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PRESERVING DEEP REPRESENTATIONS IN ONE-SHOT
PRUNING: A HESSIAN-FREE SECOND-ORDER OPTI-
MIZATION FRAMEWORK

Ryan Lucas∗ Rahul Mazumder†

ABSTRACT

We present SNOWS, a one-shot post-training pruning framework aimed at re-
ducing the cost of vision network inference without retraining. Current leading
one-shot pruning methods minimize layer-wise least squares reconstruction error
which does not take into account deeper network representations. We propose to
optimize a more global reconstruction objective. This objective accounts for non-
linear activations deep in the network to obtain a better proxy for the network loss.
This nonlinear objective leads to a more challenging optimization problem—we
demonstrate it can be solved efficiently using a specialized second-order optimiza-
tion framework. A key innovation of our framework is the use of Hessian-free
optimization to compute exact Newton descent steps without needing to com-
pute or store the full Hessian matrix. A distinct advantage of SNOWS is that it
can be readily applied on top of any sparse mask derived from prior methods,
readjusting their weights to preserve deep feature representations. SNOWS ob-
tains state-of-the-art results on various one-shot pruning benchmarks including
residual networks and Vision Transformers (ViT/B-16 and ViT/L-16, 86m and
304m parameters respectively). Our open-source implementation is available at
https://github.com/mazumder-lab/SNOWS.

1 INTRODUCTION

Modern deep learning-based vision models, particularly convolutional neural networks (CNNs) (Le-
cun et al., 1998) and more recent vision transformers (ViTs) (Dosovitskiy et al., 2021), have achieved
remarkable performance in various computer vision tasks, including image classification, object de-
tection, and visual tracking (Chai et al., 2021). However, their success comes at the cost of substan-
tial computational and memory resources, and these models are only trending towards increasingly
large scales (Dehghani et al., 2023). Neural network pruning, a class of techniques aimed at re-
ducing the number of parameters by selectively removing weights or connections, has emerged as
a solution to reduce the inference demands of large-scale vision networks (Goel et al., 2020; He &
Xiao, 2023; Kuznedelev et al., 2023), alongside methods such as quantization (Cheng et al., 2024).

Many pruning approaches require an expensive retraining phase following weight removal to recover
network performance (Liu et al., 2019; Frankle & Carbin, 2019). Especially as networks scale,
practitioners looking to prune and cheaply deploy a model often lack the resources to fully retrain it
and may not even have access to the model’s dataset or optimizer. While classical one-shot pruning
approaches (where weights are removed in a single step rather than iteratively) typically included
retraining Hagiwara (1994), recent work has explored one-shot pruning without this computationally
expensive step (Frantar & Alistarh, 2023; 2022; Singh & Alistarh, 2020).

One-shot pruning approaches typically use second-order approximations of the neural network loss
function in their pruning criteria or objective function, an approach dating back to (LeCun et al.,
1989; Hassibi & Stork, 1992). Modern second-order approaches fall into two main categories:
global methods, which consider the entire network at once, and local methods, which prune one
layer at a time. Global methods decide which weights to prune and how to update the remaining
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weights, based on a second-order approximation of the downstream task loss function. However,
since computing and inverting the full Hessian matrix is expensive, these methods often replace
the Hessian with an approximation such as the Fisher information matrix or further approximations
thereof (Singh & Alistarh, 2020; Frantar et al., 2021; Benbaki et al., 2023; Wang et al., 2019). Like
retraining approaches, global pruning methods can be difficult to scale to the largest vision networks
due to their need to take full network gradients (e.g. in the Fisher computation). Local methods on
the other hand, which have become popular for large networks, replace the task loss with a local
layer-wise least squares reconstruction loss (Dong et al., 2017a; Frantar & Alistarh, 2022; Meng
et al., 2024a), for which the Hessian can be computed in a simple, straightforward fashion. In these
local layer-wise reconstruction methods, the only optimization variables are the weights at a single
layer, hence layer-wise Hessians can be isolated and the network pruned one layer at a time. These
local methods are computationally efficient, but may not provide the most accurate proxy of the loss
of the network and neglect the influence of deeper feature representations.

In this paper, we present SNOWS1, a neural network pruning framework that bridges the gap
between these global and local one-shot pruning approaches. Unlike global or retraining-based
methods, SNOWS only requires calculating gradients for individual layers. At the same time, the
SNOWS formulation goes beyond standard layer-wise reconstruction and optimizes a more global
reconstruction objective (cf. Equation 3). The motivation is to preserve not just a local set of fea-
tures, but to consider the effect of pruning on the more global set of learned representations. While
this objective leads to a more challenging nonlinear optimization problem that cannot be solved
by standard layer-wise methods, we show that it can solved efficiently using a specialized second-
order optimization framework. Unlike prior global approaches that make approximations to the
Hessian, SNOWS optimizes an exact second-order approximation. A key driver of the scalability of
our method is the use of Hessian-free optimization (Martens, 2010), which allows us to efficiently
compute and optimize the second-order approximation without explicitly forming or storing the full
Hessian matrix. This enables SNOWS to scale to the largest CNNs and ViTs. For instance, using
our method the ViT-L/16 model (≈ 304m parameters) can be pruned on a single A100 GPU.

Semi-structured pruning approaches have received more attention since they lead to more tangible
acceleration on modern computing hardware. We primarily target N :M sparsity (Mishra et al.,
2021), a semi-structured pruning approach where N out of every M (contiguous, aligned) weights
are retained. This sparsity pattern leads to greater acceleration than unstructured sparsity by aligning
with hardware indexing patterns, such as those in NVIDIA’s Sparse Tensor Cores (Pool & Yu, 2021),
and leads to lesser accuracy loss than structured formats (Zhang et al., 2023). Unlike previous
methods that require training N :M sparse networks from scratch (Zhou et al., 2021; Zhang et al.,
2022) to achieve performance competitive with dense networks, SNOWS can prune to N :M sparsity
in one-shot using just a few thousand samples.

Contributions. We make the following contributions to the one-shot pruning problem:

• We introduce a novel post-training pruning framework that operates at the layer-wise level to
optimize a more global reconstruction objective to account for nonlinear activations deep in the
network. We demonstrate empirically that this approach provides a better proxy for the network
loss compared to layer-wise least squares reconstruction methods.

• We develop an efficient second-order optimization framework to solve the challenging nonlinear
optimization problem posed by our reconstruction objective. We use Hessian-free optimization
integrated with a customized Conjugate Gradient (CG) method to efficiently solve the second-
order approximation. Our CG method exploits sparsity in the linear system defined by the second-
order approximation to compute exact Newton descent steps in a memory-efficient way, scaling
to problems with layer-wise Hessians as large as 4.2m × 4.2m.

• SNOWS delivers state-of-the-art performance in one-shot pruning for computer vision, achieving
superior results on various network architectures and datasets. Our method can prune ResNet50
to 1:4 sparsity with a 1.5% drop in test accuracy on CIFAR-100 and a 9.4% drop on ImageNet-1k
using just 3,000 training examples, where prior state-of-the-art one-shot N :M pruning methods
have a drop of 7.6% and 29.42% respectively. Similarly, for unstructured sparsity, our method
can prune MobileNet to 70% sparsity with a 5.6% drop in accuracy, whereas the best available

1Stochastic Newton Optimal Weight Surgeon (SNOWS)
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competing method has a 12.55% drop. In addition to improving performance on CNNs, our
method scales to modern ViT networks with up to 304m parameters.

2 RELATED WORK

One-shot pruning without retraining. Recent work has demonstrated the possibility of pruning
networks in a single step without requiring expensive retraining Frantar & Alistarh (2023; 2022);
Singh & Alistarh (2020). In this setting, one typically assumes access to a limited sample of cali-
bration data (e.g. a few thousand examples) and the goal is to compress the network with minimal
accuracy loss relative to the dense model. This modern approach to one-shot pruning builds on clas-
sical work that developed second-order approximations of the task loss function. Early approaches
(Lecun et al., 1998; Hassibi & Stork, 1992) considered the entire network’s weights but were com-
putationally intractable for large models. More recent methods like WoodFisher Singh & Alistarh
(2020) and Combinatorial Brain Surgeon (Singh & Alistarh, 2020), as well as CHITA (Benbaki
et al., 2023), improve scalability by replacing the Hessian with the Fisher information matrix or
using block-diagonal approximations. Other works use Kronecker product approximations of the
Fisher matrix (Wang et al., 2019).

