
Diversity-enhanced Probabilistic Ensemble For Uncertainty Estimation
(Supplementary Material)

Hanjing Wang1 Qiang Ji1

1ECSE, Rensselaer Polytechnic Institute, Troy, New York, USA

A PRELIMINARIES

A.1 LAPLACIAN APPROXIMATION

The LA approximates the true posterior of parameters by a Gaussian distribution, i.e., p(θ|D, β) ≈ N (θmap,Σ) where
Σ = −(H)−1 and H = ∇2

θ log p(θ|D, β)|θ=θmap .

Efficiently and accurately calculating the Hessian matrix H is the key of LA. Given a standard Gaussian distribution prior
p(θ|β) = N (0, β2I) where β is the hyperparameter, we can obtain that

∇2
θ log p(θ|D, β) =∇2

θ log p(D|θ) +∇2
θ log p(θ|β)

=
∑

(x,y)∈D

∇2
θ log p(y|x, θ) +

1

β2
I (1)

where I is the identity matrix. Basically, computing the second-order derivatives for highly nonlinear neural networks is
hard and we leverage the Generalized Gauss-Newton Matrix (GGN) [Schraudolph, 2002] to approximate ∇2

θ log p(y|x, θ).
Denote the neural network output as f(x, θ) in general.

∇2
θ log p(y|x, θ) =∇2

θ log p(y|f(x, θ))
≈J(x)∇2

fp(y|f(x, θ))J(x)T
(2)

where J(x) = ∇θf(x, θ) is the Jacobian matrix. However, the large matrix multiplication in Eq. (2) may also lead to
problems, especially for deep learning models. We use the last-layer Laplacian approximation proposed by Kristiadi et al.
[2020], which constructs the posterior approximation only for neural networks’ last-layer weights to reduce computational
complexity. We use the full Hessian matrix without additional factorization assumptions. To avoid tuning the hyperparameter
β, we utilize the marginal likelihood maximization method proposed by Ritter et al. [2018] to do a one-parameter optimization
for β. The loss function is the posterior predictive approximated by LA.

β∗ = argmax
β

∑
(x,y)∈D

log p(y|x,D) (3)

After we compute the Laplacian approximation N (θmap,Σ), we can perform the Bayesian inference in Eq. (4). Given a
new pair of input (x∗, y∗),

p(y∗|x∗,D) =

∫
p(y∗|x∗, θ)p(θ|D, β)dθ ≈

∫
softmax(f(x, θ))N (θ; θmap,Σ)dθ (4)

where softmax(f) = exp(f)∑
j exp(fj)

is the softmax function and Eq. (4) can be solved either by MC sample average or by

probit approximation. Performing the first-order Taylor expansion of f(x, θ) with respect to θ at θmap yields f(x, θ) ≈

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

mailto:<wangh36@rpi.edu>
mailto:<jiq@rpi.edu>

f(x, θmap) + J(x)T (θ − θmap), which indicates that f(x, θ) ∼ N (f(x, θmap),Σ
f) where Σf = J(x)TΣJ(x) ∈ RC×C .

Based on probit approximation,

p(y∗ = c|x∗,D) =
exp(τ (c)(x))∑
j exp(τ

(j)(x))
where τ (j)(x) =

f (j)(x, θ)√
1 + π

8Σ
f
jj

(5)

where f (j)(x, θ) ∈ R is the jth element of f(x, θ) and Σf
jj is the (j, j)th element of Σf .

A.2 UNCERTAINTY QUANTIFICATION

For classification problems, we estimate the epistemic uncertainty and the aleatoric uncertainty by the mutual information
and the expected entropy [Depeweg et al., 2018].

H [p(y|x,D, β)]︸ ︷︷ ︸
Total Uncertainty

= I [y, θ|x,D, β]︸ ︷︷ ︸
Epistemic Uncertainty

+Ep(θ|D,β)

[
H[p(y|x, θ)]

]︸ ︷︷ ︸
Aleatoric Uncertainty

(6)

where H and I represent the entropy and mutual information, respectively. More specifically,

H [p(y|x,D, β)] = H
[
Ep(θ|D,β)[p(y|x, θ)]

]
≈ H

[
1

S

S∑
s=1

p(y|x, θs)

]

Ep(θ|D,β)

[
H[p(y|x, θ)]

]
≈ 1

S

S∑
s=1

H(p(y|x, θs))

(7)

where θs ∼ p (θ|D, β) ≈
∑N

i=1 λiN (θ; θi,Σi) for the probabilistic ensemble model.

B PROBABILISTIC ENSEMBLE PROPOSITIONS

B.1 PROOF OF PROPOSITION 3.1

Proof. We first introduce the Bernstein-von Mises theorem.

Lemma B.1 (Bernstein-von Mises theorem for Laplacian approximation of the posterior distribution [Kleijn and van der
Vaart, 2012, Gelman, 2011]). Under mild regularity conditions (i.e., the likelihood function of θ is continuous,

∑N
i=1 λiθi is

not on the boundary of the parameter space.), as the sample size M → ∞, the posterior distribution of θ approaches its
Laplacian approximation N (θ; θmap,Σ). For example,

sup
θ

|p(θ|D, β)−N (θ; θmap,Σ))| → 0 (8)

Then for the probabilistic ensemble model, θ ∼
∑N

i=1 λiN (θ; θi,Σi)

sup
θ

∣∣∣∣∣p(θ|D, β)−
N∑
i=1

λiN (θ; θi,Σi)

∣∣∣∣∣ = sup
θ

∣∣∣∣∣
N∑
i=1

λi[p(θ|D, β)−N (θ; θi,Σi)]

∣∣∣∣∣
≤

N∑
i=1

λi sup
θ

|p(θ|D, β)−N (θ; θi,Σi)| → 0

(9)

B.2 PROOF OF PROPOSITION 3.2

Proof. The proposed probabilistic ensemble can be an approximate Bayesian method where the Laplacian approximation
bridges the connection of randomization-based ensembles and the Bayesian posterior distribution. Given a set of coefficients
{λi}Ni=1 where λi > 0 and

∑N
i=1 λi = 1,

p(θ|D, β) =

N∑
i=1

λip(θ|D, β) ≈
N∑
i=1

λiN (θ; θi,Σi) (10)

Eq. (10) holds since the Laplacian approximation N (θ; θi,Σi) of the ith ensemble model serves independently as an
approximation of p(θ|D, β). Instead of treating the deep ensemble method as non-Bayesian, we argue that it is necessary to
construct the relationship of the deep ensembles with the parameter posterior. The vanilla approximation of posterior for the
deep ensemble method can be expressed as pDE(θ) =

∑N
i=1 λiδ(θ, θi) where δ(θ, θi) is the delta function that returns 1 if

and only if θ = θi and returns 0 otherwise. Since pDE(θ) is a discrete distribution, there might be a big gap between pDE(θ)
and p(θ|D, β) when θ ̸∈ {θi}Ni=1. For example, the KL divergence between p(θ|D, β) and pDE(θ) is shown in Eq. (11).

