξptq `
λ0
D

pGptqqp´1Ξptq

˙

. (203)

Lastly, we apply Induction Hypothesis B.1 to replace Ξptq by its value in (203) and thus obtain the
aimed result.

G.3 Auxiliary lemmas

Lemma G.3. Let t ą 0. In the idealized learning process, with high probability, we have:

Λptq ` pC ´ 1qΓptq ` yΞptq
ÿ

ℓ‰ℓpXq

ÿ

rPSℓ

δr “ Θ
`

Λptq ` pC ´ 1qΓptq
˘

.

Proof of Lemma G.3. We first bound the sum with factor Ξptq. Using Induction Hypothesis B.1 and
Lemma K.3, we have:

ˇ

ˇ

ˇ
yΞptq

ÿ

ℓ‰ℓpXq

ÿ

rPSℓ

δr

ˇ

ˇ

ˇ
ď Θpqq logpdq “

1

D
polypCq logpdq. (204)

We now bound Λptq ` pC ´ 1qΓptq. Using Induction Hypothesis B.1, we have:

1

D

´

epolyloglogpdq ` ΩpCq

¯

ď pΛptq ` pC ´ 1qΓptqq ď
1

D

´

epolyloglogpdq ` λ0

¯

. (205)

Since polypCq logpdq ď epolyloglogpdq{2, we combine (204) and (205) to get the aimed result.

Lemma G.4. Let t ą 0. In the idealized learning process, we have with high probability:

Λptq ` pC ´ 1qΓptq ` Ξptq
ÿ

h‰ℓpXq

ÿ

rPSh

|δr| ď Θp1q.

49

Proof of Lemma G.4. We successively apply Lemma K.3 and Induction Hypothesis B.1 to get the
desired bound. Indeed, we have:

Λptq ` pC ´ 1qΓptq ` Ξptq
ÿ

h‰ℓpXq

ÿ

rPSh

|δr| ď Λptq ` pC ´ 1qΓptq ` ΞptqqD logpdq

ď
1

D

´

epolyloglogpdq ` λ0 ` qD logpdq

¯

“ Θp1q.

H Gradients

In this section, we present the gradients of the loss L with respect to v and Ai,j .
Lemma H.1. Let pX, yq be a data-point. Then, the gradient of LpXq with respect to v is:

´∇vLpXq “ DySp´yF pXqq

D
ÿ

i“1

σ1

ˆ

D
ÿ

rPrDs

Si,rxv,Xry

˙ D
ÿ

j“1

Si,jXj .

Lemma H.2. Let pX, yq be a data-point and i, j P rDs. The derivative of LpXq with respect to Ai,j

is:

´
BLpXq

BAi,j
“ pDySp´yF pXqq

ˆ

D
ÿ

rPrDs

Si,rxv,Xry

˙p´1
ÿ

r‰j

Si,rxv,Xj ´ Xry.

I Invariance of the problem

I.1 Invariance of the parameters

Lemma 4.2. For all t P rT s, there exists αptq P R such that vptq “ αptqw˚.

Proof of Lemma 4.2. The proof is by induction. Our induction hypothesis is vptq “ αptqw˚ for all
t ě 0. For t “ 0, we know that vp0q “ αp0qw˚ P spanpw˚q. Assume that vptq “ αptqw˚. Let’s
show that there exists αpt`1q P R such that vpt`1q “ αpt`1qw˚. From the update rule, we have:

vpt`1q “ vptq ` ηE
”

ySp´yF pXqq
ÿ

iPrDs

σ1pxvptq,O
ptq
i yq

ÿ

rPrDs

Si,rXr

ı

“ vptq ` ηE
”

ySp´yF pXqq
ÿ

iPrDs

σ1pxvptq,O
ptq
i yq

ÿ

rPrDs

Si,rEξrXrs

ı

, (206)

where Eξ is the expectation with respect to noise vectors ξr. Using the definition of the data
distribution and Erξrs “ 0, we simplify the update (206):

vpt`1q “ vptq ` ηE
”

Sp´yF pXqq
ÿ

iPrDs

σ1pxvptq,O
ptq
i yq

ÿ

rPSℓpXq

Si,r

ı

w˚

` ηE
”

ySp´yF pXqq
ÿ

iPrDs

σ1pxvptq,O
ptq
i yq

ÿ

h‰ℓpXq

ÿ

rPSh

Si,rδr

ı

w˚.
(207)

Since vptq “ αptqw˚, there exists αpt`1q P R such that vpt`1q “ αpt`1qw˚.

