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A APPENDIX

A.1 PROOF SKETCH

A.1.1 PROOF SKETCH OF THEOREM 1

We now provide a proof sketch for Theorem 1. We first consider the action of the permutation
group, which can be divided into two steps. First, similar to the conclusion in Zaheer et al. (2017),
we examine the simple symmetric group SM , from which a theorem involving composite functions
of spherical harmonics and continuous functions can be obtained. The complete proof is deferred to
Appendix A.2.3.

For the second step, by Lemma 1, any σ ∈ G ⊂ SM can be decomposed into a product of disjoint
cycles. Hence, it suffices to show that any rotation can be expressed as permutations. The complete
details are provided in Appendix A.2.2.

Proof Stage 1: The symmetric group SM can be continuously represented by spherical har-
monics.
Theorem 6. Consider X as a compact set with X ⊂ R3. A continuous function f : XM → R is
SO(3)× SM -invariant if and only if f admits the representation:

f(x1,x2, · · · ,xM) = ρ

(
M∑
i=1

ϕ(xi)

)
,

where ρ : R2l+1 → R is a continuous function, 2l + 1 > 3M , and

ϕ(x) =
(
|x|lYℓm

(
x
|x|

))
m∈−ℓ,··· ,ℓ

.

The complete proof is relegated to Appendix A.2.3. Through an integrated framework synthesizing
key elements of Zaheer et al. (2017), Blanco et al. (1997), and Thomas et al. (2018), we establish
a hitherto unknown representation theorem for continuous functions exhibiting invariance under
the action of the symmetric group SM . Furthermore, we adopt the nomenclature of designating
M∑
i=1

ϕ(xi) as constituting the latent space.

Our proof of SO(3)-invariance critically builds upon and extends Theorem 2 from the seminal work

of Zaheer et al. (2017). By scrutinizing the permutation invariance properties of ρ
(

M∑
i=1

ϕ(xi)

)
, we

discern that the sufficient condition of Theorem 6 is immediately satisfied if f(x1,x2, · · · ,xM ) =

ρ

(
M∑
i=1

ϕ(xi)

)
. Thus, the brunt of the technical effort resides in establishing necessity. Our overar-

ching proof strategy is by contradiction - we aim to demonstrate that in the absence of an equivari-
ant relationship between the points (x1

1,x
1
2, . . . ,x

1
M ) and (x2

1,x
2
2, . . . ,x

2
M ), the theorem statement

uniquely characterizes the permutation invariant continuous functions. i.e,

M∑
i=1

ϕ(x1
i ) ̸=

M∑
i=1

ϕ(x2
i ).

That is, we demonstrate that Φ(x) =
M∑
i=1

ϕ(xi) constitutes an injective mapping. Finally, an appro-

priate continuous function ρ can be selected to conclude the proof. SO(3)-invariance is guaranteed
in Dym & Maron (2020). Theorem 6 establishes that SO(3)SM -invariant continuous functions
f : XM → R can be represented through compositions of continuous functions and spherical har-
monics.

Furthermore, we establish that the representation generalizes to vector-valued functions F : XM →
RN , as elucidated in Corollary 2 contained within Appendix A.2.4. The proof leverages a decompo-
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sition of F = (f1, f2, . . . , fN ) into constituent component functions fi : XM → R for i ∈ [1, N ],
each of which satisfies Theorem 6. The modular structure thereby facilitates a direct generalization
to higher dimensions.

Proof Stage 2: The general group can be continuously represented by spherical harmonics
through induction.

Pertaining to establishing G-invariance, we shall elucidate that ∀σ ∈ G, an appropriate continu-
ous representation exists. We approach this in a modular fashion by examining permutations; as
the base case, we analyze the n = 2 permutation corresponding to a simple transposition or ex-
change.Pertaining to establishing G-invariance, we shall elucidate that ∀σ ∈ G, an appropriate con-
tinuous representation exists. We approach this in a modular fashion by examining permutations; as
the base case, we analyze the n = 2 permutation corresponding to a swap.

The elemental transposition (i, j) induces a group G(i,j) = (i, j), e under function composition. It
follows that G(i,j)-invariant continuous functions reduce to investigating (i, j)-invariant continuous
functions, thereby circumscribing our analysis to permutations of the variables xi and xj . Leverag-
ing the group structure of G(i,j) = (i, j), e = S2 generated by the n = 2 transposition, we derive
the ensuing continuous representation theorem for S2-invariant continuous functions:

f(x1,x2, · · · ,xM ) = ρ(

M∑
s=1,s̸=i,j

λsϕ(xs) + λ(ϕ(xi) + ϕ(xj))).

Further details can be found in Corollary 1 of Appendix A.2.2. This corollary delineates that
λs

M
s=1,s ̸=i,j and λ satisfy the G(i, j)-invariance conditions.

Assume we have established a continuous representation for the permutation (i1, i2, . . . , in−1). We
now consider the inductive case of the n-permutation (i1, i2, . . . , in). Appealing to Lemma 1 (proof
in Appendix A.2.6), we discern that the n-permutation admits the decomposition (i1, i2, . . . , in) =
(i1, in)(i1, i2, . . . , in−1). By recursively applying this scheme, it becomes evident that any n-
permutation can be expressed as the composition of an (n − 1)-permutation and a transposition.
Specifically, (i1, i2, . . . , in) = (i1, i2)(i1, i3, i4, . . . , in), where (i1, i3, i4, . . . , in−1) constitutes an
(n − 1)-permutation. This inductive reasoning establishes that n-permutations possess continuous
representations.

Lemma 1 establishes that an arbitrary element σ ∈ G admits a representation as a composition
of disjoint permutations. Therefore, the continuous representability of n-permutations immediately
propagates to general σ ∈ G. We defer the technical apparatus pertaining to constructing ρ to
guarantee the requisite SO(2l+1)-invariance to Dym & Maron (2020). It thus follows that SO(3)×
G-invariant continuous functions are characterized by the representation:

f(x1,x2, · · · ,xM ) = ρ

(
M∑
i=1

λiϕ(xi)

)
,

A.1.2 PROOF SKETCH OF THEOREM 2

In this proof, we first leverage Theorem 1 to establish the representation form of equivariant con-
tinuous functions and extend it to equivariant neural networks. We introduce continuous functions
ρ and ρn, both defined on R2l+1 with 2l + 1 > 3M . The functions λi are chosen to satisfy the G-
condition, and we define ϕ(x) as a function involving spherical harmonics and the Euclidean norm
of x. The core concept lies in Φ(x), which is the sum of weighted ϕ(xi) terms, where xi are data
points from the dataset XM . The continuity of ϕ ensures that Φ(XM ) is compact.