KL(p(θ|D, β)||
N∑
i=1

λiδ(θ, θi)) = −H(p(θ|D, β))−
∫

p(θ|D, β) log

N∑
i=1

λiδ(θ, θi)dθ (11)

We can observe that KL(p(θ|D, β)||
∑N

i=1 λiδ(θ, θi)) could be extremely large since log
∑N

i=1 λiδ(θ, θi) → −∞ when
θ ̸∈ {θi}Ni=1. It is mainly because the vanilla approximation does not explore the possible values other than the modes.
Given a limited number of modes, pDE(θ) can be used for a Bayesian prediction but is hard to sketch the complex posterior
distribution. In contrast, the PE model extends the deep ensemble method for approximate Bayesian inference through
exploring each ensemble subspace, enabling a better posterior approximation.

Then, we show that the KL divergence between p(θ|D, β) and
∑N

i=1 λiN (θ; θi,Σi) is reduced compared to single-network
LA. Based on Jensen’s inequality and the convexity of − log, we have that

KL(p(θ|D, β)||
N∑
i=1

λiN (θ; θi,Σi)) = −H(p(θ|D, β))−
∫

p(θ|D, β) log

N∑
i=1

λiN (θ; θi,Σi)dθ

≤ −H(p(θ|D, β))−
N∑
i=1

λi

∫
p(θ|D, β) logN (θ; θi,Σi)dθ

=

N∑
i=1

λiKL(p(θ|D, β)||N (θ; θi,Σi))

(12)

B.3 PROOF OF PROPOSITION 3.3

Proof. At the beginning of the proof, we introduce a lemma based on Liao and Berg [2018].

Lemma B.2 (Sharpening Jensen’s inequality [Liao and Berg, 2018]). Consider a convex function ϕ(·) and a scalar random
variable z ∈ [a, b]. a, b are finite real numbers. Let µ = E[z] and denote r(z) as the residual term for the first-order Taylor
expansion of ϕ(z) at µ, i.e.,

ϕ(z) = ϕ(µ) + ϕ
′
(µ)(z − µ) + r(z) (13)

There must exist a finite number Cmin such that

E[ϕ(z)]− ϕ(E[z]) ≥ CminV (z) (14)

where V (z) is the variance of z. Especially, Cmin ≥ infz∈[a,b]
ϕ”(z)

2 indicates

E[ϕ(z)]− ϕ(E[z]) ≥ inf
z∈[a,b]

ϕ”(z)

2
V (z) (15)

For Proposition 3.3, let ϕ(z) = − log z which is a convex function. Given an input x and the groundtruth label y ∈
{1, 2, ..., C}, let z = p(y|x, θ) ∈ [0, 1] where θ are the probabilistic ensemble random parameters that follow a mixture of
Gaussian distribution. Following lemma B.2, we have the following lower bound for the Jensen’s inequality gap.

Eθ[− log p(y|x, θ)]− [− logEθ[p(y|x, θ)]] ≥ inf
θ

1

2p(y|x, θ)2
Vθ[p(y|x, θ)] (16)

B.4 PROOF OF PROPOSITION 3.4

Proof. First, the vanilla approximation of posterior for the deep ensemble method can be expressed as pDE(θ) =∑N
i=1 λiδ(θ, θi) where δ(θ, θi) is the delta function that returns 1 if and only if θ = θi and returns 0 otherwise. The

mean and variance based on pDE(θ) are shown in Eq. (17).

µD = Eθ∼pDE(θ)[θ] =

N∑
i=1

λiθi

ΣD = Covθ∼pDE(θ)[θ] = Eθ∼pDE(θ)[θθ
T]− µµT =

N∑
i=1

λiθiθ
T
i − µDµT

D

(17)

For the probabilistic ensemble θ ∼
∑N

i=1 λiN (θ; θi,Σi), we have that

µP = Eθ∼pPE(θ)[θ] =

N∑
i=1

λiθi = µD

ΣP = Covθ∼pPE(θ)[θ] = Eθ∼pPE(θ)[θθ
T]− µµT =

N∑
i=1

λiEθ∼N (θ;θi,Σi)[θθ
T]− µPµ

T
P

=

N∑
i=1

λi(θiθ
T
i +Σi)− µPµ

T
P = ΣD +

N∑
i=1

λiΣi ≥ ΣD

(18)

where ΣP ≥ ΣD means ΣP −ΣD is positive semi-definite. Eq. (18) shows that the probabilistic ensemble model has better
diversity in terms of variance.

B.5 PROOF OF PROPOSITION 3.5

Proof. In the beginning, we introduce three lemmas.

Lemma B.3 (From [Hein et al., 2019]. This is also stated in Lemma A.1 in [Kristiadi et al., 2020]). Denote {Qi}Ri=1 be
the set of linear regions associated to the ReLU network f : R|x| → RC . For any x ∈ R|x|, there exists an α > 0 and
t ∈ {1, 2, ..., R} such that δx ∈ Qt for all δ ≥ α. Furthermore, the restriction of f to Qt can be written as an affine function
WTx+ q for some suitable W ∈ R|x|×C and q ∈ RC .

Lemma B.4 (From Lemma A.2 in [Kristiadi et al., 2020]). Let A ∈ Rd1×d2 and z ∈ Rd1 with d1 ≥ d2, then we have
||Az||2 ≥ s2min(A)||z||2 where smin(A) is the minimum singular value of A.

Lemma B.5 (From Lemma A.3 in [Kristiadi et al., 2020]). Let A ∈ Rd×d be an SPD matrix and z ∈ Rd, then we have
zTAz ≥ λmin(A)||z||2, where λmin(A) is the minimum eigenvalue of A.

Before proving Proposition 3.5, we use the above three lemmas to prove Lemma B.6 first.

Lemma B.6. Let fθ : R|x| → RC be a ReLU network for multi-class classification parameterized by θ. Let |x| represent
the dimension of x and θ ∼ N (θ;µ,Σ) by LA. Then for any input x, the estimated probability based on multi-class probit
approximation shown in Eq. (5) fulfills

lim
η→∞

|τ (c)(δx)| ≤ ||w(c)||
smin(J (c))

√
π
8λmin(Σ)

c = 1, 2, · · · , C (19)

where w = [w(1), w(2), · · · , w(C)] ∈ R|x|×C is a matrix that only depends on µ. J (j) = ∂w(j)

∂θ |θ=µ is the Jacobian matrix
of w(j) with respect to θ at θ = µ. λmin(Σ) is the minimum eigenvalue while smin represents the minimum singular value.

Proof. We follow the proof of Theorem 2.3 in [Kristiadi et al., 2020], where they focus on binary classification problems
and we extend it to the multi-class cases.