These global approaches optimize a more accurate proxy for the network loss function, but often
struggle to scale to the largest vision networks, hence layer-wise approaches which focus on recon-
struction have become a popular alternative. Layer-wise OBS (Dong et al., 2017a) formulates the
problem of reconstructing the linear activations of the dense network as a linear regression problem
which has a standard least squares Hessian, and show that the overall network reconstruction error
is bounded by a quantity depending on the error given at each of the layer-wise problems. The OBC
framework (Frantar & Alistarh, 2022) introduces an efficient method for greedy backward elimi-
nation on this layer-wise problem using fast low rank updates of the Hessian inverse. There have
been limited attempts to incorporate nonlinearity into layer-wise approaches, but several papers have
reported the need to consider broader notions of network connectivity as pruning criteria and loss
functions (Hoang et al., 2023; He & Zhou, 2024). The Net-Trim framework solves a layer-wise
regression problem with ReLU activation (Aghasi et al., 2017), accounting for the non-linearity by
reformulating the ReLU using linear inequalities and solving the resulting convex program. In the
Net-Trim formulation, the weights are optimized in a way that is ”aware” of the subsequent non-
linearity by incorporating the effects of the ReLU activation into the pruning loss function. Our
objective is similar in spirit, but we make no assumptions about the exact form of the non-linearity,
only requiring that the underlying functions are twice-differentiable. Moreover, our formulation
goes beyond the activations at a single layer.

Structured and semi-structured pruning in computer vision. Unstructured pruning, which in-
volves pruning individual weights in an unrestricted format, leads to high compression ratios but
often cannot realize tangible speed-ups except at very high sparsity levels or when run on special-
ized hardware (Cheng et al., 2024). Hence there has been a movement towards structured pruning
methods (He & Xiao, 2023), which lead to actual speed-ups by imposing regularity on the sparsity
pattern. In CNNs, structured pruning can involve removing entire filters (Zhou et al., 2016) or spe-
cific channels (Meng et al., 2024c). Recently, NVIDIA (Mishra et al., 2021) released N :M Sparse
Tensor Cores, the current version of which includes a 2:4 sparsity pattern that leads to double the
throughput on dense matrix multiplications. Hence there has been several works applying N :M
pruning in CNNs (Pool & Yu, 2021; Zhou et al., 2021). There has been more limited work on com-
pressing ViT networks, in part due to their scale. Most of the recent work focuses on unstructured
sparsity (He & Zhou, 2024). The CAP framework (Kuznedelev et al., 2023) obtains strong results
in one-shot unstructured pruning in DeiT networks (Touvron et al., 2021), though they use 4096
gradient evaluations (≈ 520k samples) in their one-shot pruning experiments, and use fine-tuning to
recover network accuracy. Previous work on structured and semi-structured ViT pruning has taken
various approaches. Several works (Zhu et al., 2021; Yu & Wu, 2021) focused on pruning redundant
channel dimensions (rows) in the ViT. (Yu et al., 2022a) proposed pruning both the width (number
of neurons) and depth (number of layers) of ViTs, which centers on architectural changes rather than
specifically weight pruning. Notably, almost all existing work on ViT pruning requires fine-tuning
to recover dense model performance, and hence the literature on one-shot structured pruning in VITs
is very limited.
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3 PROBLEM DEFINITION AND BACKGROUND

Notation. In a neural network with L layers, the network function is represented as f(X0,W ),
where W = (W 1,W 2, . . . ,WL) is the collection of weight matrices across layers, and X0 ∈
Rn×d0 is the input, with number of data points n and input dimension d0. For ℓ ≥ 1, we use
Xℓ ∈ Rn×dℓ−1 to refer to the inputs to layer ℓ and Y ℓ ∈ Rn×dℓ to refer to the outputs of layer ℓ;
therefore, the input to layer ℓ+1 is the output of layer ℓ, or Xℓ+1 = Y ℓ. The weight matrix for the
ℓ-th layer is denoted W ℓ ∈ Rdℓ−1×dℓ . The output of layer ℓ is computed as Y ℓ = f ℓ(Xℓ,W ℓ),
where the function f ℓ denotes the operations at layer ℓ, which typically consist of an linear transfor-
mation followed by a point-wise nonlinear activation, i.e., f ℓ(Xℓ,W ℓ) = σ(XℓW ℓ), where σ is an
activation function applied element-wise, though f ℓ can also include much more general operations
such as residual connections, pooling operations, etc. For a twice-differentiable loss function L de-
pending on the network parameters W or a subset, we denote the gradient as ∇L(W ) = ∂L/∂W
and the Hessian H = ∂2L/∂W 2.

Background on Global Model. Global methods, originating with the Optimal Brain Surgeon (OBS)
framework (Lecun et al., 1998; Hassibi & Stork, 1992), minimize the following loss function for
neural network compression:

min
Ŵ∈W

L(Ŵ ) = E(X0,Y )

[
E(Y , f(X0, Ŵ ))

]
(1)

where Y are the ground truth labels, f(X0, Ŵ ) represents the final output of the compressed net-
work, E(·) is the task loss, e.g., cross-entropy for classification, andW is a predefined set of sparse
weight matrices. The canonical example ofW is the set of S-sparse matrices,W = {Ŵ | ∥Ŵ ∥0 ≤
S}, though W can also represent much more general sets such as structured-sparse matrices. The
very natural idea here is to compress the network to preserve performance on the downstream task.
To solve the problem, OBS uses a second-order approximation to Eqn (1).2 Intuitively, a second-
order method is well-motivated by the importance of interactions in pruning. Time has revealed
however that there are practical issues limiting the applicability of the OBS framework. Most impor-
tantly, the OBS solution to Eqn (1) requires computing the Hessian of the entire network’s weights.
For modern deep neural networks, computing the full Hessian matrix is simply not tractable.

Background on Layer-wise Model. A more practical alternative to global methods is the popular
layer-wise proxy, replacing Eqn (1) with the following regression problem:

min
Ŵ ℓ∈W

∥∥∥XℓW ℓ −XℓŴ ℓ
∥∥∥2
2

(2)

The goal in Eqn (2) is to preserve the linear activations of the model at a particular layer while
enforcing sparsity in Ŵ ℓ. This formulation, which was introduced in (Dong et al., 2017a), has
practical appeal since the only decision variables are the weights at a single layer Ŵ ℓ, so the Hessian
has reduced dimensionality (dℓ−1 × dℓ)

2 compared to that of the full network. Moreover, since the
operations on Ŵ ℓ are linear, the objective has a standard least squares form, and its Hessian is given
by H = 2XℓXℓ⊤, meaning it can be computed in parallel across the row dimension of Xℓ.

4 THE SNOWS METHOD

Our Improved Layer-wise Model. While more tractable than global approaches, the layer-wise
formulation in Eqn (2) focuses solely on preserving the linear activations at a particular layer without
considering the impact on subsequent layers’ representations. In this paper we instead consider the
following layer-wise model:

min
Ŵ ℓ∈W

L(Ŵ ℓ) :=

K∑
k=0

∥∥∥Y ℓ+k − f ℓ:ℓ+k(Xℓ, Ŵ ℓ)
∥∥∥2
2

(3)

where f ℓ:ℓ+k(·) is defined as the composition of the next k operations starting from layer ℓ:

f ℓ:ℓ+k(Xℓ,W ℓ) = f ℓ+k(·,W ℓ+k) ◦ f ℓ+k−1(·,W ℓ+k−1) ◦ . . . ◦ f ℓ(·,W ℓ)

2We omit the details of the second-order approximation for brevity, but provide more in A.1.1
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and Y ℓ+k = f ℓ:ℓ+k(Xℓ,W ℓ) are the dense target outputs after the k-th operation starting from
layer ℓ. Hence, the loss function considers the effect of Ŵ ℓ on all layers and operations up to ℓ+K.
A natural motivation for Eqn (3) is that pruning weights at a particular layer affects not only the
outputs of that layer but also activations in subsequent layers. Namely, the solution to the layer-wise
problem in Eqn (2) does not necessarily minimize the discrepancy in the outputs of deeper layers:

argmin
Ŵ ℓ

∥∥∥XℓW ℓ −XℓŴ ℓ
∥∥∥2
2
̸= argmin

Ŵ ℓ

∥∥∥Y ℓ+k − f ℓ:ℓ+k(Xℓ, Ŵ ℓ)
∥∥∥2
2

for all k > 0, where the constituent functions can include non-linear activations, pooling operations,
and residual connections, among others. We provide more detail on the motivation for the SNOWS
loss function in subsubsection A.1.2.

Special Cases of Eqn (3). The loss function is a flexible proxy for the neural network loss function,
where the parameter K can be varied depending on available computational resources. When K =
0, the loss function reduces to the layer-wise framework. When K = 1, the formulation is analogous
to Net-Trim for ReLU networks Aghasi et al. (2017), but also generalizes it to other activation
functions. Setting K = Kmax which denotes the number of operations after layer ℓ up to the output
layer, extends the optimization to all operations following layer ℓ. In Figure 1, we observe how
the value of K influences network performance when pruning the full ResNet20 and ResNet50
networks to 1:4 sparsity using SNOWS. In Table 3 in subsubsection A.2.4, we provide an ablation
on the run-time and peak memory usage when varying K.
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Figure 1: Effect of varying K in the loss function in Eqn (3) on out-of-sample accuracy pruning
ResNet20 on CIFAR-10 and ResNet50 on CIFAR-100 to 1:4 sparsity (74% and 66% respectively).
Increasing K improves the accuracy of the pruned network, at the cost of higher computation time.