In the second step, we aim to approximate the continuous functions ρ and ρn using neural networks.
We invoke the universal approximation theorem for neural networks, which guarantees the existence
of a sequence ρn that approximates ρ. Crucially, the compactness of XM plays a pivotal role here,
as the continuity of Φ implies that Φ(XM ) is also compact. This property allows us to apply the
Stone-Weierstrass theorem, concluding that there exists a sequence ρn that uniformly approximates
ρ on the compact set Φ(XM ). This two-step approach demonstrates how the representation of
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equivariant functions and the use of compact sets enable us to establish the desired result regarding
the approximation of continuous functions by neural networks.

A.1.3 PROOF SKETCH OF THEOREM 3

Proof Stage 1: The Non-injectivity of Φ(x) =
M∑
i=1

ϕ(xi) as a Mapping from XM to R2l+1 Under

the Regime 3M > 2l + 1.

Through a proof by contradiction, we establish that the mapping Φ(x) =
M∑
i=1

ϕ(xi) cannot be

injective. The crux of the argument is that if Φ were injective, by virtue of ϕ(x) being continuous,
Φ would constitute an injective continuous function from the higher dimensional space XM to the
lower dimensional space R2l+1. However, this is precluded by the topological obstruction that
continuous injective mappings cannot exist from higher to lower dimensions.

We shall construct a contradiction by exhibiting two distinct points (x1
1,x

1
2, · · · ,x1

M ) ̸=
(x2

1,x
2
2, · · · ,x2

M ) ∈ XM that satisfy:
M∑
i=1

ϕ(x1
i ) =

M∑
i=1

ϕ(x2
i ).

Proof Stage 2: The Existence of Discrepant Points (x1,x2, · · · ,xM ) ∈ XM Satisfying the
Lower Bound for Arbitrary Functions f

|f(x1,x2, · · · ,xM )− ρ

(
M∑
i=1

ϕ(xi)

)
| ≥ ϵ.

Given ∥(x1
1,x

1
2, · · · ,x1

M ) ̸= (x2
1,x

2
2, · · · ,x2

M )∥ along with the collision
M∑
i=1

ϕ(x1
i ) =

M∑
i=1

ϕ(x2
i )

whose existence was established via the non-injectivity proof in Stage 1, we exhibit the discrepancy
by constructing:

f(x1,x2, · · · ,xM ) = y1
∥(x1,x2, · · · ,xM )− (x2

1,x
2
2, · · · ,x2

M )∥
∥(x1

1,x
1
2, · · · ,x1

M )− (x2
1,x

2
2, · · · ,x2

M )∥

+ y2
∥(x1,x2, · · · ,xM )− (x1

1,x
1
2, · · · ,x1

M )∥
∥(x1

1,x
1
2, · · · ,x1

M )− (x2
1,x

2
2, · · · ,x2

M )∥

By construction, f maps the points (x1
1,x

1
2, · · · ,x1

M ) and (x2
1,x

2
2, · · · ,x2

M ) to disparate values y1
and y2 respectively, where y1 ̸= y2. It therefore follows that any putative continuous function ρ is
fundamentally unable to equalize these outputs, i.e.,

|f(x1,x2, · · · ,xM )− ρ

(
M∑
i=1

ϕ(xi)

)
| ≥ ϵ.

A.1.4 PROOF SKETCH OF THEOREM 4

I shall provide an outline of the proof sketch for Theorem 4:

Firstly, we analyze the action of the permutation group. Regarding the permutation group, the proof
is bifurcated into two steps. In the initial step, analogous to the conclusion in [1], we first examine
the simple symmetric group SM and derive a theorem connecting the composition of spherical
harmonics and a continuous function by relating it to functions invariant under StabSM

(k). The full
proof is furnished in Appendix A.3.1.

In the second step, for any σ ∈ G ⊂ SM , according to Lemma 1, σ can be decomposed into a
product of disjoint rotation. Therefore, we only need to validate that any rotation can be represented
by permutations. The complete verification is provided in Appendix A.3.3.
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Proof Stage 1: Representation of SM -Equivariant and SO(3)-Invariant Continuous Functions
via a Latent Space.
Theorem 7. For any compact set X ⊂ R3, a continuous function F : XM → RM is SM -
equivariant and SO(3)-invariant if and only if there exists a matrix Λ such that F : XM → RM

admits a continuous representation

F (x1,x2, · · · ,xM ) = ρ
(
Λ
−−→
ϕ(x)

)
,

where
−−→
ϕ(x) = (ϕ(x1), ϕ(x2), . . . , ϕ(xM )), ρ : R2l+1 → RM designates a continuous function,

2l + 1 > 3M ,

Λ =


λ1 λ2 · · · λ2

λ2 λ1 · · · λ2

...
...

. . .
...

λ2 λ2 · · · λ1

 ,

and ϕ(x) =
(
∥x∥lYℓm (x/∥x∥)

)
m∈{−l,··· ,l}.

The complete verification is furnished in Appendix A.3.1, wherein we harness spherical harmonics
and continuous characterizations to generalize one-dimensional continuous representations to 3D
tensors. This result enhances Proposition 3.1 present in Sannai et al. (2019).

Here is an outline of the sufficiency proof: First consider the permutation group. For any σ ∈ SM ,
we can verify and calculate:

F (σx) = ρ
(
Λ
−−−→
ϕ(σx)

)
= ρ

(
σΛ

−−→
ϕ(x)

)
= σρ

(
Λ
−−→
ϕ(x)

)
Therefore, F (x) = ρ

(
Λ
−−→
ϕ(x)

)
is SM -equivariant. SO(3)-invariance is guaranteed by Dym &

Maron (2020).