Lemma 4.1. There exist β “ σA, γptq, ρptq P R such that for all t ě 0:

1. for all i P rDs, Aptq
i,i “ β.

2. for all i, j P rDs such that i, j P Sℓ for some ℓ P rLs, Aptq
i,j “ γptq.

50

3. for all i, j P rDs such that i P Sℓ and j P Sm for some ℓ,m P rLs with ℓ ‰ m, Aptq
i,j “ ρptq.

Proof of Lemma 4.1. We initialize Ap0q

i,i “ σA and do not update Ai,i, Thus, for all t ě 0, we have

A
ptq
i,i “ σA.

The remaining of the proof is by induction. For i, j P Sℓ, we initialize Ap0q

i,j “ 0 “ γp0q. For i P Sℓ

and j P Sm with ℓ ‰ m, Ap0q

i,j “ 0 “ ρp0q. The induction hypothesis is true for t “ 0.

We assume that for all i, j P Sℓ, A
ptq
i,j “ γptq and for i P Sℓ and j P Sm, Aptq

i,j “ ρptq. Let’s

first prove that Apt`1q

i,j “ A
pt`1q

k,n for i, j P Sℓ and k, n P Sℓ1 . Since the GD update is Apt`1q

i,j “

A
ptq
i,j ´ ηEX

”

BLpXq

BAi,j

ı

, it’s sufficient to prove that EX

”

BLpXq

BAi,j

ı

“ EX

”

BLpXq

BAk,n

ı

. Let π1 : rLs Ñ rLs,
π2 : rCs Ñ rCs and π “ pπ1, π2q be permutations. From Lemma I.1, we know that X and πpXq

have the same distribution which implies EX

”

BLpXq

BAi,j

ı

“ EπpXq

”

BLpXq

BAi,j

ı

. Therefore, we have:

EX

„

BLpXq

BAi,j

ȷ

“EX

«

ySp´yF pπpXqqqσ1

ˆ L
ÿ

h“1

ÿ

rPSh

exAptqpi, pry

řD
s“1 e

xAptqpi, psy
xvptq,Xπ1phq,π2prqy

˙

¨

exAptqpi, pjy

řD
s“1 e

xAptqpi, psy

L
ÿ

k“1

ÿ

mPSk

exAptqpi, pmy

řD
s“1 e

xAptqpi, psy
xvptq,Xπ1pkq,π2pmq ´ Xπ1pℓq,π2pjqy

ff

(208)

Using Induction Hypothesis B.1, we simplify (208) as

EX

„

BLptqpXq

BAi,j

ȷ

“EX

«

ySp´yF pπpXqqqσ1

ˆ

Λptqxvptq,Xπ1pℓq,π2piqy ` Γptq
ÿ

mPSℓztiu

xvptq,Xπ1pℓq,π2pmqy

` Ξptq
ÿ

rRSℓ

xvptq,Xπprqy

˙

Γptq

ˆ

Λptqxvptq,Xπ1pℓq,π2piq ´ Xπ1pℓq,π2pjqy

` Γptq
ÿ

mPSℓztiu

xvptq,Xπ1pℓq,π2pmq ´ Xπ1pℓq,π2pjqy ` Ξptq
ÿ

rRSℓ

xvptq,Xπprq ´ Xπ1pℓq,π2pjqy

˙

ff

.