Cheap layer-wise gradients without computing the full computational graph. The gradient of
Eqn (3) function with respect to the pruned weights Ŵ ℓ can be expressed as:

∇L(Ŵ ℓ) =

K∑
k=0

[
−2

(
Y ℓ+k − f ℓ:ℓ+k

(
Xℓ, Ŵ ℓ

))
∂fℓ:ℓ+k(Xℓ,Ŵ ℓ)

∂Ŵ ℓ

]
(4)

An important advantage of this formulation is that it allows for reduced memory requirements com-
pared to computing full network gradients. Specifically, the gradient has dimensionality dim(W ℓ),
which is significantly smaller than the total number of parameters in the full network. Moreover,
the computational graph required to compute this gradient is shorter because it includes only the
operations from layer ℓ up to ℓ+K, rather than the entire network, which minimizes the number of
activations that need to be constructed and stored on the computational graph.

Xℓ Y ℓ Y ℓ+1 · · · Y ℓ+K

Dense Sub-Network

f ℓ f ℓ+1 · · · f ℓ+K

Sparse Sub-Network ∇
Ŵ ℓL(Ŵ ℓ)

Ŵ ℓ

Figure 2: Computional graph to minimize Eqn (3).

Each function f ℓ:ℓ+k can represent lin-
ear transformations and several non-linear
operations, so while this is still a layer-
wise problem depending only on Ŵ ℓ, it
is no longer a linear least squares prob-
lem. Hence, the Hessian H is no longer
equal to 2XℓXℓ⊤ , and does not separate
in general. To form the Hessian we need to
compute all second-order partial derivates
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of f ℓ:ℓ+k for each k = 0, ...,K which is also not tractable for large networks. Nonetheless, we now
present a tractable framework to optimize Eqn (3).

An Efficient Second-Order Optimization Framework to Optimize Eqn (3) . Our K-step ob-
jective induces a discrete, nonlinear optimization problem which cannot necessarily be solved in a
similar fashion to previous layer-wise methods (Dong et al., 2017a; Aghasi et al., 2017; Frantar &
Alistarh, 2022). Thus, we adopt a similar framework to more global methods by minimizing a local
quadratic approximation of our nonlinear objective. However, given the difficulty of forming the
Hessian directly, we use Hessian-free optimization (Martens, 2010) to optimize the local quadratic
approximation, combined with a CG method that exploits sparsity for efficient updates. We now
describe the key components of our framework.

Hessian-free Optimization. Given the difficulty of forming the Hessian directly, we opt to use
Hessian-free optimization (Martens, 2010) to optimize the local quadratic approximation. Hessian-
free optimization is a second-order optimization method that avoids explicit computation of the
Hessian matrix by exploiting the fact that while the Hessian matrix H is expensive to compute, the
so-called Hessian product H · δ can be computed as:

H · δ = lim
ϵ→0

∇L(W ℓ + ϵδ)−∇L(W ℓ)

ϵ
(5)

which has a cost of 1 additional gradient evaluation when computed via finite differences. Note
also that dim(H · δ) = dim(W ℓ), meaning that the memory requirements of H · δ are the same
as for W ℓ, unlike the Hessian which is usually far too large to fit on GPU memory. Moreover,
since we operate on smaller localized sections of the network, from layer ℓ to operation ℓ+K, our
formulation is less susceptible to numerical error that can harm Hessian-free optimization in full
network training approaches (Martens, 2010) . This allows us to compute exact Hessian products as
opposed to Fisher or Gauss-Newton approximations used in prior work on matrix-free training and
pruning (Martens & Sutskever, 2012; Singh & Alistarh, 2020; Frantar et al., 2021).

Decoupling the Discrete and Continuous Problems. In designing our algorithm for scalability to
the largest networks, we develop an approach that is agnostic to the mask. Our approach can be
integrated with other techniques for mask selection, or can stand alone with simple methods such as
magnitude pruning. Our alternative approach for optimizing the local quadratic approximation can
be devised by recognizing Eqn (3) as a bi-level optimization problem:

min
Z∈Z

min
Ŵ ℓ

Z∈Rdℓ−1×dℓ

L(Ŵ ℓ
Z) =

K∑
k=0

∥∥∥Y ℓ+k − f ℓ:ℓ+k
(
Xℓ, Ŵ ℓ

Z ⊙Z
)∥∥∥2

2
(6)

where Z ∈ Z is a binary mask imposing the same sparsity pattern as W and W ℓ
Z denotes the

weights when the sparsity pattern is fixed. We omit the superscript ℓ from Z for simplicity, though
the mask is typically chosen and applied layer-wise also. In our case, fixing Z allows us to perform
a second-order Taylor expansion around the masked solution for the weights:

L(Ŵ ℓ
Z + δZ) ≈ L(Ŵ ℓ

Z) +∇L(Ŵ ℓ
Z)

T δZ +
1

2
δTZHZδZ (7)

In this approximation, we consider perturbing the weights Ŵ ℓ
Z for a given mask Z, which induces

sparsity in the solution. We can now design strategies to minimize Eqn (7) which simplifies the
problem dramatically compared to solving a coupled discrete and continuous problem.

Sparsity in the Second-Order Expansion. The Taylor expansion in Eqn (7) has several key prop-
erties related to the sparsity induced by the mask Z. First, consider the gradient∇L(Ŵ ℓ

Z) =
∂L

∂Ŵ ℓ
Z

.

It follows that (∇L)i = 0 wherever Zi = 0. Similarly, the Hessian HZ exhibits sparsity, with
(HZ)ij = 0 wherever Zi = 0 or Zj = 0. Therefore, the sparsity pattern of HZ is the square of
the sparsity pattern of Z. Specifically, if Z has a sparsity level s ∈ [0, 1], then the Hessian HZ

will have a sparsity level s2. Moreover, any row or column (HZ)i in the Hessian corresponding to
Zi = 0 will be entirely zero. We exploit this sparsity in HZ to reduce the dimensionality of the
system required to minimize Eqn (7). It is important to note that unlike in the global approximation,
we cannot assume ∇L(Ŵ ℓ

Z) = 0 in Eqn (7). In the global case this is justified since they start by
computing the gradient and Hessian of the fully dense network and each time make optimal weight
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adjustments. Whereas in our approximation, this would amount to making the assumption that the
current weights are optimal for any mask Z, even after other weights have been deactivated. Thus
the gradient term remains and minimizing Eqn (7) with respect to the weight direction δZ gives:

min
δZ

{
δTZ∇L(Ŵ ℓ

Z) +
1

2
δTZHZδZ

}
(8)

Setting the gradient of the above quadratic equal to zero yields the following reduced linear system:

HZ · δZ = −∇L(Ŵ ℓ
Z) (9)

The matrix HZ ∈ Rm×m is the Hessian restricted to the active weights, where m represents the
number of weights with Zi ̸= 0. Correspondingly, the gradient ∇L(Ŵ ℓ

Z) ∈ Rm includes only the
components associated with these active weights. As a result, the weight update δZ ∈ Rm can be
calculated exclusively for the active weights δZ = −H−1

Z ∇L(Ŵ ℓ
Z), which yields the celebrated

Newton update (Battiti, 1992), but on a greatly reduced linear system.