We establish the necessity of Theorem 7 by introducing the definition of StabSM
(k). Here,

StabSM
(k) signifies the subgroup fixing coordinate k ∈ {1, 2, . . . ,M}, comprising elements

s ∈ SM satisfying s(k) = k. Denoting F (x) = (f1(x), f2(x), . . . , fM (x)) and σ = (i j) ∈ SM ,
by verifying j one by one, we can demonstrate that fj(x) defines a SO(3) × StabSM

(i)-invariant
function. Consequently, SM -equivariant and SO(3)-invariant functions can be transformed into
the form of SO(3) × StabSM

(k)-invariant functions. More details on the characterization of
SO(3) × StabSM

(k)-invariant functions are provided in Corollary 3 of Appendix A.3.1. Here we
only present the conclusion regarding

F (x1,x2, · · · ,xM ) = ρ
(
Λ
−−→
ϕ(x)

)
,

and

Λ =


λ1 λ2 · · · λ2

λ2 λ1 · · · λ2

...
...

. . .
...

λ2 λ2 · · · λ1

 .

Proof Stage 2: Inductive Demonstration that G-Equivariant Functions Admit a Continuous
Representation.

The sufficiency is established via direct substitution verification. To prove necessity, we use induc-
tion on the size of cycles n.

Base case (n = 2): Show swaps (i j) form a group G(ij). By previous results, we have a continuous
representation for G(i j)-equivariant functions.
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Inductive step: Assume we have a representation for (n− 1)-cycles. Use Lemma to decompose an
n-cycle into an (n−1)-cycle and a swap. By inductive hypothesis and base case, we can characterize
n-cycle equivariant functions.

Therefore, by induction, we can characterize G-equivariant continuous functions for any G made up
of cycles. The key is decomposing into smaller cycles and using the continuous representation for
those simpler groups.

A.1.5 PROOF SKETCH OF THEOREM 5

The proof can be bifurcated into two steps. First, we show that a continuously differentiable equiv-
ariant function can be represented in the form given by Theorem 4, denoted as F (x) = ρ(Φ(x)).
Equivariant neural networks can also be expressed in a similar representation Fn(x) = ρn(Φ(x)),
where ρn is a neural network. Since Φ(XM ) is compact and ρ, ρn are continuous functions, by
the universal approximation theorem we can find a sequence of neural networks ρn that uniformly
approximate ρ on this compact set.

Therefore, equivariant neural networks can approximate any continuously differentiable equivariant
function. An identical argument applies to SO(3) invariant functions. We conclude that equivari-
ant and SO(3) invariant neural networks are universal approximators for equivariant and invariant
continuous functions.

A.2 PROOF OF INVARIANCE

A.2.1 RATIONALITY OF SM -EQUIVARIANCE AND SO(3)-INVARIANCE ON FUNCTION F

Proof. For any σ ∈ SM , α ∈ SO(3), we represents F (ασx) = σF (x) as the equivariance of F
under SM . Then the right hand side can be expanded in coordinates as:

σF (x) := σ(f1(x), f2(x), · · · , fM (x)) = (fσ−1(1)(αx), fσ−1(2)(αx), · · · , fσ−1(M)(αx)).

The left hand side form can be defined as:

F (ασx) := F (ασ(x1, αx2, · · · , αxM )) = F ((αxσ−1(1), αxσ−1(2), · · · , αxσ−1(M))).

Therefore, we can define F (ασx) = σF (x) as

F (αxσ−1(1), αxσ−1(2), · · · , αxσ−1(M)) = (fσ−1(1)(αx), fσ−1(2)(αx), · · · , fσ−1(M)(αx)).

A.2.2 PROOF OF THEOREM 1

Proof. To establish Theorem 1, we must first demonstrate that for an arbitrary permutation, there
exists an associated continuous representation. We will establish this result via mathematical induc-
tion. As a base case, take σ = (i j) to be a simple transposition. We will first demonstrate that there
exists an (i j)-invariant continuous representation for this elementary permutation.

Corollary 1. Let X ⊂ R3 be a compact set. A continuous function f : XM → RN is (i j)-invariant
if and only if there exist scalars {λ}Ms=1,s̸=i,j and λ such that f admits the representation:

f(x1,x2, · · · ,xM ) = ρ(

M∑
s=1,s̸=i,j

λsϕ(xs) + λ(ϕ(xi) + ϕ(xj)))

where ρ : R2l+1 → RN is a continuous function for some 2l + 1 > 3, and

ϕ(x) =

(
∥x∥lYℓm

(
x

∥x∥

))
m∈{−l,··· ,l}

.
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By Corollary 1, the swap (i j) generates the group G(i j) = {(i j), e}. Thus, any (i j)-invariant
continuous function is also G(i j)-invariant. For our purposes, it suffices to consider only the per-
mutation of variables xi and xj , since G(i j) contains just the identity and the swap. Moreover,
as (i j) generates the symmetric group S2, we can now construct a continuous representation for
S2-invariant continuous functions.

Utilizing Corollary 1, we obtain the fundamental representation:

f(x1,x2, · · · ,xM ) = ρ(

M∑
s=1,s̸=i,j

λsϕ(xs) + λ(ϕ(xi) + ϕ(xj)))

In the above, ρ : R2l+1 → R is a continuous function for some 2l > 1, and

ϕ(x) =

(
∥x∥lYℓm

(
x

∥x∥

))
m∈{−l,··· ,l}

Thus, given the transposition σ = (i j), we can derive the associated representation for this specific
permutation.

Suppose there exists a continuous representation for the permutation (i1 i2 . . . in−1). We
now consider the n-permutation (i1 i2 . . . in). By the decomposition (i1 i2 . . . in) =
(i1 i2)(i1 i3 i4 . . . in), where (i1 i3 i4 . . . in) is an (n − 1)-permutation, we can conclude via
mathematical induction that a continuous representation exists as well for the length n permutation.

