
A Extended Experimental Setup

We provide an extended version of the Experimental Setup from Section 5 below.

Linear Model This domain involves learning a linear model when the underlying mapping be-
tween features and predictions is cubic. Concretely, the aim is to choose the top B = 1 out of
N = 50 resources using a linear model. The fact that the features can be seen as 1-dimensional
allows us to visualize the learned models (as seen in Figure 4).

Predict: Given a feature xn ⇠ U [0, 1], use a linear model to predict the utility ŷ of choosing resource
n, where the true utility is given by yn = 10x3

n � 6.5xn. Combining predictions yields ŷ =
[ŷ1, . . . , ŷN ]. There are 200 (x,y) pairs in each of the training and validation sets, and 400 (x,y)
pairs in the test set.

Optimize: Given these predictions, choose the B = 1 (budget) resources with the highest utility:

z
⇤(ŷ) = arg topk (ŷ).

Surrogate: Because the argmax operation is piecewise constant, DFL requires a surrogate—we use
the soft Top-K proposed by Xie et al. [27] that reframes the Top-K problem with entropy regulariza-
tion as an optimal transport problem. Note that this surrogate is not convex in the predictions.

Intuition: With limited model capacity, you cannot model all the data accurately. Better performance
can be achieved by modeling the aspects of the data that are most relevant to decision-making—in
this case, the behavior of the top 2% of resources. Such problems are common in the explainable
AI literature [21, 10, 12] where predictive models must be interpretable and so model capacity is
limited.

Web Advertising This is a submodular optimization task taken from Wilder et al. [25]. The aim
is to determine on which B = 2 websites to advertise given features about M = 5 different web-
sites. The predictive model being used is a 2-layer feedforward neural network with an intermediate
dimension of 500 and ReLU activations.

Predict: Given features xm associated with some website m, predict the clickthrough rates (CTRs)
for a fixed set of N = 10 users ŷm = [ŷm,1, . . . , ŷm,N ]. These CTR predictions for each of the
M = 5 websites are stitched together to create an M ⇥N matrix of CTRs ŷ. The task is based on
the Yahoo! Webscope Dataset [28] which contains multiple CTR matrices. We randomly sample M
rows and N columns from each matrix and then split the dataset such that the training, validation
and test sets have 80, 20 and 500 matrices each. To generate the features xm for some website m,
the true CTRs ym for the website are scrambled by multiplying with a random N ⇥ N matrix A,
i.e., xm = Aym.

Optimize: Given this matrix of CTRs, determine on which B = 2 (budget) websites to advertise
such that the expected number of users that click on the advertisement at least once is maximized:

z
⇤(ŷ) = argmax

z

1

N

NX

j=0

(1�
MY

i=0

(1� zi · ŷij))

s.t.
MX

i=0

zi  B and zi 2 {0, 1}, for i 2 {1, . . . , M}

Surrogate: Instead of requiring that zi 2 {0, 1}, the multi-linear relaxation suggested in Wilder et al.
[25] allows fractional values. However, while this relaxation may allow for non-zero gradients, the
induced DL is non-convex because the term

QM
i=0(1� zi · ŷij) in the objective is non-convex in the

predictions.

Intuition: In practice, the CTR values are so small that you can approximate
QM

i=0(1 � zi · ŷij) ⇡
1 � zi ·

PM
i=0 ŷij because the product terms are almost zero, i.e., ŷij ⇤ ŷi0j ⇡ 0. As a result, the

goal is to accurately predict
PM

i=0 yij , the sum of CTRs across all the users for a given website.
However, because the input features for every yij are the same xi, the errors are correlated. As a
result, when you add up the values the errors do not cancel out, leading to biased estimates.

14



Portfolio Optimization This is a Quadratic Programming domain popular in the literature [7, 24]
because it requires no relaxation in order to run DFL. The aim is to choose a distribution over
N = 50 stocks in a Markowitz portfolio optimization setup [17, 19] that maximizes the expected
profit minus a quadratic risk penalty. The predictive model being used is a 2-layer feedforward
neural network with a 500-dimensional intermediate layer using ReLU activations, followed by an
output layer with a ‘tanh’ activation.