(209)
We now set π1 and π2 such that π1pℓq “ ℓ1, π2piq “ k and π2pjq “ n. Using this choice along with
F pXq “ F pπpXqq (Lemma I.1), we finally have in (209)

EX

„

BLpXq

BAi,j

ȷ

“EX

«

ySp´yF pπpXqqqσ1

ˆ

Λptqxvptq,Xℓ1,ky ` Γptq
ÿ

mPSℓ1 ztiu

xvptq,Xℓ1,my

` Ξptq
ÿ

rRSℓ1

xvptq,Xry

˙

Γptq

ˆ

Λptqxvptq,Xℓ1,k ´ Xℓ1,ny

` Γptq
ÿ

mPSℓ1 ztku

xvptq,Xℓ1,m ´ Xℓ1,ny ` Ξptq
ÿ

rRSℓ

xvptq,Xr ´ Xℓ1,ny

˙

ff

“EX

„

BLptqpXq

BAk,n

ȷ

.

(210)

Therefore, (210) implies that Apt`1q

i,j “ A
pt`1q

k,n thus proving the induction hypothesis. Let’s now

show that for i P Sℓ, j P Sm and k P Sℓ1 , j P Sm1 , we have Apt`1q

i,j “ A
pt`1q

k,n . We apply a similar

51

argument as above. Using Induction Hypothesis B.1, we have:

EX

„

BLpXq

BAi,j

ȷ

“EX

«

ySp´yF pπpXqqqσ1

ˆ

Λptqxvptq,Xπ1pℓq,π2piqy ` Γptq
ÿ

rPSℓztiu

xvptq,Xπ1pℓq,π2prqy

` Ξptq
ÿ

rRSℓ

xvptq,Xπprqy

˙

Ξptq

ˆ

Λptqxvptq,Xπ1pℓq,π2piq ´ Xπ1pmq,π2pjqy

` Γptq
ÿ

rPSℓztiu

xvptq,Xπ1pℓq,π2prq ´ Xπ1pmq,π2pjqy ` Ξptq
ÿ

rRSℓ

xvptq,Xπprq ´ Xπ1pmq,π2pjqy

˙

ff

.

(211)
We now set π1 and π2 such that π1pℓq “ ℓ1, π1pmq “ m1, π2piq “ k and π2pjq “ n. Using this
choice, we finally have in (211)

EX

„

BLpXq

BAi,j

ȷ

“EX

«

ySp´yF pπpXqqqσ1

ˆ

Λptqxvptq,Xℓ1,ky ` Γptq
ÿ

rPSℓ1 ztku

xvptq,Xℓ1,ry

` Ξptq
ÿ

rRSℓ1

xvptq,Xry

˙

Ξptq

ˆ

Λptqxvptq,Xℓ1,k ´ Xm1,ny

` Γptq
ÿ

rPSℓ1 ztku

xvptq,Xℓ1,r ´ Xm1,ny ` Ξptq
ÿ

rRSℓ

xvptq,Xr ´ Xm1,ny

˙

ff

“EX

„

BLpXq

BAk,n

ȷ

.

(212)

Therefore, (212) implies that Apt`1q

i,j “ A
pt`1q

k,n thus proving the induction hypothesis.

I.2 Invariance by permutation

Lemma I.1. Let π1 : rLs Ñ rLs and π2 : rCs Ñ rCs be two permutations and π “ pπ1, π2q. Let
pX, ¨q „ D. Then, we have:

1. permutation-invariant distribution: X has the same distribution as πpXq.

2. permutation-invariant model: F pXq “ F pπpXqq.

Proof of Lemma I.1. To show that X and πpXq have to same distribution, it is sufficient to show
that the items 1 to 6 hold in our definition of the data distribution. We still have that the label y
is uniformly sampled on t´1, 1u. Let πpXq “ pĎX1, . . . , ĎXDq where ĎXi for some j. For 2, the
number of tokens is still D after permutation π. For 4, we define the same partition with sSl “ sSπ1plq.
Besides, we have ℓpĎXq “ π1pℓpXqq that is also uniformly sampled on rLs since the permutation
on a uniform distribution is also uniform. For i P Sℓp ĎXq, we have that ĎXi writes Xπ2pkq for some
k P SℓpXq so that we do have ĎXi “ yw˚ `ξi. The same goes for 6 when ℓ ‰ ℓpĎXq: with ℓ ‰ ℓpĎXq,
ĎXj “ δℓ,jw

˚ `ξj , where δj “ 1 with probability q{2, ´1 with the same probability and 0 otherwise.