By Lemma 1, any permutation σ ∈ G can be expressed as a product of disjoint transpositions. Thus,
if the continuous representation exists for an arbitrary n-permutation, it follows that any σ ∈ G will
also admit a continuous representation. The SO(2l + 1)-invariance of ρ is guaranteed in Dym &
Maron (2020) and will not be repeated here. Consequently, a continuous function is SO(3)× SM -
invariant if and only if it takes the form:

f(x1,x2, · · · ,xM ) = ρ

(
M∑
i=1

ϕ(xi)

)
,

where ρ : R2l+1 → R is a continuous function, 2l + 1 > 3M , and ϕ(x) =(
∥x∥lYℓm

(
x

∥x∥

))
m∈{−l,··· ,l}

.

A.2.3 PROOF OF THEOREM 6

Proof. Sufficiency: For any σ ∈ SM , the following equation holds:

F (σx) = F (xσ−1(1),xσ−1(2), · · · ,xσ−1(M)) = ρ

(
M∑
i=1

ϕ(xσ−1(i))

)

= ρ

(
M∑
i=1

ϕ(xi)

)
= F (x).

The first equation is based on the definition of the SM action. The reason why the second equation
is established is sufficient:

f(x1,x2, · · · ,xM ) = ρ

(
M∑
i=1

ϕ(xi)

)
.

The third equal sign holds because the arrangement is invariant for the summation symbol. The
fourth inequality symbol holds because the spherical harmonic function has rotational invariance.
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Necessity: The goal of this paper is to prove that for any σ ∈ SM , if (x1
1,x

1
2, . . . ,x

1
M ) ̸=

σ(x2
1,x

2
2, . . . ,x

2
M ) ∈ XM , we need to show that

M∑
i=1

ϕ(x1
i ) ̸=

M∑
i=1

ϕ(x2
i ),

Where x = (x1,x2, · · · ,xM ) ∈ XM . In addition, this article defines

Φ(x) =

M∑
i=1

(
∥xi∥lYℓm

(
xi

∥xi∥

))
m∈{−l,··· ,l}

And this article can get latent space.

Vl = Φ(x).

According to

Yℓm(φ, θ) = N cosmφPm
l (cos θ)

and

Pm
l (x) = (−1)m · 2l ·

(
1− x2

)m/2 ·
l∑

k=m

k!

(k −m)!
· xk−m ·

(
l
k

)(
l+k−1

2
l

)
.

Furthermore, since this holds for any σ ∈ SM , where (x1
1,x

1
2, . . . ,x

1
M ) ̸= σ(x2

1,x
2
2, . . . ,x

2
M ) ∈

XM , the paper employs a proof by contradiction to establish this result, specifically demonstrating
that:

Φ(x1) = Φ(x2) (3)

We defines

Ek(x) = ∥x∥lYℓk

(
x

∥x∥

)
,

where k ∈ {−l, · · · , l}.

The following two polynomials are constructed:

Px1(x) =

M∏
k=1

(
x− x1

k

)
Px2(x) =

M∏
k=1

(
x− x2

k

)
,

Expanding Px1(x) and Px2(x), we obtain:

Px1(x) = xM − a1x
M−1 + · · · (−1)M−1aM−1x+ (−1)MaM

Px2(x) = xM − b1x
M−1 + · · · (−1)M−1bM−1x+ (−1)MbM ,

In the above expansion, the multiplication operation refers to element-wise multiplication of all
points.

These elementary symmetric polynomials can be uniquely represented as functions of Φ(x1) and
Φ(x2) through the Newton-Girard formulae. The k-th coefficient is given by the determinant of a
k × k matrix, with its elements derived from Φ(x1) and Φ(x2), as well as ak = (ak,1, ak,2, ak,3)
and bk = (bk,1, bk,2, bk,3).

ak,1 =
1

3k − 2
detA3k−2 ·



E−l(x
1) 1 0 · · · 0

E−l+1(x
1) E−l(x

1) 1 · · · 0
E−l+2(x

1) E−l+1(x
1) E−l(x

1) · · · 0
...

...
...

. . .
...

E3k−3−l(x
1) E3k−4−l(x

1) E3k−5−l(x
1) · · · 1

E3k−2−l(x
1) E3k−3−l(x

1) E3k−4−l(x
1) · · · E−l(x

1)
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ak,2 =
1

3k − 1
detA3k−1 ·



E−l(x
1) 1 0 · · · 0

E−l+1(x
1) E−l(x

1) 1 · · · 0
E−l+2(x

1) E−l+1(x
1) E−l(x

1) · · · 0
...

...
...

. . .
...

E3k−1−l(x
1) E3k−2−l(x

1) E3k−3−l(x
1) · · · 1

E3k−l(x
1) E3k−1−l(x

1) E3k−2−l(x
1) · · · E−l(x

1)



ak,3 =
1

3k
detA3k ·



E−l(x
1) 1 0 · · · 0

E−l+1(x
1) E−l(x

1) 1 · · · 0
E−l+2(x

1) E−l+1(x
1) E−l(x

1) · · · 0
...

...
...

. . .
...

E3k−1−l(x
1) E3k−2−l(x

1) E3k−3−l(x
1) · · · 1

E3k−l(x
1) E3k−1−l(x

1) E3k−2−l(x
1) · · · E−l(x

1)



bk,1 =
1

3k − 2
detA3k−2·



E−l(x
2) 1 0 · · · 0

E−l+1(x
2) E−l(x

2) 1 · · · 0
E−l+2(x

2) E−l+1(x
2) E−l(x

2) · · · 0
...

...
...

...
. . .

...
E3k−3−l(x

2) E3k−4−l(x
2) E3k−5−l(x

2) · · · 1
E3k−2−l(x

2) E3k−3−l(x
2) E3k−4−l(x

2) · · · E−l(x
2)

 ,

bk,2 =
1

3k − 1
detA3k−1·



E−l(x
2) 1 0 · · · 0

E−l+1(x
2) E−l(x

2) 1 · · · 0
E−l+2(x

2) E−l+1(x
2) E−l(x

2) · · · 0
...

...
...

...
. . .

...
E3k−2−l(x

2) E3k−3−l(x
2) E3k−4−l(x

2) · · · 1
E3k−1−l(x

2) E3k−2−l(x
2) E3k−3−l(x

2) · · · E−l(x
2)

 ,

b3k =
1

3k
detA3k ·



E−l(x
2) 1 0 · · · 0

E−l+1(x
2) E−l(x

2) 1 · · · 0
E−l+2(x

2) E−l+1(x
2) E−l(x

2) · · · 0
...

