
Statement of Revision

We would like to thank the reviewers for their helpful comments and feedback on the manuscript. We have
responded by making several major revisions to our previous manuscript, including new sections, proposi-
tions, baselines, tables, appendixes, and code. We also made significant writing changes throughout the paper
to address several important questions raised by the reviewers, increasing clarity and usefulness. A bulleted
list at the bottom of this letter summarizes the major new sections and experiments, followed by individual re-
sponses to reviewers and a marked-up copy of our paper to emphasize the new changes. All reviewers agreed
that the work initially submitted is useful and the detailed empirical evaluations will help popularize confor-
mal prediction in a new field, computer vision. However, reviewers had the following following criticisms of
the initial draft:

(i) It is not clear that one would want to prune extremely large sets arising from the APS procedure; our
regularization trades off between between size and adaptiveness, a topic that we did not give enough
attention. The APS procedure is further motivated by a conditional oracle, and three reviewers had
questions about conditional coverage that are closely related to the adaptiveness criterion. This is best
summarized by R4: ”when regularization is applied, something must be lost.”

(ii) Our method has tuning parameters kreg and λ that must be set somehow.

(iii) We proved that RAPS has equal or better performance than a fixed-size set, but did not show this im-
provement is significant through our experiments.

In response to (i), we now show that RAPS improves the adaptiveness of APS when λ is small. Our new Sec-
tion 4, ”Adaptiveness and Conditional Coverage,” contains a detailed discussion of adaptiveness, conditional
coverage, and image classification, resulting in a formal definition of adaptiveness in our new Proposition 3.
We also moved Table 4 from the appendix to this main-text section at the suggestion of the reviewers. The
new Appendix E then introduces a computationally efficient metric for measuring adaptiveness violations, the
size-stratified coverage violation. The new Table 8 shows that with an automated choice of tuning parameters,
RAPS always outperforms APS on on this metric. Finally, to emphasize and explain the need for regulariza-
tion early on in the paper, we add Subsection 2.3, ”Why regularize?” We would like to thank the reviewers for
their comments on this topic, which inspired us to develop these new ideas and experiments and immensely
improved our manuscript.

In response to (ii), we added subroutines that automate the choice of kreg and λ, either to optimize size or
adaptiveness (i.e. to minimize the size-stratified coverage violation). We reproduced Tables 1, 5, 2, and 6 with
these data-driven, automated parameter choices that minimize the average set size. The new Appendix E and
Algorithm 4 explain how to pick kreg and λ to achieve small size. Moreover, Appendix E also gives a detailed
explanation of how to choose λ to maximize adaptiveness (c.f. our response to (i) ). Our codebase, intended
for public release, now uses these automated subroutines to set default values for kreg and λ, and if the user
would like a different tradeoff between size and adaptiveness, they can choose some convex combination of our
two automated suggestions. We are very pleased that the reviewers’ suggestions to automate these parameter
choices yielded good practical performance, since our intended audience, computer vision practitioners, will
no longer have to choose them.

In response to (iii), and at the suggestion of R2, we added a new baseline to our experiments in Tables 1, 5,
2, and 6: a randomized version of the top-k predictor that always predicts the smallest fixed-size set. RAPS
always clearly outperforms the top-k predictor; also, the top-k predictor always clearly outperforms naive
and APS in terms of size. Reading the results tables therefore gives a clear motivation for the RAPS algorithm;
thank you for the suggestion.
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Finally, in addition to our technical responses above, we request the reviewers consider the following fact:
most of our intended audience, computer vision practitioners, have never heard of conformal prediction, and
do not quantify the uncertainty of their algorithms because they have no good method for doing so. Our paper
makes an important contribution to this large population of researchers: it gives a gentle introduction to the
mathematics of conformal prediction along with extensive experiments that prove it is useful in this context,
and open-source code that automatically applies it to image classifiers. Especially with the improvements (e.g.
automated parameter selection) suggested by the reviewers, we believe this paper could have a practical impact
by encouraging the widespread use of distribution-free uncertainty guarantees in computer vision applications.

We thank the editors and reviewers for the opportunity to address your feedback, which has had a major
positive impact on the quality of our manuscript. Individualized responses to specific reviewers are included
as separate comments; we have responded to every reviewer comment.

Major new content:

• Proposition 3 and Eq (1) introduce a natural definition of adaptiveness for image classification that can
be easily computed on Imagenet.

• Section 4, ”Adaptiveness and Conditional Coverage,” includes a detailed discussion of adaptiveness,
conditional coverage, and their relationship in image classification. This material is further developed in
Appendix E.2.