Let X be a data-point. Using Lemma 4.1, we rewrite F pXq as

F pXq “

D
ÿ

m“1

σ
´

Λptqxvptq,Xmy ` Γptq
ÿ

rPSℓztmu

xvptq,Xry ` Ξptq
ÿ

hPrLsztℓu

ÿ

jPSh

xvptq,Xjy

¯

. (213)

52

Let π “ pπ1, π2q be a permutation. For a given ℓ P rLs and m P Sℓ, assume that π1pℓ1q “ ℓ and
π2pm1q “ m. Using Lemma 4.1, we have:

F pπpXqq “

L
ÿ

ℓ“1

ÿ

mPSℓ

σ
´

Λptqxvptq,Xπ2pm1qy

` Γptq
ÿ

rPSπ1pℓ1qztπ2pm1qu

xvptq,Xπ2prqy ` Ξptq
ÿ

h1PrLsztℓ1u

ÿ

jPSh1

xvptq,Xπ2pj1qy

¯

“

L
ÿ

ℓ“1

ÿ

mPSℓ

σ
´

Λptqxvptq,Xmy

` Γptq
ÿ

r2PSℓztmu

xvptq,Xr2 y ` Ξptq
ÿ

j2RSℓ

xvptq,Xj2 y

¯

“ F pXq.

J Justification of our data distribution

In this section, we justify why the distribution D (Assumption 1) is relevant. We first show that linear
classifiers poorly generalize (subsection J.1). We then show that there exists classifiers that generalize
without learning patch association (subsection J.2).

J.1 Generalized linear models poorly generalize

Theorem 3.1. Let D be as in Assumption 1. Let gpXq “ ϕ
´

řD
j“1xwj ,Xjy

¯

be a generalized

linear model. Then, g does not fit the labeling function i.e. Prf˚pXqgpXq ď 0s ě 1{8.

Proof of Theorem 3.1. For every data point X , consider ∆pXq :“
ř

jPrDs δj , it is very easy to see
that for every integer p, as long as Prr∆ “ ps “ Ωp1{polylogpdqq, we have that:

Prr∆ “ ps

Prr∆ “ p´ 2Cs
“ 1 ´ op1q (214)

Consider two independently sampled data points, X,X 1 with label 1,´1 respectively, consider the
event when ∆pXq “ p ´ 2C,∆pX 1q “ p and all the noises ξi, ξ1

i of X,X 1 satisfies ξi “ ξ1
i, then

we know that

ÿ

jPrDs

xwj ,Xjy “
ÿ

jPrDs

xwj ,X
1
jy (215)

By Eq (214) we also know that the density of X and X 1 under the data-generation distribution
satisfies

ppXq “ p1 ˘ op1qqppX 1q

53

Now, we know that

P0 :“Prf˚pXqgpXq ď 0 | ypXq “ 1s “ 2

ż

X

1f˚pXqgpXqď0ppX, ypXq “ 1qdX (216)

“ 2

ż

X

1f˚pXqgpXqď0ppX 1, ypX 1q “ ´1qdX ˘ op1q (217)

“ 2

ż

X

1f˚pXqgpX1qď0ppX 1, ypX 1q “ ´1qdX ˘ op1q (218)

“ 2

ż

X1

1f˚pX1qgpX1qě0ppX 1, ypX 1q “ ´1qdX 1 ˘ op1q (219)

“ 1 ´ Prrf˚pX 1qgpX 1q ă 0 | ypX 111q “ ´1s ˘ op1q (220)

ě 1 ´ Prrf˚pX 1qgpX 1q ď 0 | ypX 111q “ ´1s ˘ op1q (221)

“ 1 ´ Prrf˚pXqgpXq ď 0 | ypXq “ ´1s ˘ op1q (222)

Therefore, Prf˚pXqgpXq ď 0 | ypXq “ 1s ě 1
2 ´ op1q.

J.2 Classifiers fitting the labelling function without patch association

Theorem 3.2. Let D be defined as in Assumption 1. There exists a (one-layer) transformer M so that
Prf˚pXqMpXq ď 0s “ d´ωp1q but for all ℓ P rLs, i P Sℓ, TopC txp

pMq

i ,p
pMq

j yuDj“1 X Sℓ “ H.