...
...

...
. . .

...
E3k−1−l(x

2) E3k−2−l(x
2) E3k−3−l(x

2) · · · 1
E3k−l(x

2) E3k−1−l(x
2) E3k−2−l(x

2) · · · E−l(x
2)

 ,

Here, Ak represents the inverse matrix corresponding to each k. Since the paper assumes
Φ(x1) = Φ(x2), this implies that [a1, . . . , aM ] = [b1, . . . , bM ], which further implies that
Px1(x) and Px2(x) are the same. Consequently, their roots must be the same, indicating
that (x1

1,x
1
2, . . . ,x

1
M ) = σ(x2

1,x
2
2, . . . ,x

2
M ). However, this contradicts the initial assumption

(x1
1,x

1
2, . . . ,x

1
M ) ̸= σ(x2

1,x
2
2, . . . ,x

2
M ) ∈ XM . Thus, the original assumption is untenable,

demonstrating the necessity.

Therefore, for each index i, the norms and directions of x1
i and x2

i are identical. As a result, the
paper can establish, using the isomorphism theorem, that the quotient space XM/ ∼ is isomorphic
to Vl.

Subsequently, we defines x either as Φ−1(z) or derived from ρ(z) = f(Φ−1(z)), where z = Φ(x).
The continuity of the inverse of spherical harmonics is established in Abramowitz et al. (1988),
thereby ensuring the continuity of ρ due to the composition property of continuous functions. Hence,
we can consistently find a continuous function ρ to represent any SM -invariant continuous function.
The α-invariance property can be assured as detailed in Maron et al. (2019).
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A.2.4 DETAILS OF COROLLARY 2

Corollary 2. Let X ⊂ R3 be a compact set. A continuous function F : XM → RN is SM -invariant
if and only if F has the representation

F (x1,x2, · · · ,xM ) = ρ

(
M∑
i=1

ϕ(xi)

)
,

where ρ : R2l+1 → RN is a continuous function, 2l + 1 > 3M , and

ϕ(x) =

(
∥x∥lYℓm

(
x

∥x∥

))
m∈−l,··· ,l

.

Proof. We can prove that each component function fi is SM -invariant and continuous by decom-
posing F = (f1, f2, . . . , fN ), where fi : XM → R for i ∈ [1,M ].

A.2.5 PROOF OF THEOREM 3

Proof. We presents a novel proof technique for Theorem 3 by considering the fixed summation
M∑
i=1

ϕ(xi). The proof relies on the following supporting results:

Theorem 8 (Domain Invariance). Let U ⊆ Rn be an open set and f : U → Rn an injective contin-
uous map. Then the image V := f(U) is open in Rn, and f : U → V defines a homeomorphism
between the domains U and V .

This theorem states that if f is an injective continuous function mapping an open subset U of Rn to
Rn, then the image f(U) = V is also an open subset of Rn. Furthermore, f establishes a homeo-
morphism, or bicontinuous bijection, between the domains U and V . In other words, the injectivity
and continuity of f preserves the topological property of openness under the mapping. This domain
invariance result is useful for studying mappings between open sets in Euclidean spaces.

Theorem 9. No continuous injective map exists from a higher dimensional space to a lower dimen-
sional space.

While Theorem 9 is intuitively clear, constructing a rigorous proof is challenging. We can prove
it using Theorem 8 as follows: Assume for contradiction there exists an injective continuous map
f : U → V with dim(U) > dim(V ). By Theorem 8, the image f(U) is an open subset of V since
f is continuous and injective. However, any open subset of the lower dimensional space V must
have dimensionality at most dim(V ). This contradicts dim(U) > dim(V ). Therefore, no such f
can exist.

Proof. First, we show that when 3M > 2l+1, the mapping
M∑
i=1

ϕ(xi) cannot be injective from XM

to R2l+1. Second, we prove there exists a continuous function f and point (x1,x2, · · · ,xM ) ∈ XM

satisfying:

|f(x1,x2, · · · ,xM )− ρ

(
M∑
i=1

ϕ(xi)

)
| ≥ ϵ.

We prove this by contradiction. If
M∑
i=1

ϕ(xi) were injective, then by continuity of ϕ, the mapping

would define a continuous injective function from the higher dimensional space XM to the lower
dimensional space R2l+1. However, by Theorem 9, no such continuous injection can exist between
dimensionalities, yielding a contradiction. Let us posit the following assumption: There exist dis-
tinct points (x1

1,x
1
2, . . . ,x

1
M ) ̸= (x2

1,x
2
2, . . . ,x

2
M ) ∈ XM such that

M∑
i=1

ϕ(x1
i ) =

M∑
i=1

ϕ(x2
i ).
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Second, assume y1 ̸= y2. For this, choose the function f as

f(x1,x2, · · · ,xM ) =y1
∥(x1,x2, · · · ,xM )− (x2

1,x
2
2, · · · ,x2

M )∥
∥(x1

1,x
1
2, · · · ,x1

M )− (x2
1,x

2
2, · · · ,x2

M )∥

+ y2
∥(x1,x2, · · · ,xM )− (x1

1,x
1
2, · · · ,x1

M )∥
∥(x1

1,x
1
2, · · · ,x1

M )− (x2
1,x

2
2, · · · ,x2

M )∥

Let us define:
f(x1

1,x
1
2, · · · ,x1

M ) = y1

f(x2
1,x

2
2, · · · ,x2

M ) = y2

By our assumption, y1 ̸= y2. Then, for any continuous function f , we have:

ρ(

M∑
i=1

ϕ(x1
i )) = ρ(

M∑
i=1

ϕ(x2
i )),

which implies the following inequality:

|f(x1,x2, · · · ,xM )− ρ

(
M∑
i=1

ϕ(xi)

)
| ≥ ϵ.

A.2.6 DETAILS AND PROOF OF LEMMA 1

Lemma 1 (Dummit & Foote (2004)). For any permutation σ ∈ SM , the symmetric group on M
elements:

1. σ can be expressed as a product of disjoint rotation uniquely up to the ordering of the
rotation.