By Lemma B.3, there must exist α ≥ 0 and a linear region R such that δx ∈ R for all δ ≥ α. We have the restriction
fθ|R that can be expressed as fθ|R(x) = wTx + q where w = [w(1), w(2), · · · , w(C)] ∈ R|x|×C and q ∈ RC . w, q can
be regarded as constants with respect to δx that only depend on µ. Let fθ(δx) = [f

(1)
θ (δx), f

(2)
θ (δx), ..., f

(C)
θ (δx)]T and

q = [q(1), q(2), ..., q(C)]T . The gradient of f (c)
θ (δx)(c = 1, 2, ..., C) with respect to θ = µ can be expressed as

dc(δx) =
∂δw(c)T x+ q(c)

∂θ
|µ = δ(

∂w(c)

∂θ
|Tµx+

1

δ

∂q(c)

∂θ
|µ) := δ(J (c)T x+

1

δ
∇θq

(c)|µ) (20)

Then based on the multi-class probit approximation shown in Eq. (5), we have

|τ (c)(δx)| = |δw(c)T x+ q(c)|√
1 + π

8 dc(δx)
TΣdc(δx)

=
|δ(w(c)T x+ 1

δ q
(c))|√

1 + π
8 δ

2(J (c)T x+ 1
δ∇θq(c)|µ)TΣ(J (c)T x+ 1

δ∇θq(c)|µ)

=
|w(c)T x+ 1

δ q
(c)|√

1
δ2 + π

8 (J
(c)T x+ 1

δ∇θq(c)|µ)TΣ(J (c)T x+ 1
δ∇θq(c)|µ)

(21)

When δ → ∞, Eq. (21) becomes

lim
δ→∞

|τ (c)(δx)| = |w(c)T x|√
π
8 (J

(c)T x)TΣ(J (c)T x)
(22)

Then by using Lemma B.4 and B.5 with Cauchy-Schwarz inequality, and noting that smin(J
(c)) = smin(J

(c)T), we have

lim
δ→∞

|τ (c)(δx)| = ||w(c)T x||√
π
8 (J

(c)T x)TΣ(J (c)T x)

≤ ||w(c)|| ||x||√
π
8λmin(Σ)||J (c)T x||2

≤ ||w(c)|| ||x||√
π
8λmin(Σ)s2min(J

(c)T)||x||2
=

||w(c)||
smin(J (c))

√
π
8λmin(Σ)

(23)

Given a probabilistic ensemble model with N components, let fθi : R|x| → RC be a ReLU network for multi-class
classification parameterized by θi (i = 1, 2, ..., N). For probabilistic ensemble model, we have θ ∼

∑N
i=1 λiN (θ; θi,Σi).

Based on Eq. (5) and Lemma B.6, we have the following property for a single model fθi .

lim
δ→∞

pi(y = c|δx,D) =
exp(τ

(c)
i (δx))∑C

j=1 exp(τ
(j)
i (δx))

=
1

1 +
∑

j ̸=c exp(τ
(j)
i (δx)− τ

(c)
i (δx))

≤ 1

1 +
∑

j ̸=c exp(−|τ (j)i (δx)| − |τ (c)i (δx)|)

≤ 1

1 +
∑

j ̸=c exp

{
− ||w(j)

i ||
smin(J

(j)
i)

√
π
8 λmin(Σi)

− ||w(c)
i ||

smin(J
(c)
i)

√
π
8 λmin(Σi)

}
(24)

where wi = [w
(1)
i , w

(2)
i , · · · , w(C)

i] ∈ R|x|×C is a matrix that only depends on θi. J
(j)
i =

∂w
(j)
i

∂θ |θ=θi is the Jacobian matrix
of w(j)

i with respect to θ at θ = θi.

Then for the probabilistic ensemble θ ∼
∑N

i=1 λiN (θ; θi,Σi)

lim
δ→∞

pPE(y = c|δx,D) = lim
δ→∞

∫
p(y = c|δx, θ)

N∑
i=1

λiN (θ; θi,Σi)dθ

= lim
δ→∞

N∑
i=1

λi

∫
p(y = c|δx, θ)N (θ; θi,Σi)dθ

= lim
δ→∞

N∑
i=1

λipi(y = c|δx,D)

≤
N∑
i=1

λi

1 +
∑

j ̸=c exp

{
− ||w(j)

i ||
smin(J

(j)
i)

√
π
8 λmin(Σi)

− ||w(c)
i ||

smin(J
(c)
i)

√
π
8 λmin(Σi)

}

(25)

Letting

t
(k)
i =

||w(k)
i ||

smin(J
(k)
i)

√
π
8λmin(Σi)

k = 1, 2, · · · , C

we have

lim
η→∞

pPE(y = c|ηx) ≤
N∑
i=1

λi

1 +
∑

j ̸=c exp{−t
(j)
i − t

(c)
i }

(26)

C ADAPTIVE UNCERTAINTY-GUIDED ENSEMBLE LEARNING PROPOSITION

C.1 PROOF OF PROPOSITION 3.6

Proof. In fact, let f be any classifier with input x and denote y as the corresponding label. Following Hellman and Raviv
[1970], we have

Pr(y ̸= f(x)) ≤ H(y)−MI(x, y)

2
=

1

2
H(y|x) (27)

where MI(x, y) is the mutual information between x and y. Note that H(y|x) = H[Eθ[p(y|x, θ)]] is the total uncertainty,
which is positively correlated with the prediction error. It indicates that minimizing the total uncertainty can lead to a better
prediction error bound. Since total uncertainty is the sum of epistemic uncertainty and irreducible aleatoric uncertainty, the
epistemic uncertainty is also positively correlated with the prediction error.

D DERIVATIONS FOR MOG REFINEMENT

In this section, we provide detailed derivations for the E-step and M-step.

E-step: construct the expected loss function of latent variable Z. Based on Eq. (13) of the main body of the paper.

Q(ϕ|ϕ0,D) =

M∑
m=1

N∑
i=1

p(Z = i|Dm, ϕ0) log
p(Dm, Z = i|ϕ)
p(Z = i|Dm, ϕ0)

∝
M∑

m=1

N∑
i=1

p(Z = i|Dm, ϕ0) log p(Dm, Z = i|ϕ)

=

M∑
m=1

N∑
i=1

p(Z = i|Dm, ϕ0)[log p(Dm|Z = i, ϕ) + log p(Z = i|ϕ)]

=

M∑
m=1

N∑
i=1

p(Z = i|Dm, ϕ0)[log p(ym|xm, θi,Σi) + log λi]

(28)

where

p(Z = i|Dm, ϕ0) =
p(Dm|Z = i, ϕ0)p(Z = i|ϕ0)∑
j p(Dm|Z = j, ϕ0)p(Z = j|ϕ0)

=
λ0
i p(ym|xm, Z = i, ϕ0)∑

j λ
0
jp(ym|xm, Z = j, ϕ0)

=
λ0
i p(ym|xm, θ0i ,Σ

0
i)∑

j λ
0
jp(ym|xm, θ0j ,Σ

0
j)

=
λ0
i

∫
p(ym|xm, θ)N(θ; θ0i ,Σ

0
i)dθ∑

j λ
0
j

∫
p(ym|xm, θ)N(θ; θ0j ,Σ

0
j)dθ

(29)

and

p(ym|xm, θi,Σi) =

∫
p(ym|xm, θ)N(θ; θi,Σi)dθ (30)

which can be approximated either by MC sampling or probit approximation shown in Eq. (5).