Proof of Theorem 3.2. We can consider a transformer in our setting, whose weights are defined as:
v “ w‹, Ai,j “ β ą 0 for i, j P Sℓ. Ai,j “ 2β for i P Sℓ, j P Sℓ`1 (We denote SL`1 “ S1). For
a sufficiently large β, it is easy to check that Prf˚pXqMpXq ď 0s “ d´ωp1q but for all ℓ P rLs,
i P Sℓ, TopC txp

pMq

i ,p
pMq

j yuDj“1 “ Sℓ`1 X Sℓ “ H.

K Technical lemmas

In this section, we present the technical lemmas used in the paper.

K.1 Tensor Power Method

Lemma K.1. Let tzptqutě0 be a positive sequence defined by the following recursions
"

zpt`1q ě zptq `mpzptqqk

zpt`1q ď zptq `Mpzptqqk
,

where zp0q ą 0 is the initialization, k ą 1 is an integer andm,M ą 0. Let υ ą 0 such that zp0q ď υ.
Then, the time T such that zptq ě υ for all t ě T is:

T “
3

mpzp0qqk´1
`

2k`1M

m

R

logpυ{zp0qq

logp2q

V

.

Proof of Lemma K.1. Let n P N˚. Let Tn be the time where zptq ě 2nzp0q. This time exists because
zptq is a non-decreasing sequence. We want to find an upper bound on this time. We start with the
case n “ 1. By summing the recursion, we have:

zpT1q ě zp0q `m
T1´1
ÿ

s“0

pzpsqqk. (223)

We use the fact that zpsq ě zp0q in (223) and obtain:

T1 ď
zpT1q ´ zp0q

mpzp0qqk
. (224)

54

Now, we want to bound zpT1q ´ zp0q. Using again the recursion and zpT1´1q ď 2zp0q, we have:

zpT1q ď zpT1´1q `MpzpT1´1qqk ď 2zp0q ` 2kMpzp0qqk. (225)

Combining (224) and (225), we get a bound on T1.

T1 ď
1

mpzp0qqk´1
`

2kM

m
. (226)

Now, let’s find a bound for Tn. Starting from the recursion and using the fact that zpsq ě 2n´1zp0q

for s ě Tn´1 we have:

zpTnq ě zpTn´1q `m
Tn´1
ÿ

s“Tn´1

pzpsqqk ě zpTn´1q ` 2kpn´1qmpzp0qqkpTn ´ Tn´1q. (227)

On the other hand, by using zpTn´1q ď 2nzp0q we upper bound zpTnq as follows.

zpTnq ď zpTn´1q `MpzpTn´1qqk ď 2nzp0q ` 2knMpzp0qqk. (228)

Besides, we know that zpTn´1q ě 2n´1zp0q. Therefore, we upper bound zpTnq ´ zpTn´1q as

zpTnq ´ zpTn´1q ď 2n´1zp0q ` 2knMpzp0qqk. (229)

Combining (227) and (229) yields:

Tn ď Tn´1 `
1

2pk´1qpn´1qmpzp0qqk´1
`

2kM

m
. (230)

We now sum (230) for n “ 2, . . . , n, use (226) and obtain:

Tn ď T1 `
2

mpzp0qqk´1
`

2kMn

m
ď

3

mpzp0qqk´1
`

2kMpn` 1q

m
ď

3

mpzp0qqk´1
`

2k`1Mn

m
.

(231)

Lastly, we know that n satisfies 2nzp0q ě υ which implies n “

Q

logpυ{z0q

logp2q

U

in (231).

Lemma K.2. Let tzptqutě0 be a positive sequence defined by the following recursions
"

zpt`1q ě zptq `mpzptqqk

zpt`1q ď zptq `Mpzptqqk
,

where zp0q ą 0, k ą 1 is an integer and m,M ą 0. Let υ ą 0 such that zp0q ď υ and T be the time
such that zptq ě υ for all t ě T . Assume that Aυ2

m ! 1. Then, we have for κ P t1, 2u:

T ´1
ź

τ“0

`

1 `Apzpτqqk´1`κ
˘

ď
`

1 ` υk´1
˘

2κ`1MAυκ logpυ{zp0qq

m .