2. σ can be expressed as a product of swaps uniquely up to parity, i.e. the number of odd swaps
is invariant. Swaps with an odd number of occurrences are called odd permutations, and
the rest are even permutations.

This fundamental lemma provides two canonical forms for decomposing permutations in SM : (1)
The disjoint rotation decomposition, unique up to rotation order. (2) The swap decomposition,
unique up to the parity of odd permutations. These decomposition theories will serve as key tools
for studying subgroups of SM and proving results about permutation invariance in this paper.

Proof. 1. We denote by σ(i1) the image of i1 under the permutation σ, that is, i2 = σ(i1)
where i1, i2 ∈ 1, 2, . . . , n.

If i2 = i1, since this is a 1-rotation, i.e. the identity, it can be written as (i1 i1).

If i2 ̸= i1, let i3 = σ(i2). In this case, if i3 ∈ {i1 i2}, due to the bijective property
of σ, we have i3 = i1. Thus, we can deduce a transposition (i1 i2). If i3 /∈ {i1 i2},
let i4 = σ(i3). If this process continues, we can derive an l-cycle (i1 i2 . . . il), where
il+1 = il, and 1 ≤ l ≤ n. If l = n, the proof is complete. If l < n, similarly, we can
obtain a k-cycle, denoted as (j1 j2 . . . jk), where 1 ≤ k ≤ n − l, and (i1 i2 . . . il) and
(j1 j2 . . . jk) have no common numbers. By continuing this process, we can construct the
desired decomposition of σ.

2. According to Lemma 1.1, and (i1 i2 . . . ik) = (i1 ik)(i1 ik−1), . . . , (i1 i2), σ can be de-
composed into a product of a series of permutations. Therefore,

σ =

(
1 2 . . . n
i1 i2 . . . in

)
= σ1σ2 . . . σs = σ′

1σ
′
2 . . . σ

′
t
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where σ1, σ2, . . . , σs, σ
′
1, σ

′
2, . . . , σ

′
t is a permutation, then

σ =

(
1 2 . . . n
i1 i2 . . . in

)
= σ1σ2 . . . σs

(
1 2 . . . n
1 2 . . . n

)
= σ′

1σ
′
2 . . . σ

′
t

(
1 2 . . . n
1 2 . . . n

)
A basic result from linear algebra states that permutations alter the parity of other permuta-
tions they are composed with. Consequently, since σ1σ2 . . . σsσ

′
1σ

′
2 . . . σ

′
t = σ, the parities

of the permutation lengths s and t must agree.

A.2.7 PROOF OF THEOREM 2

Proof. The proof of Theorem 2 can be decomposed into two steps. First, by Theorem 1, we can
obtain that the equivariant continuous function has the following representation form:

f(x1,x2, · · · ,xM ) = ρ

(
M∑
i=1

λiϕ(xi)

)
,

Similarly, the equivariant neural network has the following structure:

Un(x1,x2, · · · ,xM ) = ρn

(
M∑
i=1

λiϕ(xi)

)
,

Let ρ : R2l+1 → R and ρn : R2l+1 → R denote continuous functions, with 2l + 1 > 3M . Let
{λi}Mi=1 satisfy the G-condition, and ϕ(x) =

(
∥x∥lYℓm

(
x

∥x∥

))
m∈{−l,··· ,l}

. Defining Φ(x) =

M∑
i=1

λiϕ(xi), since XM is a compact set, the continuity of ϕ implies Φ(XM ) is also compact.

Secondly, since ρ and ρn are continuous functions, the universal approximation theorem for neural
networks guarantees the existence of a sequence ρn that approximates ρ. Further, as XM is com-
pact, continuity of Φ implies Φ(XM ) is compact. By the Stone-Weierstrass theorem, there exists a
sequence ρn that uniformly approximates ρ on the compact set.

A.3 PROOF OF EQUIVALENCE

A.3.1 PROOF OF THEOREM 7

To prove Theorem 7, we will first relate SM -equivariant continuous functions to general continuous
functions. Leveraging known representation results for continuous functions, we can then deduce
the stated conclusion as follows.
Theorem 10. Let X ⊂ R3 be a compact set. If a continuous function F : XM → RM is SO(3)×
SM -equivariant, then for any k ∈ 1, 2, . . . ,M , there exists a continuous SO(3) × StabSM

(k)-
invariant function f : RM → R such that

F = (f ◦ (k 1), f ◦ (k 2), . . . , f ◦ (k M))⊤.

Proof. Sufficiency: First let F = (f ◦ (k; 1), f ◦ (k; 2), . . . , f ◦ (k;M))⊤. Since (k; i) ∈ SM

commutes with SM for any i ∈ [1,M ], for any σ ∈ SM ,

f(k; i)(σx) = f ◦ σ(k; i)(x)

Since f is a StabSM
(k)-invariant function, the following equality holds

f ◦ σ(k; i)(x) = f ◦ (k;σ(i))(x)
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This indicates that F ◦ σ(x) = σ ◦ F (x), and the SO(3)-invariance is given, so this shows it is a
SO(3)× SM -equivariant function.

Necessity: Without loss of generality, we only needs to prove the case of k = 1. For any σ ∈ SM ,
since the mapping f is a SO(3)× SM -equivariant mapping,

F ◦ σ(x) = σ ◦ F (x). (4)

Let F (x) = (f1(x), f2(x), . . . , fM (x)), then
F ◦ (σx) = (f1(σx), f2(σx), . . . , fM (σx)).

According to equation (4), we can deduce

(f1(σx), f2(σx), . . . , fM (σx)) = σ ◦ (f1(x), f2(x), . . . , fM (x))

(f1(σx), f2(σx), . . . , fM (σx)) = σ ◦ (f1(x), f2(x), . . . , fM (x))

that is, for any integer i ∈ [1,M ], it holds that fi(σx) = fσ(i)(x). Taking σ = (1 j), and letting j
go from 1 to M , we can obtain f1((1; j)x) = fj(x), fj((1; j)x) = f1(x), and for n ∈ [1,M ], and
n ̸= 1, j, fn((1; j)x) = fn(x). This indicates that for j = [1,M ], it holds fj(x) = f1((1; j)x),
and f1(x) is a SO(3)× StabSM

(1)-invariant function.