M-step: obtain the parameters ϕ by maximizing Q(ϕ|ϕ0,D), which include optimizing {λi}Ni=1, {θi}Ni=1, and {Σi}Ni=1

M-step for {λi}Ni=1 Conditioned on
∑N

i=1 λi = 1, we add a Lagrangian multiplier with coefficient α to Q(ϕ|ϕ0,D) to
solve the constrained problem.

Q̂(ϕ|ϕ0,D) =

M∑
m=1

N∑
i=1

p(Z = i|Dm, ϕ0)[log p(ym|xm, θi,Σi) + log λi]− α

(
N∑
i=1

λi − 1

)
(31)

To learn {λi}Ni=1, we force the gradients of Q̂(ϕ|ϕ0,D) with respect to {λi}Ni=1 and α equal to 0 shown in Eq. (32).

∂Q̂

∂λi
=

M∑
m=1

p(Z = i|Dm, ϕ0)

λi
− α = 0 i = 1, 2, ..., N

∂Q̂

∂α
=

N∑
i=1

λi − 1 = 0

(32)

Eq. (32) indicates

λ∗
i =

∑M
m=1 p(Z = i|Dm, ϕ0)∑M

m=1

∑N
j=1 p(Z = j|Dm, ϕ0)

(33)

M-step for {θi}Ni=1 Based on Eq. (28), we can observe that maximizing Q(ϕ|ϕ0,D) with respect to θ is equal to
maximizing the Q(θi|ϕ0,D) independently. Q(θi|ϕ0,D) is shown in Eq. (34).

Q(θi|ϕ0,D) =

M∑
m=1

p(Z = i|Dm, ϕ0) log p(ym|xm, θi,Σi) (34)

where p(Z = i|Dm, ϕ0) is the membership weight of data pair (xm, ym) belonging to the ith ensemble component N(θi,Σi).
Noting that Σi can always be computed by Laplacian approximation in a post-processing manner in our framework, we only
need to optimize θi in a deterministic way and the loss function is shown in Eq. (35).

Q̂(θi|ϕ0,D) =

M∑
m=1

p(Z = i|Dm, ϕ0) log p(ym|xm, θi) (35)

where p(ym|xm, θi) is the softmax probability generated directly by ith ensemble component. Due to the uncertainty-
guided ensemble training strategy, different ensemble models will focus on different samples, leading to different p(Z =
i|Dm, ϕ0), i = 1, 2, ..., N . Directly optimizing Q̂(θi|ϕ0,D) will strengthen the samples that each model focuses on, which
implicitly enhances the diversity. To further improve the diversity, we can assign each data sample to its top l nearest
component based on p(Z = i|Dm, ϕ0). For example, let’s assume p(Z = 1|Dm, ϕ0) > p(Z = 2|Dm, ϕ0) > · · · > p(Z =
N |Dm, ϕ0) and l = 2. We will assign (xm, ym) to the first and second ensemble components. Then we can fine-tune each
ensemble model with a higher concentration of the data samples they receive by performing the stochastic gradient ascent.
The loss function is shown in Eq. (36):

θ∗i = argmax
θi

M∑
m=1

softmax(Il[p(Z = i|Dm, ϕ0)]) log p(ym|xm, θi) (36)

where Il is the indicator function, which returns 1 if p(Z = i|Dm, ϕ0) is the top l largest among all {p(Z = j|Dm, ϕ0)}Nj=1

and returns 0 otherwise. The softmax function is applied for each batch of the data to ensure that the sum of the weights
equals to 1, which is similar to Eq. (12) of the main body of the paper.

M-step for {Σi}Ni=1 Once we have θ∗i , we perform the LA to get Σ∗
i .

E EXPERIMENT SETTINGS AND IMPLEMENTATION

E.1 MODEL ARCHITECTURE AND HYPERPARAMETERS

For the MNIST dataset, we use the architecture: Conv2D-Relu-Conv2D-Relu-MaxPool2D-Dense-Relu-Dropout-Dense-
Softmax. Each convolutional layer contains 32 convolution filters with 4× 4 kernel size. We use a max-pooling layer with a
2× 2 kernel, a dense layer with 128 units, and a dropout probability of 0.5. For the CIFAR-10 dataset, we use ResNet18.
We use the SGD optimizer with an initial learning rate of 0.1 and momentum of 0.9 for both MNIST and CIFAR-10. For
CIFAR-10, we decrease the learning rate to 0.01,0.001,0.0001 at the 30th, 60th, and 90th epochs while there is no learning
rate decrease for MNIST. For MNIST, the batch size is set to 128 and the maximum epoch is 30. For CIFAR-10, the batch
size is 128 and the maximum epoch is 120. We perform the standard data augmentation techniques for CIFAR-10 dataset
including random cropping and random horizontal flipping. For constructing the probabilistic ensemble, we use the last-layer
LA implemented by Daxberger et al. [2021], which can be found at https://github.com/AlexImmer/Laplace.
We generate 200 samples from the mixture of Gaussian model for uncertainty quantification. Regarding to the uncertainty-
guided ensemble learning strategy, we use a = 0.05, b = 1 as hyperparameters. We utilize uniform coefficients during
AUEL when constructing the PE model for estimating uncertainty to guide the training of the next model. For the MoG
refinement, we choose l = 2 for the PE model with 5 components. All the ensemble models have size 5. Each experiment is
conducted over 3 independent runs and the standard derivations are also reported. We utilize an RTX2080Ti GPU to do the
experiments and the proposed method is implemented using Pytorch.

E.2 IMPLEMENTATION DETAILS

In this section, we will discuss the implementation details for different uncertainty estimation methods. We use the default
hyperparameters in their open-source codes except the hyperparameters mentioned in Appendix E.1.

• ESB: we train ensemble models with random initialization following the experiment settings in Appendix E.1.

• Batch-E: the open-source code can be found in https://github.com/giannifranchi/LP_BNN.

• Hyper-E: we train the ensemble models by varying both the initialization and the weight decay coefficients fol-
lowing the implementation in https://github.com/google/uncertainty-baselines/blob/main/
baselines/notebooks/Hyperparameter_Ensembles.ipynb.

• Bayes-E: we follow the open-source code in https://github.com/TeaPearce/Bayesian_NN_
Ensembles.

• LPBNN: the open-source code can be found in https://github.com/giannifranchi/LP_BNN.