CG Method. Directly forming and inverting the Hessian HZ , even if sparse, is still not tenable.
Here we exploit the fact that the left-hand side Hessian product in Eqn (9) can be computed via
Eqn (5), and hence the corresponding linear system can be solved by querying the Hessian product
within the CG method (Nocedal & Wright, 2006). To ensure that the Hessian is positive definite,
particularly when the objective function is not strongly convex, we add Levenberg-Marquardt regu-
larization to the Newton update. This is a small dampening regularization to the Hessian diagonal,
resulting in the following system:

(HZ + λI) · δZ = −∇L(Ŵ ℓ
Z), (10)

This leads to Algorithm 1 to solve for the Newton update, which relies solely on products with the
Hessian. Since each call to Eqn (5) requires computing the gradient, the number of iterations in
CG is a critical factor in determining the run-time of the overall algorithm. However, although CG
can require up to m iterations to fully converge, it often makes significant progress in far fewer
steps. In subsubsection A.2.3, we provide an ablation study where we vary the maximum number
of steps. CG can typically be safely terminated early after a reasonable number of iterations without
significantly degrading the quality of the solution. Given the method for computing the Newton di-
rection, the iterative scheme for performing Newton updates then involves minimizing the quadratic
approximation of the loss function at each step to adjust the current solution:

δZ ≈ argmin
δZ

{
δ⊤Z∇L

(
Ŵ ℓ

Z

)
+

1

2
δ⊤ZHZδZ

}
(via CG)

Ŵ ℓ
Z = Ŵ ℓ

Z + αδZ (Newton Update)

where α is chosen to satisfy the Armijo sufficient decrease condition (Byrd et al., 2016). We provide
the full condition in subsubsection A.1.3. In practice, due to hardware memory constraints, we run
a batched version of Newton descent called sub-sampled Newton descent. Instead of computing
full gradients or Hessian products at once, we sample mini-batches of data to compute stochastic
estimates of the gradient and Hessian products. Stochastic Newton descent is a common technique
in the literature on second-order optimization methods and has been shown to exhibit strong conver-
gence guarantees (Roosta-Khorasani & Mahoney, 2016). The only alteration we make compared to
traditional stochastic Newton algorithms is that we sample Hessian products rather than the Hessian
directly. The full algorithm is given in Algorithm 2. We remark that, in practice, the stochastic
Newton algorithm typically converges in very few mini-batches. In subsubsection A.2.1 and sub-
subsection A.2.2, we provide ablations where we compare SNOWS to Stochastic Gradient Descent
(SGD) and the Fisher approximation to optimize Eqn (3), finding in both cases that SNOWS obtains
better minima and converges faster.
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Algorithm 1 CG Algorithm to Compute δZ

1: Input: Fixed mask Z, sparse weights W ℓ
Z

2: Compute gradient g ← ∇L(Ŵ ℓ
Z)

3: Initialize δZ ← 0, r ← −g, p← r
4: while ∥r∥ ≥ tol do
5: Compute B(p) = HZp+ λp via Eqn (5)
6: η ← r⊤r

p⊤B(p)

7: Update δZ ← δZ + ηp
8: rnew ← r − ηB(p)

9: γ ← r⊤
newrnew

r⊤r
10: p← rnew + γp
11: r ← rnew
12: end while
13: return δZ

A complete network pruning algorithm. So far
our descriptions have focused on the method for
the layer-wise pruning problem. We now present
a recap of the full layer-wise pruning process (Al-
gorithm 2) as well as the algorithm to prune the
full network (Algorithm 3). Our approach is flex-
ible and can accommodate any choice of masks
{Z1, . . . ,ZL}. Algorithm 3 uses a cascading
mechanism for pruning layer by layer, where the
next layer’s input is adjusted after pruning the cur-
rent layer. This follows the same core idea as Net-
Trim (Aghasi et al., 2017). Unlike a parallel ap-
proach, where each layer is pruned independently,
this method passes the output of one pruned layer
as the input to the next. Specifically, after prun-
ing a layer ℓ the input to the next layer is updated
as Xℓ+1 = f ℓ(Xℓ, Ŵ ℓ). This ensures that each
layer’s optimization accounts for changes introduced via pruning in the previous layer.

Algorithm 2 SNOWS: Layer-wise Optimization

1: Input: Layer input Xℓ, Dense weights W ℓ,
Sparse mask Zℓ

2: Initialize:
Ŵ ℓ ←W ℓ ⊙Zℓ

3: for b = 1, ..., B do (▷ mini-batches)
4: Compute δ

(b)

Zℓ via Algorithm 1:

δ
(b)

Zℓ ≈ argmin
δ

(
∇L(b)⊤δ +

1

2
δ⊤H

(b)

Zℓ δ

)
5: Update weights on the active set:

Ŵ ℓ
Zℓ ← Ŵ ℓ

Zℓ + α(b)δ
(b)

Zℓ

6: end for
7: Output: Pruned weights Ŵ ℓ

Algorithm 3 SNOWS: Full Network Algorithm

Input: Network input X0, dense weights
{W 1, . . . ,WL}, sparse masks {Z1, . . . ,ZL},
layers L, horizon parameter K
for ℓ = 0, . . . , L do

Find Ŵ ℓ as:

argmin
Ŵ ℓ

K(ℓ)∑
k=0

∥∥∥Y ℓ+k − f ℓ:ℓ+k(Xℓ, Ŵ ℓ ⊙Zℓ)
∥∥∥2
2

via Algorithm 2 with K(ℓ) = min(K,Kmax).
Cascade inputs to the next layer:

Xℓ+1 = f ℓ(Xℓ, Ŵ ℓ)

end for
Output: Pruned weights {Ŵ 1, . . . , ŴL}

5 EXPERIMENTS ON CNNS AND VISION TRANSFORMERS

CNN Pruning. CNNs are a fundamental architecture for computer vision tasks. In a CNN, the
weight tensor W ℓ has dimensions (dout × din × kh × kw). Here, dout is the number of output
channels (filters), din is the number of input channels, and kh and kw are the kernel height and width,
respectively. We focus on a semi-structured sparsity pattern that has become more popular in recent
years, called N :M sparsity. This sparsity pattern requires that, for every (non-overlapping) block
of M weights, exactly N weights are non-zero. For CNNs, the N :M sparsity format requires that
the weights be sparse along the input dimension din (Pool & Yu, 2021). We follow this convention
throughout our experiments. We provide an example of an N :M sparse convolutional kernel in
Figure 11 in subsubsection A.3.1 and additional details on how we handled the K-step problem.

Experimental setup. We evaluate SNOWS across several standard CNN benchmarks. We use the
CIFAR-10, CIFAR-100, and ImageNet-1k datasets (Krizhevsky & Hinton, 2009; Deng et al., 2009),
where we evaluate performance pruning the ResNet20 and ResNet50 architectures (He et al., 2015)
to N :M sparsity. Additionally, for experiments on unstructured sparsity, we use the MobileNetV1
architecture (Howard et al., 2017) to compare to previous studies on unstructured pruning. Due
to the size of the original ImageNet dataset and the fact that one-shot methods require just a few
thousand samples, we use the MiniImagenet-1k dataset, a sample from the ImageNet-1k dataset.
We use 10,000 samples from this dataset for evaluation, with 3,000 calibration samples being used
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for the N :M sparsity experiments. For unstructured sparsity, we use 1,000 calibration samples to
be consistent with the methods we compare with (Benbaki et al., 2023).

Results. N :M sparsity. We first evaluate the impact of running SNOWS on top of existing mask
selection techniques, OBC (Frantar & Alistarh, 2022), SparseGPT (Frantar & Alistarh, 2023), and
MP, that support N :M sparsity. Adding SNOWS on top of other pruning techniques consistently
improves performance across different methods and datasets, as shown in Figure 1. This is evident
in more challenging datasets like CIFAR-100 and ImageNet-1k, where other methods alone perform
poorly, but the addition of SNOWS recovers close to the performance of the dense model. For
2:4 sparsity, the choice of mask selection technique has less of an impact on the results. Once
SNOWS is applied, the methods achieve similar performance. However, at higher sparsity (1:4),
more intensive mask selection techniques, particularly OBC, combined with SNOWS give the best
results. We provide latency performance estimates for the N :M patterns shown in Figure 1 in
subsubsection A.3.5. We also report hyperparameters for SNOWS, including the value of K, the
dampening factor λ, and the CG tolerance in subsubsection A.3.6.

Unstructured Sparsity. We also compare SNOWS against several popular one-shot pruning meth-
ods for unstructured sparsity, including Magnitude Pruning (MP) Gupta et al. (2024), WoodFisher
(Singh & Alistarh, 2020), Combinatorial Brain Surgeon (Yu et al., 2022b), and CHITA (Benbaki
et al., 2023), using the reported results from the CHITA paper for the competing methods. We
remark that our base ResNet20 and MobileNetV1 models start from slightly different starting accu-
racies, thus we instead show the accuracy change compared to the baseline model in Figure 3 and
provide the raw numbers in subsubsection A.3.3. Other one-shot methods optimize both the mask
and weights, whereas SNOWS optimizes from a mask obtained through magnitude pruning. Despite
this, SNOWS consistently outperforms existing one-shot approaches at all sparsity levels. In sub-
subsection A.3.4, we provide additional retraining experiments for SNOWS and the best competing
method in Figure 3, FALCON Meng et al. (2024b), showing SNOWS can further improve with some
additional fine-tuning. We also provide additional run-time comparisons in subsubsection A.3.7.