Corollary 3. If a function f : XM → R is a SO(3) × StabSM
(k)-invariant continuous function,

where X is a compact set and X ⊂ R3, if and only if f has the following representation:

f(x1,x2, · · · ,xM ) = ρ

λ1ϕ(xk) + λ2(

M∑
i=1,i̸=k

ϕ(xi))

 ,

where ρ : R2l+1 → R is a continuous function, 2l + 1 > 3M , and

ϕ(x) =

(
∥x∥lYℓm

(
x

∥x∥

))
m∈{−l,··· ,l}

.

Proof. Let F (x) = (f1(x), f2(x), . . . , fM (x)). According to Theorem 10, for any integer i ∈
[1,M ], if F is a SO(3) × SM -equivariant continuous function, then if and only if for any k ∈ N
and k ∈ [1,M ], there exists a SO(3) × StabSM

(k)-invariant function f , such that fi = f ◦ (k i).
According to Corollary 3, we can obtain

f(x1,x2, · · · ,xM ) = ρ

xk,

M∑
i=1,i̸=k

ϕ(xi)

 ,

where ρ : (X ,R2l+1) → R is a continuous function, 2l + 1 > 2(M − 1), and

ϕ(x) =

(
∥x∥lYℓm

(
x

∥x∥

))
m∈{−l,··· ,l}

This proof process is sufficient and necessary, therefore, for any σ ∈ SM , any k ∈ N and k ∈ [1,M ],
if there exists a SO(3)× StabSM

(k)-invariant continuous function ρ : RM → R, then a continuous
mapping F : XM → RM is SO(3)× SM -equivariant.

F (x1,x2, · · · ,xM ) = (ρ ◦ (k 1)(xk,

M∑
i=1,i̸=k

ϕ(xi)), ρ ◦ (k 2)(xk,

M∑
i=1,i̸=k

ϕ(xi)), . . . ,

ρ ◦ (k M)(xk,

M∑
i=1,i̸=k

ϕ(xi)))
⊤.
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The above equation can be expressed as

F (x1,x2, · · · ,xM ) = ρ
(
Λ
−−→
ϕ(x)

)
,

−−→
ϕ(x) = (ϕ(x1), ϕ(x2), . . . , ϕ(xM )) and

Λ =


λ1 λ2 · · · λ2

λ2 λ1 · · · λ2

...
...

. . .
...

λ2 λ2 · · · λ1

 .

Theorem 7 be solved by this propress.

A.3.2 DETAILS AND PROOF OF THEOREM 11

Theorem 11. Let X ⊂ R3 be a compact set. A continuous mapping F : XM → RM is (i, j)-
equivariant and SO(3)-invariant if and only if for every k ∈ 1, 2, . . . ,M , there exists a continuous
invariant function ρ : R2l+1 → R such that

F (x1,x2, · · · ,xM ) = ρ(Λϕ(x)), (5)

where ϕ(x) = (ϕ(x1), ϕ(x2), . . . , ϕ(xM)), ρ is continuous for some 2l + 1 > 2(M − 1), and

ϕ(x) =

(
∥x∥lY ℓm

(
x

∥x∥

))
m ∈ −l, · · · , l. (6)

The matrix Λ is:

Λ =



λ1 1 · · · λ1 i−1 λ1 λ1 i+1 · · · λ1 j−1 λ1 λ1 j+1 · · · λ1 M

... · · ·
. . .

...
...

. . .
...

...
...

. . .
...

λi−1 1 · · · λi−1 i−1 λi−1 λi−1 i+1 · · · λi−1 j−1 λi−1 λi−1 j+1 · · · λi−1 M

λi 1 · · · λi i−1 λi λi i+1 · · · λi j−1 λi λi j+1 · · · λi M

λi+1 1 · · · λi+1 i−1 λi+1 λi+1 i+1 · · · λi+1 j−1 λi+1 λi+1 j+1 · · · λi+1 M

... · · ·
. . .

...
...

. . .
...

...
...

. . .
...

λj−1 1 · · · λj−1 i−1 λj−1 λj−1 i+1 · · · λj−1 j−1 λj−1 λj−1 j+1 · · · λj−1 M

λj 1 · · · λj i−1 λj λj i+1 · · · λj j−1 λj λj j+1 · · · λj M

λj+1 1 · · · λj+1 i−1 λj+1 λj+1 i+1 · · · λj+1 j−1 λj+1 λj+1 j+1 · · · λj+1 M

... · · ·
. . .

...
...

. . .
...

...
...

. . .
...

λM 1 · · · λM i−1 λM λM i+1 · · · λM j−1 λM λM j+1 · · · λM M


Proof. We first establish SO(3)-invariance. Suppose F (x) = (f1(x), . . . , fM (x)) where each
fk : X → R. Then F is (i, j)-equivariant if and only if F ((i, j)x) = (i, j)F (x). This implies
each component fk is (i, j)-invariant. Specifically, when k ̸= i, j, we have fj(x) = fi((i, j)x) and
fi(x) = fj((i, j)x). Taking ρ(x) = fi(x), we can represent F as:

fk(x) =


fi(x) = ρ(x) = ρ((i i)x), when k = i

fj(x) = ρ((i j)x) = ρ ◦ ((i j)x), when k = j

fk(x) is a SO(3)× (i j)-invariant function, when k ̸= i, j

According to Corollary 1, when k ̸= i, j, there exist continuous functions ρk : (XM−2,R2l+1) →
R, where 2l > 1, ϕ(x) =

(
∥x∥lYℓm

(
x

∥x∥

))
m∈−l,··· ,l

, such that,

f(x1,x2, · · · ,xM ) = ρ
( M∑
s=1,s ̸=i,j

λsϕ(xs) + λ(ϕ(xi) + ϕ(xj))
)
,
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Therefore, F (x) can be represented by the invariant continuous function ρ : R2l+1 → R as,

F (x1,x2, · · · ,xM ) = ρ(Λ
−−→
ϕ(x))

where
−−→
ϕ(x) = (ϕ(x1), ϕ(x2), . . . , ϕ(xM )), A is a M×M matrix, ρ : R2l+1 → RM is a continuous

function, 2l + 1 > 3(M − 1), and the Λ matrix is as follows

Λ =



λ1 1 · · · λ1 i−1 λ1 λ1 i+1 · · · λ1 j−1 λ1 λ1 j+1 · · · λ1 M

... · · ·
. . .