• LA: we use the last-layer LA with full Hessian matrix computation as discussed in Appendix A. We use the existing
software proposed by Daxberger et al. [2021], which can be found at https://github.com/AlexImmer/
Laplace

https://github.com/AlexImmer/Laplace
https://github.com/giannifranchi/LP_BNN
https://github.com/google/uncertainty-baselines/blob/main/baselines/notebooks/Hyperparameter_Ensembles.ipynb
https://github.com/google/uncertainty-baselines/blob/main/baselines/notebooks/Hyperparameter_Ensembles.ipynb
https://github.com/TeaPearce/Bayesian_NN_Ensembles
https://github.com/TeaPearce/Bayesian_NN_Ensembles
https://github.com/giannifranchi/LP_BNN
https://github.com/AlexImmer/Laplace
https://github.com/AlexImmer/Laplace

(a) ACC (b) AUPR

(c) AUROC (d) MCE

Figure 1: Additional uncertainty calibration metrics for rotated MINST dataset.

• Multi-SWAG: we utilize the implementation provided by https://github.com/izmailovpavel/
understandingbdl.

• Diversified-E: we train all the ensemble models simultaneously with a regularization term for the diversity. We extend
the Eq. (4) in [Zhang et al., 2020] for multi-class classification.

• MCT: we implement the Algorithm 1 shown in Appendix C of Lee et al. [2015].

The model architecture, training strategy, and data transformation are the same for all baselines. The specific hyperparameters
for ensemble baselines are chosen following their open-source codes.

F UNCERTAINTY CALIBRATION UNDER DISTRIBUTIONAL SHIFTS

F.1 WITHIN-DATASET PERFORMANCE

The within-dataset performance for different uncertainty quantification methods can be found in Table 1. One key observation
is the superior performance of our proposed method on the CIFAR-10 dataset across multiple metrics. Notably, it achieves a
15% improvement in NLL and a 53% enhancement in ECE. In the case of the MNIST dataset, our method holds its ground
against other ensemble-based approaches, showing comparable results. It is worth noting that our method demonstrates
unique strength in scenarios involving complex datasets where there is a significant distributional shift between training
and testing data. In these circumstances, our approach often yields substantial performance gains. Conversely, in simpler
datasets with minor within-dataset shifts, our method’s performance is on par with other techniques,

F.2 ADDITIONAL RESULTS ON DIFFERENT CALIBRATION METRICS

In this particular section, we present a wealth of supplementary results associated with uncertainty calibration metrics.
Specifically, we will focus on metrics such as AUROC, AUPR, MCE, and ACC for both rotated MNIST and corrupted
CIFAR-10 datasets. Our discussion is further enriched by Figures 1 and 2, which visually depict the performance differences
between our proposed methodology and other competitive techniques across various uncertainty calibration metrics. A

https://github.com/izmailovpavel/understandingbdl
https://github.com/izmailovpavel/understandingbdl

Table 1: Within-dataset performance for ACC(%), NLL(×10−1), ECE(×10−2), BS (×10−3) on MNIST and CIFAR-10.
Each experiment result is aggregated over 3 independent runs.

Method MNIST CIFAR-10
ACC NLL ECE BS ACC NLL ECE BS

Ours 99.43 0.211 0.66 1.0 95.28 1.44 0.35 7.0
ESB 99.41 0.196 0.46 1.0 94.63 1.70 0.75 7.9
Batch-E 98.92 0.352 0.25 1.7 92.66 2.49 3.04 11.3
Hyper-E 99.39 0.190 0.32 1.0 95.13 1.49 0.53 7.2
Bayes-E 99.28 0.236 0.40 1.1 93.94 1.90 0.93 8.9
LPBNN 98.91 0.345 0.35 1.7 93.43 2.30 2.95 10.3
LA 99.13 0.274 0.28 1.3 93.31 2.21 2.03 10.3
Multi-SWAG 99.33 0.234 0.48 1.1 93.71 1.76 0.54 8.8

careful scrutiny of these figures reveals a distinct advantage of our method: it outperforms the competition in a diverse set of
uncertainty calibration metrics.

(a) ACC (b) AUPR

(c) AUROC (d) MCE

Figure 2: Additional uncertainty calibration metrics for corrupted CIFAR-10 dataset.

G VISUALIZATIONS OF DIVERSITY ANALYSIS

In this segment, we supplement our discussion with visual representations relating to both parameter space and prediction
space diversities. Essentially, we utilize Principal Component Analysis (PCA) to render the neural network parameters and
the predictive logits for MNIST testing data into a two-dimensional plane.

We use Ensemble (ESB), Hyper Ensemble (Hyper-E), and Bayesian Ensemble (Bayes-E) as baseline methods for comparative
analysis. The visual depictions, presented pairwise in Figure 3, offer empirical evidence that our proposed technique results
in an enhanced diversity via a probabilistic ensemble supplemented by uncertainty-guided ensemble learning. While the
Bayes-E and Hyper-E can also bolster diversity, our proposed method demonstrates marked enhancement.

(a) PE vs ESB (b) PE vs Bayes-E (c) PE vs Hyper-E

Prediction Space Diversity

Parameter Space Diversity

Figure 3: The visualizations of the prediction space (the first row) and parameter space (the second row) diversity. The
comparison is conducted pairwisely between our proposed method and other ensemble-based methods.

H ABLATION STUDIES AND FURTHER ANALYSIS

H.1 EFFECTIVENESS OF SUB-MODULES

In this section, we provide supplementary experiment results regarding the OOD detection and uncertainty calibration to
further demonstrate the effectiveness of each sub-module, which are shown in Table 2, Figure 4, and Figure 5. Typically,
the AUEL module can more significantly improve the performances on CIFAR-10 dataset than on MNIST dataset. This
is mainly because MNIST dataset is simpler such that the training samples can all achieve small uncertainties with little
differences among them. The PE module could improve the performances on both datasets with various metrics, especially
for AUROC, AUPR, ECE and NLL. The refinement of MoG parameters works better on MNIST dataset and shows marginal
improvements on CIFAR-10 dataset. This is reasonable since the MoG refinement can further improve the expertise of
each ensemble component for MNIST dataset. However, for CIFAR-10, the AUEL already enhances the specialty of each
ensemble component and it is not necessary to perform the refinement. Hence, the MoG refinement performs better on
simpler datasets where the within-dataset uncertainties are all small and similar.

Table 2: Effectiveness of sub-modules: additional OOD detection results for AUROC (%) and AUPR (%) on MNIST-related
and C10-related datasets with epistemic uncertainty (EU).