• Appendix E and Algorithm 4 explain how to automatically pick kreg and λ to optimize size or adaptive-
ness.

• Table 8 reports results from en experiment where we tune λ to optimize adaptiveness, outperforming APS
in all cases.

• Tables 1, 5, 2, and 6 now include the top-k baseline and automatically chosen values of kreg and λ.

We next give a point-by-point response to each of the specific comments made by the reviewers. To highlight
the changes in the manuscript, text that has been updated from the previous version is indicated with the color
red.

Comments by AnonReviewer1

[R1: 1] “This paper proposes a regularized generalization of adaptive prediction sets (APS by Romano et al 2020) that results
in smaller prediction sets that still maintain the correct coverage level for statistical validity.

The basic idea of the new regularization is very well-explained and quite elegant: roughly speaking, there is an
indifference between classes of low probability so we should penalize including them in the prediction set. Despite
the simplicity of this idea, I consider this paper’s contribution to be a significant advance and I suspect this idea to
be useful beyond classification problems with images, although from my understanding, a crucial assumption is that
the number of classes needs to be sufficiently large (e.g., the regularization will not really yield any benefit if it’s
binary classification). I also found the experiments to be well-chosen. ”

We are encouraged that the reviewer found our work valuable.

Regarding the number of classes, yes, RAPS is designed for the case where there are many classes, such
as ImageNet. We’ve updated the discussion to make this explicit.
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For classification tasks with many possible labels, our method enables a researcher to take any
base classifier and return predictive sets guaranteed to achieve a pre-specified error level, such
as 90%, while retaining small average size.

While we do not think RAPS would be directly applicable to an example with only a handful of classes,
a better understanding of uncertainty quantification for image classifiers builds towards this broader
goal. For example, based on feedback from reviewers, our manuscript now spends time explaining why
conditional coverage, a traditional notion of adaptiveness in conformal prediction, is not the right notion
for high-signal image classification problems—see the newly included Section 4. Similarly, this work
provides some empirical evidence that naive methods based on the softmax scores (like our naive base-
line) may fail when they make decisions based on the small (unstable) softmax scores, and advocates for
methods with explicit statistical guarantees. Both of these points apply even to image classification with
a small number of classes. In summary, we agree, but also think that this work nonetheless makes useful
progress toward the general goal of uncertainty quantification for image classifiers.

[R1: 2] “My main comment instead is perhaps more of a follow-up: would it be possible to get a conditional guarantee rather
than a marginal guarantee (Proposition 1) by adapting proof ideas from Tibshirani et al’s ”Conformal Prediction
Under Covariate Shift” (2019)? This seems more aligned with the healthcare related question the paper starts the
paper with. In the healthcare context, the patient would ideally want the coverage to be conditional rather than
marginal (i.e., in Proposition 1, for the probability that’s being sandwiched, we want a version conditioned on landing
near an anchor feature vector to suggest randomly sampling feature vectors similar to, for instance, a specific patient
in the healthcare context). Separately, it would be interesting if the approach from Tibshirani et al can help RAPS

construct even smaller prediction sets than what you get in bold for Table 2 (in the marginal coverage setting and not
worrying about conditional coverage). ”

We thank the reviewer for bringing this idea to our attention. First of all, this comment is pointing out
possible formalizations of the adaptiveness desideratum. This is a direction of great importantance, and
we now dedicate the new Section 4 and Appendix E.2 to discussing this topic. The primary existing notion
of adaptivity in the conformal prediction literature is conditional coverage—one asks correct coverage
conditional on any event {X = x}. In the text, we now explain why conditional coverage is not a fully
satisfactory notion of adaptiveness in high-signal problems, and point to a practical relaxation that can
be achieved and verified in practice. We have included a short, relevant excerpt from Section 4 below.

Lastly, we argue that conditional coverage is a poor notion of adaptiveness when the best pos-
sible model (i.e., one fit on infinite data) has high accuracy. Given such a model, the oracle
procedure from Romano et al. [2020] would return the correct label with probability 1− α and
the empty set with probability α. That is, having correct conditional coverage for high-signal
problems where Y is perfectly determined byX requires a perfect classifier. In our experiments
on ImageNet, APS does not approximate this behavior. Therefore, conditional coverage isn’t
the right goal for prediction sets with realistic sample sizes. Proposition 3 suggests a relax-
ation. We could require that we have the right coverage, no matter the size of the prediction set:
P (Y ∈ C(X) | {|C(x)| ∈ A}) ≥ 1−α for anyA ⊂ {0, 1, 2, . . . }; Appendix E.2 develops this idea.
We view this as a promising way to reason about adaptiveness in high-signal problems such as
image classification.