...
...

. . .
...

...
...

. . .
...

λi−1 1 · · · λi−1 i−1 λi−1 λi−1 i+1 · · · λi−1 j−1 λi−1 λi−1 j+1 · · · λi−1 M

λi 1 · · · λi i−1 λi λi i+1 · · · λi j−1 λi λi j+1 · · · λi M

λi+1 1 · · · λi+1 i−1 λi+1 λi+1 i+1 · · · λi+1 j−1 λi+1 λi+1 j+1 · · · λi+1 M

... · · ·
. . .

...
...

. . .
...

...
...

. . .
...

λj−1 1 · · · λj−1 i−1 λj−1 λj−1 i+1 · · · λj−1 j−1 λj−1 λj−1 j+1 · · · λj−1 M

λj 1 · · · λj i−1 λj λj i+1 · · · λj j−1 λj λj j+1 · · · λj M

λj+1 1 · · · λj+1 i−1 λj+1 λj+1 i+1 · · · λj+1 j−1 λj+1 λj+1 j+1 · · · λj+1 M

... · · ·
. . .

...
...

. . .
...

...
...

. . .
...

λM 1 · · · λM i−1 λM λM i+1 · · · λM j−1 λM λM j+1 · · · λM M


and

ϕ(x) =

(
∥x∥lYℓm

(
x

∥x∥

))
m∈{−l,··· ,l}

.

This proof is sufficient and necessary. The SO(3)-invariant can be guaranteed by Dym & Maron
(2020).

A.3.3 PROOF OF THEOREM 4

Proof. To establish the result, we first consider G-invariance. By Theorem 4, for any σ ∈ G, there
exists a continuous representation of F satisfying the desired equivariance.

First, this paper discusses the permutation with n = 2, which is the swap. This paper proves this
result by induction. This paper considers the permutation σ = (i j), so it is an (i j)-equivariant
and SO(3)-invariant continuous function. According to Theorem 11 in Appendix A.3.2, there exist
continuous functions ρk : (XM−2,R2l+1) → R and continuous function ρ : RM → R, satisfying,

F (x1,x2, · · · ,xM ) = ρ(Λ
−−→
ϕ(x))

where
−−→
ϕ(x) = (ϕ(x1), ϕ(x2), . . . , ϕ(xM )), A is a M×M matrix, ρ : R2l+1 → RM is a continuous

function, 2l + 1 > 3(M − 1),

Λ =



λ1 1 · · · λ1 i−1 λ1 λ1 i+1 · · · λ1 j−1 λ1 λ1 j+1 · · · λ1 M

... · · ·
. . .

...
...

. . .
...

...
...

. . .
...

λi−1 1 · · · λi−1 i−1 λi−1 λi−1 i+1 · · · λi−1 j−1 λi−1 λi−1 j+1 · · · λi−1 M

λi 1 · · · λi i−1 λi λi i+1 · · · λi j−1 λi λi j+1 · · · λi M

λi+1 1 · · · λi+1 i−1 λi+1 λi+1 i+1 · · · λi+1 j−1 λi+1 λi+1 j+1 · · · λi+1 M

... · · ·
. . .

...
...

. . .
...

...
...

. . .
...

λj−1 1 · · · λj−1 i−1 λj−1 λj−1 i+1 · · · λj−1 j−1 λj−1 λj−1 j+1 · · · λj−1 M

λj 1 · · · λj i−1 λj λj i+1 · · · λj j−1 λj λj j+1 · · · λj M

λj+1 1 · · · λj+1 i−1 λj+1 λj+1 i+1 · · · λj+1 j−1 λj+1 λj+1 j+1 · · · λj+1 M

... · · ·
. . .

...
...

. . .
...

...
...

. . .
...

λM 1 · · · λM i−1 λM λM i+1 · · · λM j−1 λM λM j+1 · · · λM M


and

ϕ(x) =

(
∥x∥lYℓm

(
x

∥x∥

))
m∈{−l,··· ,l}

.
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Therefore, for any σ = (i, j), we can obtain the corresponding representation.

Then we takes Φ(x) = Λ
−−→
ϕ(x). Since XM is a compact set, Φ(XM ) is also a compact set.

Assume there exists a continuous representation of the permutation (i1 i2 . . . in−1), discussing
(i1 i2 . . . in), because (i1 i2 . . . in) = (i1 i2)(i1 i3 i4 . . . in), and (i1 i3 i4 . . . in) is a permutation
of n − 1 elements. Therefore, this paper can infer that it has a continuous representation of the n-
permutation, which satisfies the G-equivariant condition. The α-equivariance can be guaranteed in
Maron et al. (2020).

A.3.4 PROOF OF THEOREM 5

Proof. For any subgroup G of the permutation group SM , this paper can obtain the following results.
According to Theorem 4, this paper can obtain the function F has a representation,

F (x1,x2, · · · ,xM ) = ρ
(
Λ
−−→
ϕ(x)

)
,

and Un has the following representation,

Un(x1,x2, · · · ,xM ) = ρn

(
Λ
−−→
ϕ(x)

)
,

where
−−→
ϕ(x) = (ϕ(x1), ϕ(x2), . . . , ϕ(xM )), ρ : R2l+1 → RM is a continuous function, 2l + 1 >

3M , Λ satisfies the G-equivariant condition and

ϕ(x) =

(
∥x∥lYℓm

(
x

∥x∥

))
m∈{−l,··· ,l}

.

We denotes Λ
−−−→
ϕ(X) as Φ(x), where XM is a compact set. Therefore, the set Φ(XM ) is also com-

pact.

Secondly, since ρ and ρn are both continuous functions, this paper can use the universal approx-
imation theorem of neural networks to obtain a sequence of functions ρn that can approximate ρ.
Because XM is a compact set, the set Φ(XM ) is also compact. Therefore, this paper can use ρn
to achieve uniform approximation of ρ. Therefore, this paper can conclude that G-equivariant and
SO(3)-invariant neural networks have the ability to approximate G-equivariant and SO(3)-invariant
continuous functions.
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