Method MNIST → EMNIST MNIST → KMNIST
AUROC AUPR AUROC AUPR

ESB 97.32± 0.14 96.10± 0.46 97.92± 0.10 97.13± 0.27
AUEL 97.55± 0.19 96.32± 0.40 97.97± 0.19 97.23± 0.14
AUEL + PE 98.01± 0.07 97.26± 0.08 98.39± 0.11 97.98± 0.08
AUEL+RPE 98.42 ± 0.03 98.22 ± 0.02 98.90 ± 0.04 98.77 ± 0.06

Method C10 → LSUN C10 → C100
AUROC AUPR AUROC AUPR

ESB 88.42± 0.85 84.99± 0.65 91.87± 0.58 88.69± 0.55
AUEL 89.16± 0.12 85.55± 0.18 92.73± 0.16 89.71± 0.57
AUEL + PE 89.57± 0.08 86.81± 0.14 93.80± 0.11 91.67± 0.36
AUEL+RPE 89.58 ± 0.11 86.86 ± 0.18 93.93 ± 0.13 91.93 ± 0.39

(a) ECE (b) Brier Score (c) NLL

(d) ACC (e) MCE (f) AUROC

Figure 4: Effectiveness of sub-modules: additional uncertainty calibration results for rotated MNIST dataset with various
metrics such as ECE, Brier Score, NLL, ACC, MCE, and AUROC.

(a) ECE (b) Brier Score (c) NLL

(d) ACC (e) MCE (f) AUROC

Figure 5: Effectiveness of sub-modules: additional uncertainty calibration results for noisy CIFAR-10 dataset with various
metrics such as ECE, Brier Score, NLL, ACC, MCE, and AUROC.

H.2 PROBABILISTIC ENSEMBLE AS A PLUG-AND-PLAY MODULE

In this section, we treat the probabilistic ensemble as a plug-and-play module and add it to Bayes-E and Hyper-E to show
further improvements for both OOD detection and uncertainty calibration performances. Additional experiment results are
shown in Table 3 for OOD detection and Figure 6, 7 for uncertainty calibration under distributional shifts.

(a) ECE (b) Brier Score (c) NLL

(d) ACC (e) MCE (f) AUROC

Figure 6: Probabilistic ensemble as a plug-and-play module: additional uncertainty calibration results for rotated MNIST
dataset with various metrics such as ECE, Brier Score, NLL, ACC, MCE, and AUROC.

(a) ECE (b) Brier Score (c) NLL

(d) ACC (e) MCE (f) AUROC

Figure 7: Probabilistic ensemble as a plug-and-play module: additional uncertainty calibration results for noisy CIFAR-10
dataset with various metrics such as ECE, Brier Score, NLL, ACC, MCE, and AUROC.

Table 3: Probabilistic ensemble as a plug-and-play module: additional OOD detection results for AUROC (%) and AUPR
(%) on MNIST-related and C10-related datasets with epistemic uncertainty (EU).

Method MNIST → EMNIST MNIST → KMNIST
AUROC AUPR AUROC AUPR

Bayes-E 97.07± 0.29 95.86± 0.33 97.73± 0.06 96.72± 0.14
Bayes-E + PE 97.82 ± 0.08 97.16 ± 0.10 98.28 ± 0.02 97.75 ± 0.00
Hyper-E 97.56± 0.31 96.68± 0.51 97.92± 0.43 97.32± 0.53
Hyper-E + PE 98.10 ± 0.10 97.59 ± 0.18 98.46 ± 0.14 98.14 ± 0.13

Method C10 → LSUN C10 → C100
AUROC AUPR AUROC AUPR

Bayes-E 87.85± 1.22 84.56± 1.01 91.80± 0.45 88.83± 0.02
Bayes-E + PE 89.17 ± 0.22 87.13 ± 0.40 94.07 ± 0.64 92.50 ± 1.42
Hyper-E 88.82± 0.15 85.29± 0.25 92.59± 0.24 89.65± 0.71
Hyper-E + PE 89.25 ± 0.14 86.46 ± 0.42 93.63 ± 0.37 91.52 ± 0.86

H.3 EFFICIENCY ANALYSIS

Let T be the cost of training a deterministic model, N be the ensemble size, M be the number of total parameters, P be the
number of last-layer parameters, C be the number of classes, and S be the number of samples generated for LA and SWAG
(S=200 for our experiment). Table 1 presents the theoretical/empirical complexities for both training and inference. Training
complexity represents the cost of training a single ensemble component, while inference complexity indicates the cost of
UQ for a data sample unit. Empirical training and inference runtimes are based on the C10 dataset, reporting the average
one-epoch training runtimes and the UQ runtimes for C10 test set.

Compared to ESB, our method has the additional cost of constructing N LAs during training, with each taking O(M +
C3 + P 3). Constructing a single network LA takes about 15s for C10, which is negligible compared to total training time.
Inference complexity involves generating samples from a Gaussian mixture, with an additional cost of O(SP) compared to
ESB. If we generate 200 samples, the uncertainty estimation runtime for 10000 testing images of MNIST/C10 is 3.8s/15.4s
for our method. It takes about 0.03s to obtain one more sample for uncertainty quantification. ESB, Bayes-E, and MCT share
the same training/inference complexities. However, Hyper-E usually takes a longer time for training an ensemble model pool
and applying a greedy search strategy to select optimal ensemble models. Batch-E and LPBNN are more efficient, thanks to

Table 4: Average number of parameters, training and inference complexity/runtimes for all baselines on C10 dataset.

Method Theoretical Complexity Empirical Runtime
Training UQ Training UQ

Ours O(T +M + C3 + P 3) O(NM + SP) 35s 15.4s
ESB O(T) O(NM) 34s 5.3s
Hyper-E > O(T) O(NM) 35s 5.7s
Bayes-E O(T) O(NM) 35s 5.6s
Batch-E < O(T) < O(NM) 26s 4.3s
LPBNN < O(T) < O(NM) 28s 4.4s
LA O(T +M + C3 + P 3) O(M + SP) 35s 7.6s
Multi-SWAG O(T +M2) O(NSM) 36s 190.6s
Diversified-E O(T) O(NM) 34s 5.3s
MCT O(T) O(NM) 34s 5.3s

weight-sharing. The training and inference complexities depend on the number of shared weights. Multi-SWAG is more
computationally expensive since it requires constructing a Gaussian posterior approximation with a low-rank covariance
matrix during training. Diversified-E has similar training and inference complexity compared to ESB but requires a larger
memory for computing the pairwise distance among models.

Moreover, we also provide the OOD detection results of the ensemble-based methods on different ensemble sizes for
MNIST-related and CIFAR-related datasets. The baseline methods include ESB, Hyper-E, and Bayes-E. The results are
shown in Figure 8 and Figure 9. With limited computational resources, we only need to construct the probabilistic ensemble
model with a small size to achieve competitive performance compared to other ensemble-based methods with large sizes.
Sometimes, PE model with 2 components can even achieve better performances compared to other ensemble-based methods
with 10 components, i.e., C10 → SVHN shown in Figure 8 (a).

(a) AUROC: MNIST→Omniglot (b) AUROC: MNIST→EMNIST (c) AUROC: MNIST→KMNIST

(c) AUPR: MNIST→Omniglot (d) AUPR: MNIST→EMNIST (e) AUPR: MNIST→KMNIST

Figure 8: Efficiency of Probabilistic Ensemble: OOD detection results for MNIST-related datasets with metrics AUROC and
AUPR.