Method
CIFAR-10
(ResNet20)

CIFAR-100
(ResNet50)

ImageNet-1k
(ResNet50)

1:4 2:4 1:4 2:4 1:4 2:4

Dense Model 92.58 77.40 75.71

OBC 76.77 90.98 69.79 77.03 46.29 73.74
+SNOWS 89.09 91.86 76.05 77.11 66.33 73.87

SparseGPT 11.06 86.05 8.27 74.10 1.61 69.46
+SNOWS 86.10 91.94 73.66 77.10 49.32 73.59

MP 10.99 63.45 9.45 70.76 — 63.45
+SNOWS 87.82 91.88 75.87 77.24 62.75 73.97

Table 1: Top-1 Test Accuracy integrating SNOWS
with other popular mask selection algorithms for
N :M pruning.

Figure 3: Comparing SNOWS to one-shot
pruning methods for unstructured sparsity.

ViT pruning. ViTs (Dosovitskiy et al., 2021) have become popular in computer vision by applying
the Transformer architecture, originally designed for natural language processing, to image recogni-
tion tasks. In ViTs, an image is divided into a sequence of patches and embedded into a vector. These
embeddings are then processed through blocks that consist of Multi-Head Self-Attention (MHSA)
layers and Feed-Forward Neural Networks (FFNs). (Chen et al., 2022) introduce a framework to
make the intermediate attention outputs sparse, while leaving the weights for the query, key, and
value as dense matrices. They justify this saying it is particularly hard to prune these weights prior
to the attention operations, since it is not the raw weight values that are important, but their interac-
tions within the attention mechanism. In contrast, we jointly optimize over these weights and across
all heads, and hence we inherently account for the interactions between the pruned weights and how
they influence the attention output. The detailed formulation is provided in subsubsection A.3.3. We
also discuss how to prune the output projection module of the MHSA block and MLP layers within
the FFN modules in the ViT, which are more standard formulations than for MHSA.
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Experimental setup. We evaluate SNOWS on ViT-B/16 and ViT-L/16 models, pruning them to 2:4
sparsity on MiniImageNet-1k. Since methods for mask selection in N :M sparsity do not extend
easily to vision transformers, we employ MP to obtain the 2:4 masks.

Results. As shown in Table 2, SNOWS consistently outperforms MP, with higher Top-1 and Top-5
accuracies. When pruning the QKV, output projection, and MLP layers, SNOWS achieves a Top-1
accuracy of 76.57% on ViT/B-16, significantly better than 70.89% for MP. In Figure 4, we plot the
attention maps generated by the last attention layer of the dense model, the model pruned with MP
and the model obtained when SNOWS is applied on top of MP. SNOWS better preserves the atten-
tion patterns in the dense model since it optimizes to preserve the activations via the reconstruction
loss. In Figure 5, we show this leads to superior transfer learning performance, where fine-tuning the
classifier layer of a ViT pruned with SNOWS outperforms MP when transferring to smaller datasets.

Figure 4: Visualizing (a) the original test image and attention maps from the last layer of (b) the
dense VIT/B-16 model, (c) the model obtained by applying a 2:4 MP mask, and (d) the model after
applying SNOWS on top of MP. SNOWS optimizes to reconstruct learned activations, preserving
features learned by the dense network even in the deepest layers.

Model Pruned Layers Top-1

VIT/B-16
Dense: 80.42%

QKV (SNOWS) 79.45
QKV (MP) 78.97

QKV, Out, MLP (SNOWS) 76.57
QKV, Out, MLP (MP) 70.89

VIT/L-16
Dense: 84.17%

QKV (SNOWS) 81.01
QKV (MP) 75.55

MLP (SNOWS) 69.71
MLP (MP) 0.28

Table 2: Pruning VIT/B-16 and VIT-L-16 to 2:4 spar-
sity on ImageNet-1k in one shot. SNOWS uses the
2:4 mask obtained from MP. Note that no retraining
is involved. We use n = 5, 000 calibration samples
for VIT-B/16 and n = 20, 000 for VIT-L/16.
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Figure 5: Test accuracy fine-tuning the
classifier layer of the 2:4 sparse VIT/B-16
on CIFAR-10 and CIFAR-100.

6 LIMITATIONS AND CONCLUSIONS

This work proposes a new layer-wise pruning framework, bridging between the local layer-wise and
global pruning loss functions introduced in prior work. The objective of our modified loss function
induces a harder non-linear optimization problem compared to the standard layer-wise formulation.
We propose an efficient Hessian-free method for optimizing this objective, and demonstrate its effi-
ciency on large-scale networks. There are several limitations to the proposed work: firstly, SNOWS
does not do mask selection. This makes it flexible since it can integrate with existing techniques
for mask selection, but using discrete optimization as is done in (Benbaki et al., 2023; Meng et al.,
2024b;c) on the SNOWS loss function may lead to stronger results. Moreover, the method has little
dependence on the computational modules involved in the reconstruction loss. As such, the frame-
work could readily be extended to Text-to-Speech or Large Language Models. However, this would
require specializing the formulation of the K-step problem as we did for CNN and ViT modules.
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A APPENDIX

A.1 PRIMARY METHODS AND ANALYSIS

A.1.1 BACKGROUND ON OBS AND SECOND-ORDER APPROXIMATIONS.

For pruning the network to achieve the sparsity target, the proposed OBS solution is to start from the
dense weights W and minimize a second-order Taylor expansion of the loss function with respect
to a perturbation of the weights:

min
δ
L(W + δ) ≈ L(W ) +∇L(W )T δ +

1

2
δT ·H · δ (11)
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subject to the constraint that δq + Wq = 0, i.e. a single weight Wq is to be removed, with
∇L(W ) = ∂L/∂W being the gradient and H = ∂2L/∂W 2 being the Hessian matrix. The
OBS procedure minimizes this approximation iteratively with respect to the weight perturbation δ,
each time obeying the constraint that a single weight is removed. Assuming the dense network is
fully trained, they argue ∇L(W ) = 0, which leaves just the second-order term involving δ in the
approximation. Minimizing the resulting constrained formulation with respect to δ using Lagrange
multipliers yields exact saliency scores for each weight Wq , given as ρq = − Wq

[H−1]qq
H−1eq as

well as a method for optimally readjusting the remaining weights δ = − Wq

[H−1]qq
H−1eq , where eq

is the standard basis with all zeros except the q-th element which is one. Here, ρq is a solution to the
discrete problem (a ranking among all weights) while δ is a solution to the continous problem (an
optimal weight readjustment for weights other than q, when q is removed).

A.1.2 MOTIVATION FOR THE SNOWS LOSS FUNCTION

The original motivation of the layer-wise reconstruction objective given in Dong et al. (2017b) was
to minimize the impact of pruning at each layer on the final network output. They show that the
error ε̃L = 1√

n
||Y L − Ŷ L||F of the entire pruned network at the final layer L is bounded as:

ε̃L ≤
L−1∑
ℓ=1

(
L∏

r=ℓ+1

∣∣∣∣∣∣Ŵ r
∣∣∣∣∣∣
F

√
δEℓ

)
+
√
δEL

where δEℓ is the layer-wise error between the outputs at layer ℓ, i.e., δEℓ =

1
n

∣∣∣∣∣∣XℓW ℓ − X̂ℓŴ ℓ
∣∣∣∣∣∣2
F

. In other words, the difference between the final output of the dense and
pruned network is bounded by a product of the layer-wise errors. This means if the layer-wise errors
can be kept small, the overall error should be controlled. However, there is an interesting subtlety to
how the errors propagate. Say we are pruning layer ℓ. It would seem as though the contribution by
layer ℓ to ε̃L is confined to δEℓ. However, notice that

X̂ℓ+1 = Ŷ ℓ = f ℓ(X̂ℓ, Ŵ ℓ)

So pruning at the current layer changes the input at the next layer and moreover at all subsequent
layers since X̂ℓ+k = Ŷ ℓ+k−1 = f ℓ+k−1(X̂ℓ+k−1, Ŵ ℓ+k−1), for all k = 1, . . . , L− ℓ.

So after pruning layer ℓ, we can observe the expression for the error in the subsequent layers

δEℓ+k =
1

n

∣∣∣∣∣∣Xℓ+kW ℓ+k − X̂ℓ+kŴ ℓ+k
∣∣∣∣∣∣2
F

At the time of pruning layer ℓ, W ℓ+k = Ŵ ℓ+k, since these weights have not yet been pruned, but
notice that already Xℓ+k ̸= X̂ℓ+k, since our pruning decision at layer ℓ has affected all layers after
it. The error term for the future layers becomes

δEℓ+k =
1

n

∣∣∣∣∣∣(Xℓ+k − X̂ℓ+k)W ℓ+k
∣∣∣∣∣∣2
F

Hence the error at the future layers is determined by the magnitude of the difference Xℓ+k − X̂ℓ+k

induced by pruning layer ℓ. Our formulation, by minimizing
∑K

k=0 ||Yℓ+k − Ŷℓ+k||2F =∑K
k=0 ||Xℓ+k+1 − X̂ℓ+k+1||2F can be interpreted as directly minimizing the subsequent error terms∑K
k=0 δE

ℓ+k during the pruning of layer ℓ as opposed to only δEℓ.