Predict: Given historical data xn about some stock n at time-step t, predict the stock price yn at
time-step t + 1. Combining the predictions ŷn across a consistent set of N = 50 stocks together
yields ŷ = [ŷ1, . . . , ŷN ]. We use historical price and volume data of S&P500 stocks from 2004 to
2017 downloaded from the QuandlWIKI dataset [22] to generate x and y. There are 200 (x,y)
pairs in each of the training and validation sets, and 400 (x,y) pairs in the test set.

Optimize: Given a historical correlation matrix Q between pairs of stocks, choose a distribution z

over stocks such that the future return z
T
y is maximized subject to a quadratic risk penalty ŷ

TQŷ:

z
⇤(ŷ) = argmax

z
z
T
y � � · zTQz

s.t.
NX

i=0

zi  1 and 0  zi  1, for i 2 {1, . . . , N}

where � = 0.1 is the risk aversion constant. The intuition behind the penalty is that if two stocks
have strongly correlated historical prices, the penalty will be higher, forcing you to hedge your bets.

Intuition Along the lines of Cameron et al. [5], DFL is able to take into account the correlations in
predictions between the N different stocks, while 2-stage is not.

Computation Infrastructure

We ran 100 samples for each (method, domain) pair—we used 10 different random seeds to generate
the domain, and for each random seed we trained the LODLs and the predictive model M✓ for 10
random intializations. We ran all the experiments in parallel on an internal cluster. Each individual
experiment was performed on an Intel Xeon CPU with 64 cores and 128 GB memory.

B Detailed Experimental Results

B.1 Visualizing the Linear Model Domain

Figure 4: Graphs showing the true (blue) and 100 learned (orange) mappings between the features
and predictions in the Linear Model domain. 2-stage does badly, DFL typically learns the correct
slope but can sometimes randomly fail, and DirectedQuadratic does well.

(a) 2-Stage (b) DFL (c) DirectedQuadratic

15



B.2 Ablations

Table 3: Ablations across (a) different sampling methods and (b) different number of samples in the
Web Advertising domain. The best sampling strategy is loss family-specific, while increasing the
number of samples uniformly improves the performance.

(a) Across Sampling Strategies

Approach
Normalized Test DQ

1-Perturbed 2-Perturbed All-Perturbed

NN 0.86± 0.12 0.89± 0.09 0.80± 0.16
WeightedMSE 0.50± 0.14 0.53± 0.14 0.58± 0.15

DirectedWeightedMSE 0.47± 0.15 0.53± 0.16 0.50± 0.13
Quadratic 0.77± 0.25 0.88± 0.10 0.92± 0.05

DirectedQuadratic 0.77± 0.19 0.84± 0.11 0.85± 0.08

(b) Across Number of Samples

Approach
Normalized Test DQ

50 samples 500 samples 5000 samples

NN 0.81± 0.13 0.80± 0.16 0.81± 0.14
WeightedMSE 0.50± 0.14 0.50± 0.14 0.53± 0.14

DirectedWeightedMSE 0.48± 0.15 0.53± 0.16 0.53± 0.150
Quadratic 0.68± 0.17 0.92± 0.05 0.93± 0.04

DirectedQuadratic 0.59± 0.13 0.85± 0.08 0.91± 0.04

B.3 Extending the Results from Section 5.4 to Different Domains

Figure 5 extends the observation that the LODL’s goodness of fit in the Empirical Neighborhood
linearly correlates to improved ‘Decision Quality’ to the different domains considered in this paper.

Figure 5: A figure showing the relationship between the quality of the learned LODL and the per-
formance of a model trained on said loss across different domains.

16


	Introduction
	Background
	Motivating Example

	Related Work
	Locally Optimized Decision Losses (LODL)
	Local Loss Functions
	Representing the LODL
	Learning LODL
	Time Complexity of Learning LODLs

	Experiments
	Results
	Ablations
	Computational Cost of Learning with LODLs
	Correlation between the `quality' of LODL and decision quality

	Discussion and Conclusion
	Extended Experimental Setup
	Detailed Experimental Results
	Visualizing the Linear Model Domain
	Ablations
	Extending the Results from Section 5.4 to Different Domains