(a) AUROC: CIFAR10→SVHN (b) AUROC: CIFAR10→LSUN (c) AUROC: CIFAR10→C100

(c) AUPR: CIFAR10→SVHN (d) AUPR: CIFAR10→LSUN (e) AUPR: CIFAR10→C100

Figure 9: Efficiency of Probabilistic Ensemble: OOD detection results for CIFAR10-related datasets with metrics AUROC
and AUPR.

I APPLICATION TO LARGER DATASETS

The proposed method can be scaled up to larger datasets and larger models. In this section, we apply our proposed method
to CIFAR-100 (C100) and TinyImagenet (TIM) with empirical results.

We utilize Resnet152 as the backbone for both datasets. The training hyperparameters are illustrated below. For CIFAR-100,
the maximum epoch is set to be 120 and the batch size is 128. We use an SGD optimizer with an initial learning rate of 0.1
and momentum of 0.9. During training, the learning rate decreases to 0.01, 0.001, 0.0001 at the 30th, 60th, and 90th epoch.
For TinyImagenet, the maximum epoch is 80 with batch size 128. We use the same optimizer as CIFAR-100 with learning
rate decay at the 20th, 40th, and 60th epoch. The standard data augmentation is conducted for both datasets including random
cropping and random horizontal flipping. We randomly select 10% of the training data as validation data for CIFAR-100
while the validation data is of TinyImagenet is provided. To construct the probabilistic ensemble model after training, we
follow the same experiment settings shown in Appendix E.1.

During the evaluation, we show the OOD detection results and the uncertainty calibration performance under distributional
shifts, respectively. For CIFAR-100 and TinyImagenet, we use LSUN and CIFAR-10 as the OOD datasets. We use the same
evaluation metrics illustrated in Sections 4.1 and 4.2 of the main body of the paper. We compare the proposed AUEL+PE
with ESB, Hyper-E, and Bayes-E. The experiments are conducted on CIFAR-100 and TinyImagenet testing datasets for
OOD detection. The uncertainty calibration evaluation is conducted on the validation dataset of Tinyimagenet since TIM
testing data does not provide labels. To create the corrupted C100 and corrupted TIM datasets, we add the Gaussian noise
with 0 mean and variance ranging from 0 to 0.25 with a step of 0.05 to the original datasets following Sec. 4.2 of the main
body of the paper.

The experiment results are shown in Table 5 for OOD detection and Figures 10, 11 for uncertainty calibration performance.
With the enhanced diversity of our proposed method, we can consistently outperform other baselines for both tasks. For the
uncertainty calibration under distributional shifts, we basically obtain increasing performance improvement as the shifts
become more significant, indicating the better generalization ability enforced by improved diversity.

Table 5: OOD Detection Results for AUROC (%) and AUPR (%) on CIFAR-100 and TinyImagenet with Epistemic
Uncertainty. Each experiment result is aggregated over 3 independent runs. The standard derivation is also reported.

Method C100 → LSUN C100→ C10
AUROC AUPR AUROC AUPR

AUEL+PE 79.06 ± 0.45 73.94 ± 0.27 86.11 ± 0.99 81.44 ± 0.18
ESB 78.42± 0.74 73.22± 1.20 82.44± 0.86 77.15± 1.13
Hyper-E 78.60± 0.95 73.81± 0.08 82.97± 1.81 78.03± 1.47
Bayes-E 78.25± 0.56 73.06± 1.70 82.22± 0.72 76.98± 0.84

Method TIM → LSUN TIM→ C10
AUROC AUPR AUROC AUPR

AUEL+PE 86.89 ± 0.24 83.15± 0.78 86.06 ± 1.03 82.17 ± 0.61
ESB 86.76± 1.19 83.93 ± 2.33 84.18± 1.30 80.28± 1.07
Hyper-E 86.60± 0.97 81.95± 2.07 85.70± 0.76 82.12± 1.11
Bayes-E 86.14± 0.77 81.48± 2.53 85.56± 0.39 80.65± 1.08

(a) ECE (b) Brier Score (c) NLL

(d) ACC (e) AUROC (f) MCE

Figure 10: Uncertainty calibration results for corrupted CIFAR-100 dataset with various metrics such as ECE, Brier Score,
NLL, ACC, MCE, and AUROC.

(a) ECE (b) Brier Score (c) NLL

(d) ACC (e) AUROC (f) MCE

Figure 11: Uncertainty calibration results for corrupted TinyImagenet dataset with various metrics such as ECE, Brier Score,
NLL, ACC, MCE, and AUROC.

J OTHER DISTRIBUTIONAL SHIFTS

Besides generating shifted distribution by adding Gaussian noise, we further perform different adversarial attacks and
evaluate the robustness of our proposed methods. We generate adversarial samples xadv for each C10 testing image x
following the fast gradient sign method (FGSM) shown in Eq. (37).

xadv = x+ ϵsign(∇xL(θ, x, y)) (37)

where L is the NLL loss, ϵ is a hyperparameter indicating the perturbation level, sign(u) is function that outputs 1 if u ≥ 0
and outputs −1 if u < 0. Then we compute the ACC and NLL of our proposed methods on the perturbed images, compared
to various ensemble baselines. Recently, there is a newly proposed type of attacks called uncertainty attacks, which try to
optimize the uncertainty of the prediction. We replace the L in Eq. (37) by the entropy of p(y|x, θ) to perform uncertainty
attacks. The results are shown in Table 6, where "single" refers to single deterministic network. It indicates the effectiveness
of our proposed methods against different adversarial attacks. Compared to ESB, ours can achieve significant improvement,
especially when ϵ is small.

K SYNTHETIC EXPERIMENTS

One-dimensional Regression Problems. To demonstrate the reliability of PE to quantify epistemic uncertainty, we
provide some toy examples for one-dimensional regression problems y = f(x) + ϵ where ϵ is the noise term. We use both
linear and nonlinear synthetic datasets. We first sample x in a region of [0, 6] from an exponential distribution p(x) = e−x.

Then for each xi, the corresponding yi is sampled from N (xi, 0.5) for the linear dataset and N (x3
i , 0.5) for the nonlinear

dataset. We obtain 600 pairs of {xi, yi} as training data for both datasets. Given the training data, we build a ReLU
network using two fully-connected layers and each layer has 20 hidden nodes. The neural network outputs p(y|x, θ) =
N (µ(x, θ), σ2(x, θ)) where θ are the model parameters. In the probabilistic ensemble framework, we construct a 2-
component PE model where the posterior distribution of parameters p(θ|D, β) is approximated by

∑2
i=1 0.5N (θ; θi,Σi)

through LA with equal weights. The epistemic uncertainty of x can be calculated by

V arp(θ|D,β)[Ep(y|x,θ)[y]] ≈
1

M − 1

m∑
j=1

µ(x, θ(j))− 1

M

m∑
j=1

µ(x, θ(j))

2

where θ(j) ∼
∑2

i=1 0.5N (θ; θi,Σi). The results are shown in Figure 12.