As the reviewer brings up, the Tibshirani et. al. work relaxes conditional coverage to instead ask for cov-
erage on points in a neighborhood of x after weighting by their distance to x in terms of some kernel
function. In the context of image classification, we think that this is potentially much better than the pre-
vious notions of conditional coverage, since it doesn’t require a perfect classifier. In particular, choosing
the kernel function in a natural way for images (e.g., using some neural kernel) may help resolve some
of the difficulties we point to above. We are not yet able to say anything concrete about this possible
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extension, but we now include this reference within the discussion of conditional coverage to give a more
complete review of existing attempts to formalize the adaptiveness desideratum.

[R1: 3] “Strengths:

elegant, well-explained method with crisp theory nice suite of experiments helps popularize conformal prediction,
which I think more machine learning researchers should know about ”

We are again pleased that the reviewer finds our work useful.

[R1: 4] “Weakness:

the paper opens up with a high-stakes motivation but I don’t think it really gets back to this high-stakes problem
properly; I’d suggest discussing conditional coverage more (also some high-stakes classification problems have very
few classes, which the proposed regularization doesn’t provide much benefit for?) ”

We thank the reviewer for pointing this out. One medical diagnostic task where there could be many
classes are screenings based on genetic data or blood samples, and we now return to this example in the
discussion.

Prediction sets are most useful for problems with many classes; returning to our initial medical
motivation, we envision RAPS could be used by a doctor to automatically screen for a large
number of diseases (e.g. via a blood sample) and refer the patient to relevant specialists.

Comments by AnonReviewer2

[R2: 1] “The method is easy to understand and to implement. The method satisfies some meaningful theoretical guarantees.
(The proofs have been checked for correctness.) ”

We thank the reviewer for this comment and for carefully checking our work.

[R2: 2] “I am not 100% convinced that one would want to prune extremely large uncertainty sets arising out of the APS

procedure. Because the marginal coverage must be maintained, this forces some small uncertainty sets to be enlarged.
However, in many practical classification tasks (including the experiments in this paper), it tends also to be the case
that difficult examples are less common than the easier ones. It is hard for me to imagine that one would ever be in a
situation that one would wish to over-cover typical examples and undercover atypical ones to an even larger extent,
even if the over-coverage is only by one or two classes. However, perhaps there are real world situations in which
this is precisely the case. It would be nice if the authors could offer additional insights on this point. ”

We thank the reviewer for expressing this concern, and welcome the opportunity to expand on this point
by adding new sections (Sections 4 and 2.3), experiments (Tables 4 and 8), and appendixes (Appendix E).
In short, the APS procedure actually overcovers difficult examples and undercovers easy ones. By applying
a light RAPS regularization to prune extremely large sets, we mitigate this problematic behavior and get
closer to conditional coverage. See Tables 4 and 8 and Appendix E for new experiments on this topic. Part
of the updated text is as follows:

In Table 4, we report on the coverage of APS and RAPS , stratified by the size of the prediction
set. Turning our attention to the λ = 0 column, we see that when APS outputs a set of size 101−
1000, APS has coverage 97%, substantially higher than 90% nominal rate. By Proposition 3, we
conclude that APS is not achieving exact conditional coverage, because the scores are far from
the oracle probabilities. The APS procedure still achieves marginal coverage by overcovering
hard examples and undercovering easy ones, an undesirable behavior. Alternatively, RAPS can
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be used to regularize the set sizes—for λ = .001 to λ = .01 the coverage stratified by set size is
more balanced. In summary, even purely based on the adaptiveness desideratum, RAPS with
light regularization is preferable to APS . Note that as the size of the training data increases,
as long as π̂ is consistent, naive and APS will become more stable, and so we expect less
regularization will be needed.

In addition, we summarize the source of the shortcomings of APS and naive in the new Section 2.3,
”Why Regularize?”

We also took the reviewer’s concern as an opportunity to improve our definition of adaptiveness. The new
Section 4, ”Adaptiveness and Conditional Coverage,” and Proposition 3 provide a practical definition of
adaptiveness for image classification. Furthermore, Appendix E shows that with an automatic choice
of kreg and λ, RAPS consistently and significantly improves the adaptiveness of APS . For the sake of
brevity, we will not include the full text of these new sections in our response, and refer the reviewer to
the revised manuscript. The reviewer’s comment catalyzed the development of these new sections and
algorithms which have greatly improved our paper; thank you.