A.1.3 ARMIJO SUFFICIENT DECREASE CONDITION.

In the Newton descent procedure, we use the Armijo decrease condition to determine an appropriate
step size α that ensures a sufficient decrease in the loss function:
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α = argmax
α≤1

α s.t. L
(
Ŵ ℓ

Z + αδZ

)
≤ L

(
Ŵ ℓ

Z

)
+ αβ δ⊤Z∇L

(
Ŵ ℓ

Z

)
,

The parameter β is a small constant. We use β = 1× 10−5.

A.1.4 A TOY EXAMPLE SHOWING THE ADVANTAGE OF NEWTON’S METHOD OVER SGD
UNDER VARYING CURVATURE.

Consider the following toy problem:

minwL(w) =
1

2

(
λ1w

2
1 + λ2w

2
2

)
(12)

where w = [w1, w2]
T is the weight vector and λ1, λ2 > 0 are constants representing sensitivity of

the loss (curvature) along the w1 and w2 axes, respectively. Now consider a situation where λ1, λ2

are very different. For our example, we choose λ1 = 1 (low curvature along w1) and λ2 = 100
(high curvature along w2). The condition number of the problem is κ = λmax/λmin = λ2/λ1 = 100.
This creates an ill-conditioned problem with a significant difference in curvature between the two
directions. Now compare the convergence behavior for Newton and SGD. For SGD the update is:

w(k+1) = w(k) − η∇L(w(k)),

where η is the learning rate and∇L(w) =

[
λ1w1

λ2w2

]
. The updates can be written as:

{
w

(k+1)
1 = w

(k)
1 − ηλ1w

(k)
1 = (1− ηλ1)w

(k)
1

w
(k+1)
2 = w

(k)
2 − ηλ2w

(k)
2 = (1− ηλ2)w

(k)
2

To ensure convergence, the learning rate needs to satisfy 0 < η < 2
λmax

e.g. see (Cohen et al., 2022)
for a detailed convergence analysis. With λmax = λ2 = 100, a natural choice is η = 0.01. This
implies:

w
(k+1)
1 = (1− ηλ1)w

(k)
1 = (1− 0.01× 1)w

(k)
1 = 0.99w

(k)
1 .

This means w1 decreases by 1% per iteration, leading to slow convergence along this direction due
to the low curvature. Namely, rewriting the update formula:

w
(k)
1 = (0.99)kw

(0)
1 .

The optimal solution is clearly w1 = 0. Assuming w
(0)
1 = 1, we can find the number of iterations k

required for w(k)
1 to be less than a small threshold e.g. ϵ = 1e−6:

w
(k)
1 ≤ ϵ =⇒ k ≥ ln(10−6)

ln(0.99)
≈ 1, 375 iterations.

In contrast, along w2:

w
(k+1)
2 = (1− ηλ2)w

(k)
2 = (1− 0.01× 100)w

(k)
2 = 0w

(k)
2 = 0.

Here, w2 converges to the optimum in one iteration. Thus, importantly overall convergence is dom-
inated by the slowest direction (low curvature along w1). Now consider Newton’s method on the
same problem:

w(k+1) = w(k) −H−1∇L(w(k)),
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where the Hessian is H = ∇2L(w) =

[
λ1 0
0 λ2

]
and its inverse is: H−1 =

[ 1
λ1

0

0 1
λ2

]
The updates become:

{
w

(k+1)
1 = w

(k)
1 − 1

λ1
λ1w

(k)
1 = 0,

w
(k+1)
2 = w

(k)
2 − 1

λ2
λ2w

(k)
2 = 0.

Thus both w1 and w2 reach the minimum in one iteration, regardless of the condition number κ.
Newton’s method overcomes the issue of varying curvature by adjusting its updates according to the
inverse of the Hessian. Rescaling the gradient components means it takes appropriate sized steps in
each direction, i.e. larger steps in low-curvature directions and smaller steps in high-curvature ones.
This results in convergence to the minimum in a single iteration for both directions, regardless of
the condition number κ. The trajectories are shown in Figure 6.

Figure 6: Comparison of convergence rates between SGD and Newton’s method on the toy opti-
mization problem in Eqn (12) with highly varying curvature (λ1 = 1, λ2 = 100). While Newton’s
method achieves convergence in a single iteration, SGD requires approximately 1,375 iterations due
to the high condition number κ = 100.

A.2 ABLATION STUDIES

A.2.1 COMPARING SGD VERSUS NEWTON’S METHOD TO OPTIMIZE EQN (3).

In Figure 7, we compare the time required to optimize the first layer of ResNet20 on CIFAR-10
and ResNet50 on ImageNet-1k, both using a 2:4 mask Z obtained via magnitude pruning. The
Stochastic Newton algorithm, when applied to optimize ŴZ , makes significantly faster progress
compared to SGD, especially as problem size increases. In the section that follows we provide
detailed loss trajectories for both methods on this same problem. Our results indicate that Newton’s
method moves much farther from the starting solution with each step, whereas SGD progresses
much more slowly and generally does not move far from the starting solution. We also provide a
more detailed discussion on possible reasons why SGD converges slowly in this setting.
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Figure 7: Comparing Newton’s method and SGD with minimizing Eqn (3) with K = 10, for the
first layer in the model. The solution starts with a 2:4 sparse mask obtained via magnitude pruning.
Newton’s method converges very quickly and requires less time to solve the K-step reconstruction
problem. SGD is trained for 2000 steps whereas Newton converges in less than 10.

The empirical success of SGD in training neural networks from scratch has been very well-
demonstrated (Hardt et al., 2016). Several papers have remarked that this success seems to owe
in part to the effect of overparameterization (Neyshabur et al., 2018), where neural networks are
trained with more parameters than are necessary for a given task. At the same time, empirical work
on sparse fine-tuning has shown that fine-tuning a sparse network with SGD often does not lead to
good performance (Renda et al., 2020). Other work has found that training a sparse network from
scratch with no knowledge of a good initialization is likewise difficult (Evci et al., 2020). Our em-
pirical findings in Figure 7 corroborate this fact, suggesting SGD performs poorly and converges
slowly on the optimization problem defined in Eqn (6). In Figure 8 show the weight trajectories for
the same problem, finding that SGD does not move far from the starting solution, even after thou-
sands of iterations. We hypothesize that SGD may perform poorly in the sparse setting due to uneven
curvature (loss sensitivity) in the coordinates, which is also present in the overparameterized setting
but may become exaggerated by the lack of redundancy in sparse networks. In the next section, we
show a small toy example comparing SGD and Newton’s method for a two-dimensional quadratic
optimization problem where the weight directions have varying curvature. The intuition is that SGD
must choose a learning rate no larger than the largest eigenvalue of the Hessian since if it is larger,
then loss will diverge on that direction. In overparameterized problems, it may be possible to get
away with having a long-tail of low curvature directions that take more time to converge. However,
in sparse models redundancy is significantly reduced, and this means the optimizer must be more
sensitive to each direction. In such cases, choosing a learning rate that works well for all directions
becomes increasingly difficult, as there are fewer parameters to absorb the mismatch between the
learning rate and the curvature.
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Figure 8: Optimization of the first layer for both ResNet20 and ResNet50 using SGD and stochastic
Newton from Figure 7. Top row: Loss trajectories for 2000 iterations of SGD versus respectively
6 (CIFAR-10) and 13 (ImageNet-1k) iterations of stochastic Newton for the two largest starting
weights. Bottom row: Relative distance between the full weight matrix and the starting weight
matrix for both methods. The relative distance is defined as dist(Wt) =

∥Wt−W0∥2

∥W0∥2 where Wt are
the weights at iteration t and W0 are the initial weights.

A.2.2 USING TRUE HESSIAN VERSUS FISHER APPROXIMATION TO OPTIMIZE EQN (3)

We also observe a significant performance improvement when using the true Hessian over the
Fisher approximation. Specifically, we replace the Hessian in Eqn 7 with the Fisher approxima-
tion F = 1

N

∑N
i=1∇ŴZ

Li(ŴZ)∇ŴZ
Li(ŴZ)

⊤ and employ the updates δZ = −F−1∇L(ŴZ).
The main advantage of employing the true Hessian via the Hessian-free approach is the accelerated
speed of convergence. As illustrated in Figure 9, we plot the objective value when using the Fisher
approximation versus the exact Hessian-free steps for all layers in ResNet20 and the first three layers
in ResNet50. The results indicate that using Newton’s method instead of the Fisher approximation
leads to much faster convergence, not only in terms of iterations but also in overall runtime. For the
larger ResNet50 networks, running the Fisher approximation to convergence is actually prohibitive,
and can take almost half an hour per layer for even the first layers of ResNet50.