Table 6: The ACC and NLL under different adversarial attacks on C10 dataset.

Method
Adversarial Attacks with FGSM using NLL Loss

ϵ = 0.01 ϵ = 0.02 ϵ = 0.05
ACC NLL ACC NLL ACC NLL

Ours 0.732± 0.01 0.93 ± 0.02 0.547 ± 0.02 1.81 ± 0.17 0.309 ± 0.01 3.04 ± 0.23
Single 0.534± 0.13 4.01± 1.99 0.367± 0.10 6.57± 2.30 0.206± 0.10 7.94± 2.30
ESB 0.684± 0.07 1.31± 0.52 0.500± 0.07 2.56± 0.99 0.285± 0.04 3.98± 1.16
Hyper-E 0.733 ± 0.01 0.94± 0.08 0.546± 0.02 1.89± 0.20 0.309 ± 0.01 3.21± 0.30
Bayes-E 0.692± 0.03 1.14± 0.18 0.507± 0.03 2.15± 0.35 0.298± 0.02 3.46± 0.57

Method
Adversarial Attacks with FGSM using Uncertainty Loss

ϵ = 0.01 ϵ = 0.02 ϵ = 0.05
ACC NLL ACC NLL ACC NLL

Ours 0.784 ± 0.00 0.65 ± 0.01 0.582± 0.00 1.52 ± 0.02 0.328 ± 0.00 2.88 ± 0.01
Single 0.569± 0.14 3.10± 1.72 0.391± 0.10 5.61± 2.08 0.223± 0.05 7.34± 1.14
ESB 0.733± 0.07 0.91± 0.35 0.535± 0.07 2.10± 0.79 0.298± 0.04 3.72± 1.03
Hyper-E 0.783± 0.01 0.66± 0.04 0.584 ± 0.02 1.57± 0.15 0.323± 0.01 3.03± 0.26
Bayes-E 0.738± 0.03 0.82± 0.11 0.539± 0.03 1.78± 0.25 0.309± 0.02 3.24± 0.40

From Figure 13, we can clearly see that the epistemic uncertainty is inversely correlated with training data density. Neural
networks will not overfit the training data in the region [0, 6] and training samples receive different epistemic uncertainties
based on their density.

Two-moon Dataset We also apply our method to the two-moon dataset. We generate 500 two-dimensional training
data points using sklearn package with noise 0.1. For each ensemble component, we use a ReLU network using two
fully-connected layers and each layer has 20 hidden nodes. The network outputs logits for this two-class classification
problem. For constructing the probabilistic ensemble framework, we also construct a 2-component PE model where the
posterior distribution of parameters p(θ|D, β) is approximated by

∑2
i=1 0.5N (θ; θi,Σi) through LA with equal weights.

The results are shown in Figure 13, which also indicates that the estimated epistemic uncertainty inversely matches with the
training data density. As shown by DUQ [Van Amersfoort et al., 2020], the deep ensemble method performs poorly on the
two-moon dataset. In contrast, our method performs better than the deep ensemble method.

Figure 12: Synthetic data experiment. The first and second row represent the experiments for linear and nonlinear datasets,
respectively. In the first column, the red dots are the training samples and the gray line is the ground truth mean of p(y|x).
In the second column, the ground truth input data density p(x) is plotted as a function of x. The third column shows the
normalized estimated epistemic uncertainty by PE as a function of input x.

Figure 13: Synthetic data experiment on two-moon dataset. The red points are the training data. Darker regions indicate
higher epistemic uncertainty.

References

Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and Philipp Hennig. Laplace
redux-effortless bayesian deep learning. Advances in Neural Information Processing Systems, 34, 2021.

Stefan Depeweg, Jose-Miguel Hernandez-Lobato, Finale Doshi-Velez, and Steffen Udluft. Decomposition of uncertainty in
bayesian deep learning for efficient and risk-sensitive learning. In International Conference on Machine Learning, pages
1184–1193. PMLR, 2018.

Andrew Gelman. Induction and deduction in bayesian data analysis. 2011.

Matthias Hein, Maksym Andriushchenko, and Julian Bitterwolf. Why relu networks yield high-confidence predictions far
away from the training data and how to mitigate the problem. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 41–50, 2019.

Martin Hellman and Josef Raviv. Probability of error, equivocation, and the chernoff bound. IEEE Transactions on
Information Theory, 16(4):368–372, 1970.

Bas JK Kleijn and Aad W van der Vaart. The bernstein-von-mises theorem under misspecification. Electronic Journal of
Statistics, 6:354–381, 2012.

Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Being bayesian, even just a bit, fixes overconfidence in relu
networks. In International Conference on Machine Learning, pages 5436–5446. PMLR, 2020.

Stefan Lee, Senthil Purushwalkam, Michael Cogswell, David Crandall, and Dhruv Batra. Why m heads are better than one:
Training a diverse ensemble of deep networks. arXiv preprint arXiv:1511.06314, 2015.

JG Liao and Arthur Berg. Sharpening jensen’s inequality. The American Statistician, 2018.

Hippolyt Ritter, Aleksandar Botev, and David Barber. A scalable laplace approximation for neural networks. In 6th
International Conference on Learning Representations, ICLR 2018 - Conference Track Proceedings, 2018.

Nicol N Schraudolph. Fast curvature matrix-vector products for second-order gradient descent. Neural computation, 14(7):
1723–1738, 2002.

Joost Van Amersfoort, Lewis Smith, Yee Whye Teh, and Yarin Gal. Uncertainty estimation using a single deep deterministic
neural network. In International conference on machine learning, pages 9690–9700. PMLR, 2020.

Shaofeng Zhang, Meng Liu, and Junchi Yan. The diversified ensemble neural network. Advances in Neural Information
Processing Systems, 33:16001–16011, 2020.

	Preliminaries
	Laplacian Approximation
	Uncertainty Quantification

	Probabilistic Ensemble Propositions
	Proof of Proposition 3.1
	Proof of Proposition 3.2
	Proof of Proposition 3.3
	Proof of Proposition 3.4
	Proof of Proposition 3.5

	Adaptive Uncertainty-guided Ensemble Learning Proposition
	Proof of Proposition 3.6

	Derivations for MoG Refinement
	Experiment Settings and Implementation
	Model Architecture and Hyperparameters
	Implementation Details

	Uncertainty Calibration Under Distributional Shifts
	Within-dataset Performance
	Additional Results on Different Calibration Metrics

	Visualizations of Diversity analysis
	Ablation Studies and Further Analysis
	Effectiveness of Sub-modules
	Probabilistic Ensemble as a Plug-and-Play Module
	Efficiency Analysis

	Application to Larger Datasets
	Other Distributional Shifts
	Synthetic Experiments