Proof of Lemma K.2. Let n P N˚ and let Tn be the time such that zptq ě 2nzp0q for t ě Tn. Starting
from the recursion, we have:

logpzpt`1qq ě logpzptqq ` log
`

1 `mpzptqqk´1
˘

. (232)

Since zptq is a non-decreasing sequence, (232) satisfies:

pzpt`1qqκ logpzpt`1qq ě pzptqqκ logpzptqq ` pzptqqκ log
`

1 `mpzptqqk´1
˘

. (233)

We now sum (233) for t “ Tn´1, . . . , Tn and get:

A

m
pzpTnqqκ logpzpTnqq ě

A

m
pzpTn´1qqκ logpzpTn´1qq `

Tn´1
ÿ

t“Tn´1

Apzptqqκ

m
log

`

1 `mpzptqqk´1
˘

.

(234)

55

Since Apzptq
q
κ

m ď
Ap2nzp0q

q
κ

m ď Aυκ

m ! 1, we have
`

1 ` mpzptqqk´1
˘

Apzptqqκ

m ě 1 ` Apzptqqk´1`κ.
We thus lower bound (234) as:

A

m
pzpTnqqκ logpzpTnqq ě

A

m
pzpTn´1qqκ logpzpTn´1qq `

Tn´1
ÿ

t“Tn´1

log
`

1 `Apzptqqk´1`κ
˘

. (235)

On the other hand, by using zpTn´1q ď 2nzp0q and zpTnq ď 2n`1zp0q, we have the following upper
bound.

A

m
pzpTnqqκ logpzpTnqq

ď
A

m
pzpTnqqκ log

`

zpTn´1qq `
MA

m
pzpTnqqκ logp1 ` pzpTn´1qqk´1

˘

ď
A ¨ p2n`1zp0qqκ

m
log

`

2nzp0qq `
MA ¨ p2n`1zp0qqκ

m
log

`

1 ` p2nzp0qqk´1
˘

.

(236)

Since zpTn´1q ě 2n´1zp0q, (236) is finally bounded as:
A

m

´

pzpTnqqκ logpzpTnqq ´ pzpTn´1qqκ logpzpTn´1qq

¯

ď
ΘpAq ¨ p2nzp0qqκ

m
log

`

2nzp0qq `
MA ¨ p2n`1zp0qqκ

m
log

`

1 ` p2nzp0qqk´1
˘

.

(237)

We combine (235) and (237) to obtain:
Tn´1
ÿ

t“Tn´1

log
`

1 `mpzptqqk
˘

ď
ΘpAq ¨ p2nzp0qqκ

m
log

`

2nzp0qq

`
MA ¨ p2n`1zp0qqκ

m
log

`

1 ` p2nzp0qqk´1
˘

.

(238)

We now sum (238) and get:
Tn´1
ÿ

t“0

log
`

1 `mpzptqqk
˘

ď np2nzp0qqκ
ˆ

ΘpAq

m
log

`

2nzp0qq `
2κMA

m
log

`

1 ` p2nzp0qqk´1
˘

˙

.

(239)

We replace 2nzp0q by υ and n by logpυ{zp0qq in (239) to get the aimed result.

K.2 Probabilistic lemmas

Lemma K.3. Let tδru
D´C
r“1 be i.i.d. random variables such that with probability q δr “ ˘1 and zero

otherwise. Then, with probability at least 1 ´ 1{polypdq, we have:
ÿ

ℓ‰ℓpXq

ÿ

rPSℓ

|δr| ď ΘpqpD ´ Cqq logpdq.

Proof of Lemma K.3. First, note that |δr| is a Bernoulli random variable with parameter q. Therefore,
ř

ℓ‰ℓpXq

ř

rPSℓ
|δr| is a binomial random variable BpD ´ C, qq. Therefore, we apply a Chernoff

bound to obtain:

P

»

–

ÿ

ℓ‰ℓpXq

ÿ

rPSℓ

|δr| ě p1 ` εqpD ´ Cqq

fi

fl ď exp

ˆ

´
pD ´ Cqqε2

3

˙

. (240)

Setting ε “

b

3
pD´Cqq logppolypdqq in (240) yields the desired result.