(a) ResNet20 (b) ResNet50

Figure 9: Comparison of Newton’s method and Fisher approximation for all layers in ResNet20 and
the first three layers of ResNet50.

A.2.3 EFFECT OF THE NUMBER OF CG ITERATIONS

The plot in Figure 10 shows the impact of varying the maximum number of CG iterations in Al-
gorithm 1 on the reconstruction loss across different layers and models. As expected, decreasing
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the maximum CG iterations generally results in slower progress per iteration, as lower caps (e.g.,
CG 5) reduce the loss at a slower rate compared to higher iteration limits (e.g., CG 500). However,
despite this slower per-iteration progress, CG with fewer iterations often converges faster overall,
as the algorithm compensates by taking a more iterative approach, covering more batches quickly
while solving the second order approximation for each batch more approximately. This means that,
although each step is smaller, CG with lower iteration caps refines the solution more frequently,
leading to comparable or even faster convergence relative to higher iteration caps.
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Figure 10: Normalized reconstruction loss starting from the masked dense weights. The plot shows
the effect of varying the maximum CG iterations in Algorithm 1. While fewer iterations result in
slower progress per step, they often lead to faster overall convergence by refining the solution more
frequently.

A.2.4 EFFECT OF THE PARAMETER K ON RUN-TIME

We provide in Table 3 a comparison of (1) run-time in minutes for pruning the entire network
and (2) peak GPU memory usage, as the parameter K varies. In practice K should be chosen as
large as possible while not exceeding available GPU memory or run-time expectations. In practice,
moderate values of K can lead to good performance while having very small run-times.

ResNet20 (CIFAR-10) ResNet50 (CIFAR-100) ResNet50 (ImageNet-1k)
K Time Peak Memory (GB) Time Peak Memory (GB) Time Peak Memory (GB)
0 0.7 2.2 11.3 8.7 10.5 8.6
1 0.8 2.5 10.7 10.8 12.9 15.1
3 1.6 2.8 11.1 11.4 25.2 17.3
5 2.3 3.3 11.4 12.1 39.7 25.8
10 4.8 3.3 13.3 15.5 94.8 38.3
20 8.1 4.3 16.1 21.9 184.1 54.0
30 11.2 4.9 17.0 24.9 289.5 66.9
40 11.8 5.1 18.8 28.1 OOM OOM
60 > max K > max K 20.3 31.6 OOM OOM

Table 3: Effect of varying K on the run-time and peak memory usage of the full SNOWS algorithm.
The run-time shown is in minutes.

A.3 IMPLEMENTATION AND EXPERIMENTAL DETAILS

A.3.1 N :M SPARSITY IN CNNS

N :M sparsity enforces a fine-grained sparsity pattern along specific dimensions of the weight tensor.
In the context of convolutional neural networks, we apply N :M sparsity along the input dimension
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din while keeping the other dimensions fixed. This means that, for each output channel n and each
spatial location in the kernel (i, j), we group the weights W ℓ

n,G,i,j along the input channels into
groups G of M consecutive weights such that

∥∥W ℓ
n,G,i,j

∥∥
0
= N . Within each group, exactly N

weights are non-zero, and the remaining M−N weights are zeroed out. An example for 2:4 sparsity
is shown in Figure 11.

dout × kh × kw

din

Figure 11: An example of a 2:4 sparse convolutional kernel.

A.3.2 K-STEP LAYER-WISE RECONSTRUCTION PROBLEM IN CNNS.

Each convolutional layer typically involves several linear and non-linear operations. The exact op-
erations can differ across architectures, but we present an example for the ResNet architecture (He
et al., 2015). The functions in Eqn (3), which captures the operations at layer ℓ, can be mathemat-
ically defined as f ℓ(Xℓ,W ℓ) = Conv(Xℓ,W ℓ) refers to the convolution operation. The Conv
operation can be written as a linear operation so for K = 0 this problem reduces to the layer-wise
reconstruction problem in Equation 3. For larger K, say K = 1, we define :

f ℓ:ℓ+1(Xℓ,W ℓ) = ReLU
(
BN
(
f ℓ(Xℓ,W ℓ))

)
+Xℓ

)

where BN refers to batch normalization, ReLU(M) = max(M ,0) and the addition of Xℓ is the
residual connection. For K = 1, we directly jump to reconstruct the output of the ReLU since BN
is a small linear rescaling applied to the convolution, so we do not directly reconstruct its output and
likewise for residual connections, though these are inherently absorbed in the reconstruction at the
output of the ReLU.

A.3.3 RAW NUMBERS FOR UNSTRUCTURED COMPARISONS

For Figure 3, we use the benchmarking numbers from (Benbaki et al., 2023) and (Meng et al.,
2024b). However, their dense versions of ResNet20 and MobileNetV1 have slightly different start-
ing accuracy than ours. This the reason we report relative accuracy to the baseline in Figure 3.
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ResNet20 on CIFAR10
Sparsity Baseline Accuracy: 91.36% Baseline: 92.56%

MP WF CBS CHITA FALCON SNOWS
0.5 88.44 (-2.92) 90.23 (-1.13) 90.58 (-0.78) 90.60 (-0.76) 90.87 (-0.49) 92.28 (-0.28)
0.6 85.24 (-6.12) 87.96 (-3.40) 88.88 (-2.48) 89.22 (-2.14) 89.67 (-1.69) 91.90 (-0.66)
0.7 78.79 (-12.57) 81.05 (-10.31) 81.84 (-9.52) 84.12 (-7.24) 84.42 (-6.94) 90.87 (-1.69)
0.8 54.01 (-37.35) 62.63 (-28.73) 51.28 (-40.08) 57.90 (-33.46) 65.17 (-26.19) 87.82 (-4.74)
0.9 11.79 (-79.57) 11.49 (-79.87) 13.68 (-77.68) 15.60 (-75.76) 19.14 (-72.22) 64.80 (-27.76)

MobileNetV1 on ImageNet-1K
Sparsity Baseline Accuracy: 71.95% Baseline: 70.89%

MP WF CBS CHITA FALCON SNOWS
0.5 62.61 (-9.34) 68.91 (-3.04) 70.21 (-1.74) 70.42 (-1.53) 70.35 (-1.60) 70.10 (-0.79)
0.6 41.94 (-30.01) 60.90 (-11.05) 66.37 (-5.58) 67.30 (-4.65) 67.18 (-4.77) 68.70 (-2.19)
0.7 6.78 (-65.17) 29.36 (-42.59) 55.11 (-16.84) 59.40 (-12.55) 58.40 (-13.55) 65.28 (-5.61)
0.8 0.11 (-71.84) 0.24 (-71.71) 16.38 (-55.57) 29.78 (-42.17) 25.82 (-46.13) 54.83 (-16.06)

Table 4: Raw accuracy (%) with absolute accuracy change (in brackets) compared to the baseline.
The baseline accuracies are shown above the methods.

A.3.4 RETRAINING EXPERIMENTS

In Table 5, we provide retraining experiments for SNOWS and the best competing method from
our unstructured sparsity experiments, FALCON Meng et al. (2024b). The retraining experiments
use a step decay learning rate schedule to fine-tune. For CIFAR-10, we retrained ResNet20 for 90
epochs, using SGD with momentum 0.9 and weight decay 5e-5. The learning rate started at 3e-3
and was reduced by a factor of 0.1 every 30 epochs. For ImageNet-1K, we retrained MobileNetV1
for 5 epochs using the same optimizer settings, with the learning rate decaying every 2 epochs.
Throughout retraining, we maintained the pruning mask to preserve the network sparsity, allowing
only non-zero weights to be updated. As shown in the results table, this retraining strategy was
particularly effective at high sparsity levels (0.8-0.9), where SNOWS significantly outperformed
FALCON in retaining model accuracy.

FALCON SNOWS
Dataset Sparsity Original +RT Original +RT

ResNet20
(CIFAR-10)

0.5 90.87 (-0.49) 91.07 (-0.29) 92.28 (-0.28) 92.32 (-0.24)
0.6 89.67 (-1.69) 90.58 (-0.78) 91.90 (-0.66) 92.13 (-0.43)
0.7 84.42 (-6.94) 89.64 (-1.72) 90.87 (-1.69) 91.85 (-0.71)
0.8 65.17 (-26.19) 87.59 (-3.77) 87.82 (-4.74) 91.06 (-1.50)
0.9 19.14 (-72.22) 81.60 (-9.76) 64.80 (-27.76) 87.69 (-4.87)

MobileNetV1
(ImageNet-1K)

0.5 70.35 (-1.60) 70.66 (-1.29) 70.10 (-0.79) 70.66 (-0.23)
0.6 67.18 (-4.77) 68.89 (-3.06) 68.70 (-2.19) 70.10 (-0.79)
0.7 58.40 (-13.55) 64.74 (-7.21) 65.28 (-5.61) 68.76 (-2.13)
0.8 25.82 (-46.13) 53.84 (-18.11) 54.83 (-16.06) 64.70 (-6.19)

Table 5: Raw accuracy (%) and absolute accuracy change (in brackets) for FALCON and SNOWS
before and after retraining at different sparsity levels. The baseline accuracies are as given in Table 4.

A.3.5 INFERENCE TIME SPEED-UPS FOR SEMI-STRUCTURED SPARSITY

Calculating exact inference time speed-ups for N:M sparsity patterns presents significant challenges
due to limited native PyTorch support and the need for specialized CUDA kernels to realize speed-
ups. Moreover, currently only the 2:4 pattern is supported by NVIDIA’s sparse tensor cores. To
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provide meaningful performance metrics, we instead report end-to-end FLOPs reduction across var-
ious architectures and sparsity patterns in Table 6, accounting for all network operations and layers.

Table 6: FLOPs and Accuracy Reduction Across Models and Semi-Structuerd Sparsity Patterns

Model Dataset Sparsity Pattern FLOPs Reduction Accuracy Change
ViT-B-16 ImageNet-1k 2:4 1.97× -3.85%

ResNet50 ImageNet-1k 1:4 2.99× -9.38%
2:4 1.79× -1.74%

ResNet50 CIFAR-100 1:4 3.13× -1.35%
2:4 1.83× -0.16%

ResNet20 CIFAR-10 1:4 3.80× -3.49%
2:4 1.97× -0.64%

A.3.6 HYPERPARAMETER CONFIGURATIONS FOR SNOWS USED IN EXPERIMENTS

Architecture Dataset K-Step Value Dampening λ CG Tol
N :M Sparsity Unstructured Sparsity

ResNet20 CIFAR-10 K = 40 K = 40 1e−4 1e−3
ResNet50 CIFAR-100 K = 100 — 1e−4 1e−3
ResNet50 ImageNet-1k K = 30 — 1e−4 1e−3
MobileNet ImageNet-1k — K = 60 1e−4 1e−3
ViT/B-16 ImageNet-1k K = 3 — 1e−4 5e−4

ViT/L-16 ImageNet-1k K = 4 (QKV) — 1e−4 5e−4
K = 1 (MLP)

Table 7: K-step values, dampening factors, and CG tolerances used for N :M sparsity and unstruc-
tured sparsity experiments across different architectures.

A.3.7 SNOWS ALGORITHM RUNTIME

For moderate values of K, our approach performs better and can run much faster than prior ap-
proaches, and scales much better in terms of architecture size. In Table 6, we compare the runtime
of our algorithm to CHITA (Benbaki et al. (2023)). We remark that other competitors WoodFisher
and CBS require hours to prune even MobileNet with a small sample size, see section 4.1.1 of
(Benbaki et al. (2023)). We show below the run-time for pruning three networks of different sizes:
ResNet20 (250k parameters), MobileNet (4m parameters), and ResNet50 (25m parameters). The
main advantage of our method in terms of efficiency is scaling to large networks since we avoid
computing, inverting, or storing the full Hessian or its approximation, and moreover not even stor-
ing or inverting the smaller layer-wise Hessian. Notably, our method outperforms CHITA even with
moderate values of K (though larger values used in our final experiments can obtain the best results
e.g. in Figure 3).
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Model-Sparsity Samples n SNOWS CHITA
Acc (%) Runtime (min) Acc (%) Runtime (min)

ResNet50 (25m parameters) 500 75.7 9.66 73.6 231.20
MobileNet (4m parameters) 1000 61.1 5.56 59.4 16.82
ResNet20 (250k parameters) 1000 90.0 0.56 84.1 2.23

Table 8: Comparison of performance versus run-time comparing SNOWS and CHITA pruning dif-
ferent architectures to 70% unstructured sparsity. ResNet-20 is run on CIFAR-10, MobileNet on
ImageNet-1k, and ResNet50 on CIFAR-100. We use 1000 samples for ResNet20 and MobileNet,
but for ResNet50 we use 500 samples since this was the only sample size below which CHITA runs
in <5 hours.

A.3.8 LAYER-WISE RECONSTRUCTION PROBLEMS FOR VIT MODULES.

MHSA Pruning. In a Transformer model with L layers, the input to layer ℓ is denoted as Xℓ ∈
Rn×d, where n is the sequence length and d is the embedding dimension. The Multi-Head Self-
Attention (MHSA) mechanism at layer ℓ uses multiple attention heads to capture different aspects
of the input sequence. Specifically, the input Xℓ is linearly projected to produce the concatenated
queries (Qℓ), keys (Kℓ), and values (V ℓ) across all heads:

Qℓ = XℓW ℓ
Q, Kℓ = XℓW ℓ

K , V ℓ = XℓW ℓ
V

where W ℓ
Q,W

ℓ
K ,W ℓ

V ∈ Rd×HdH are the learnable weight matrices for all heads, with H being
the number of heads and dH the dimensionality of each head. The self-attention mechanism then
computes the relevance of each token in the sequence by performing the scaled dot product of queries
and keys, followed by a softmax operation to produce normalized attention scores:

Y ℓ = softmax

(
QℓKℓ⊤

√
dk

)
V ℓ

Here, Y ℓ represents the output of the MHSA layer at the current layer ℓ. In the general multi-step
layer-wise reconstruction problem for K ≥ 0, we aim to reconstruct the outputs over the subsequent
K layers while optimizing jointly over the query, key and value matrices. This is expressed as:

min
Ŵ ℓ∈W

K∑
k=0

∥∥∥Y ℓ+k − f ℓ:ℓ+k(Xℓ, (Ŵ ℓ
Q, Ŵ

ℓ
K , Ŵ ℓ

V ))
∥∥∥2
2

where f ℓ:ℓ+k(Xℓ, (Ŵ ℓ
Q, Ŵ

ℓ
K , Ŵ ℓ

V )) represents the transformation of the input Xℓ through K lay-
ers which can include the FFN outputs, GeLU activations, Layer Normalization outputs, and subse-
quent attention operations. For a specific case: when K = 0, we focus on reconstructing only the
output of the attention block in layer ℓ, which can be written as:

min
Ŵ ℓ∈W

∥∥∥∥∥Y ℓ − softmax

(
XℓŴ ℓ

Q(X
ℓŴ ℓ

K)⊤
√
dk

)
XℓŴ ℓ

V

∥∥∥∥∥
2

2

Through joint optimization we inherently account for the interactions between the pruned weights.
Moreover, since we solve the problem across all attention heads, we can learn redundancies that
exist across multiple heads, thereby preserving the overall expressiveness of the MHSA block after
pruning.

Output Projection Pruning. In MHSA, after the attention operation, the concatenated outputs of
the attention heads are linearly projected back to the original embedding dimension d via an output
projection matrix W ℓ

O ∈ RHdH×d. This matrix reduces the dimensionality of the concatenated
outputs Zℓ = concat(Zℓ

1, . . . ,Z
ℓ
H), where each Zℓ

h is the output from one of the H heads. The
output projection is computed as:

Y ℓ = ZℓW ℓ
O
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In the case where K = 0, the output projection pruning reduces to a standard linear least squares
reconstruction problem.

min
Ŵ ℓ

O∈W

∥∥∥Y ℓ −ZℓŴ ℓ
O

∥∥∥2
2

For larger K, the output projection reconstruction problem involves reconstructing the outputs of
the MLP, Attention blocks that proceed it.

FFN Pruning. In vision transformers, feedforward networks (FFNs) are responsible for a substan-
tial portion of the overall model parameters, often accounting for more than half of the total param-
eter count and FLOPS (Kao et al., 2022). The FFN block applies an initial linear transformation,
followed by a GeLU activation function (Hendrycks & Gimpel, 2023), followed by an additional
linear transformation. To optimize and prune the FFN, we break the MLP into its constituent linear
parts, addressing each separately. Specifically, we handle the first linear layer (MLP0) and the sec-
ond linear layer (MLP3) as distinct optimization tasks. As special cases, for K = 0, both MLP0 and
MLP3 reduce to a standard linear reconstruction problem:

min
Ŵ ℓ∈W

∥∥∥XℓW ℓ −XℓŴ ℓ
∥∥∥2
2

For K = 1, MLP0 becomes a non-linear problem involving the GeLU activation function:

min
Ŵ ℓ∈W

∥∥∥GeLU(XℓW ℓ + bℓ)− GeLU(XℓŴ ℓ + bℓ)
∥∥∥2
2

For larger K, the MLP reconstruction problem involves reconstruction subsequent attention opera-
tions and MLP blocks. In all cases, MLP0 and MLP3 are optimized independently.
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