Lemma K.4. Let tδruCr“1 be i.i.d. random variables such that with probability q δr “ ˘1 and zero
otherwise. Then, with probability at least 1 ´ 1{polypdq, we have:

C
ÿ

r“1

|δr| ď Op1q.

56

Proof of Lemma K.4. Let k P N and ∆ :“
řC

r“1 |δr|. The tail bound is bounded as:

Pr∆ ě ks “

C
ÿ

j“k

ˆ

C

j

˙

qjp1 ´ qqC´j ď qk
C
ÿ

j“k

ˆ

C

j

˙

ď qk
C
ÿ

j“0

ˆ

C

j

˙

“ 2Cqk. (241)

We want to find k such that 2Cqk ď 1{polypdq which implies k ď logpdq{ logpDq ď Op1q.

K.3 Logarithmic inequalities

Lemma K.5. Let a P R such that C´ ď a ď C`, where C`, C´ ą 0. Let p ě 3 be an odd integer.
Then, the following inequality holds:

0.1

C`
log p1 ` exp p´apqq ď

ap´1

1 ` exppapq
ď

10

C´

log p1 ` exp p´apqq .

Proof of Lemma K.5. We first remark that:

ap´1

1 ` exppapq
“

ap

ap1 ` exppapqq
. (242)

Upper bound. We upper bound (242) by applying a ě C´:

ap´1

1 ` exppapq
ď

ap

C´p1 ` exppapqq
(243)

We obtain the final bound by applying Lemma K.6 to (243).

Lower bound. We lower bound (242) by using a ď C`:

ap´1

1 ` exppapq
ě

ap

C`p1 ` exppapqq
(244)

We obtain the final bound by applying Lemma K.6 to (244).

Lemma K.6 (Connection between derivative and loss). Let x ą 0. Then, we have:

0.1 logp1 ` expp´xqq ď Sp´xq ď 10 logp1 ` expp´xqq (245)

Lemma K.7. Let x, y ą 0. Assume that y ď x. Then, we have:

logp1 ` xyq ď p1 ` yq logp1 ` xq.

57

	Introduction
	Defining patch association
	Setting to learn patch association
	Learning spatial structure via matching the labeling function
	Learning process in the idealized case
	From the idealized to the realistic learning process

	Patch association yields sample-efficient fine-tuning with ViTs
	Numerical experiments
	Additional experimental details
	Details on the implementation
	Additional plots

	Induction hypothesis
	Notations
	Learning process in the idealized setting
	Roadmap of the proof
	Event I: (t) initially increases
	Auxiliary lemmas

	Event II: (t) significantly increases
	Auxiliary lemmas

	Event III: (t) keeps increases again
	Auxiliary results

	Convergence rate of the population loss
	Auxiliary lemmas

	Fitting the labeling function
	Proof of the induction hypothesis
	Auxiliary lemmas

	From idealized to real learning process
	Bound on the iterates during the initial steps (t[0,T])
	(t) initially increases
	Bound on epsilonv
	a,b(t) stays small
	Auxiliary lemmas

	Coupling between the semi-idealized and realistic processes (t[T,T])
	Defining the semi-idealized process
	Realistic dynamics are mainly on spanw**
	Auxiliary lemmas
	DELTAAT stays small during the learning process
	Auxiliary lemmas
	Dynamics of (t)
	The realistic model fits the labeling function

	Transfer Learning
	Gradient descent updates in the idealized process
	Indices in the same set: i,jS
	Update for iS and jSm
	Auxiliary lemmas

	Gradients
	Invariance of the problem
	Invariance of the parameters
	Invariance by permutation

	Justification of our data distribution
	Generalized linear models poorly generalize
	Classifiers fitting the labelling function without patch association

	Technical lemmas
	Tensor Power Method
	Probabilistic lemmas
	Logarithmic inequalities