Lastly, the reviewer is interested in a concrete situation where small sets might be desirable, even if adap-
tiveness suffers. One such case is when there is a human in the loop that needs to make a decision based
on the algorithm output. For example, imagine an online annotation situation, where an expert labeler is
asked to classify an image. It is often helpful to present the labeler with a small set of plausible options
to choose from, making the task faster and easier for the human (it avoids typing, cognitive load, etc.). In
this scenario, presenting a large amount of classes is counterproductive. This scenario is, in fact, real: the
popular iNaturalist dataset is annotated by labelers who pick one of the top 10 options from a pretrained
iNaturalist classifier, as are many others. RAPS could naturally integrate into such a pipeline. We briefly
mention this example in the main text, saying:

Finding such examples is useful in active learning where one only has resources to label a small
number of points.

[R2: 3] “The method requires the user to choose two hyper-parameters and , with some combinations leading to decidedly
less desirable results. For the particular case of λ = 1, perhaps one could look at the RAPS solution as ”interpolating”
between the APS solution and the top-K solution. Related to #1 above, it isn’t clear to me why this would be desirable
in any way. Furthermore, although the hyper-parameters can be loosely interpreted as having to do with the size and
the tradeoff with adaptiveness, respectively, the precise relationship does not appear to be understood for general
cases, making it more challenging to predict the behavior of the method.”

We thank the reviewer for this comment and wholeheartedly agree with the “interpolation” interpretation
above. In view of the discussion to the previous comment and the new Section 4, we think that we
have made a convincing case for why RAPS is preferable to APS , even if one does not wish to trade off
adaptiveness for smaller sets. Morever, we now include software to automatically tune RAPS to maximize
adaptiveness (see Appendix E.2) and show in Table 4 that this automatic tuning is consistently better than
APS in terms of adaptiveness. We hope that the automatic tuning we now provide alleviates the burden
of the extra parameters. In view of the improvements in both set size and adaptiveness, we think that the
extra parameters are worth it.

The subsection of Appendix E that addresses tuning for adaptivity reads:

In this appendix, we show empirically that RAPS with an automatically chosen set of kreg
and λ improves the adaptiveness of APS . Recall our discussion in Section 4 and Proposition 3,
wherein we propose size-stratified coverage as a useful definition of adaptiveness in image
classification. After picking kreg as in Appendix E, we can choose λ using the same tuning data
to optimize this notion of adaptiveness.
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We now describe a particular manifestation of our adaptiveness criterion that we will use to
optimize λ. Consider disjoint set-size strata {Si}i=si=1, where

⋃j=s
j=1 Sj = {1, . . . , |Y|}. Then define

the indexes of examples stratified by the prediction set size of each example from algorithm C
as Jj =

{
i : |C(Xi, Yi, Ui)| ∈ Sj

}
. Then we can define the size-stratified coverage violation of an

algorithm C on strata {S}i=si=1 as

SSCV
(
C, {S}j=s

j=1

)
= sup

j

∣∣∣∣∣ |{i : Yi ∈ C(Xi,Yi,Ui), i ∈ Jj}|
|Jj|

− (1− α)

∣∣∣∣∣. (1)

In words, (1) is the worst-case deviation of C from exact coverage when it outputs sets of a
certain size. Computing the size-stratified coverage violation thus only requires post-stratifying
the results of C on a set of labelled examples. If conditional coverage held, the worst stratum
coverage violation would be 0 by Proposition 3.
To maximize adaptiveness, we’d like to choose λ to minimize the size-stratified coverage viola-
tion of RAPS . Write Cλ to mean the RAPS procedure for a fixed choice of kreg and λ. Then we
would like to pick

λ = argmin
λ′

SSCV(Cλ′ , {S}j=s
j=1). (2)

In our experiments, we choose a relatively coarse partitioning of the possible set sizes: 0-1, 2-3,
4-10, 11-100, and 101-1000. Then, we chose the λ ∈ {0.00001, 0.0001, 0.0008, 0.001, 0.0015, 0.002}
which minimized the size-stratified coverage violation on the tuning set. The results in Table 8
show RAPS always outperforms the adaptiveness of APS on the test set, even with this coarse,
automated choice of parameters. The table reports the median size-stratified coverage violation
over 10 independent trials of APS and RAPS with automated parameter tuning.

[R2: 4] “This is in contrast to the APS , which can be motivated via an oracle procedure with certain optimality properties.”

APS is motivated by an oracle property in the idealized setting where one has access to the correct model,
that is, when one has infinite data. We argue that the modifications introduced in RAPS becomes necessary
because in practical deployments we are very far from this oracle setting. In image classification on
ImageNet, there is relatively little label noise; the perfect model would have 100% accuracy on most
images. Thus, the oracle procedure from Romano et. al. would always return sets of size 1. By contrast,
we see in experiments that the APS sets have large size, routinely including dozens of labels. The reason is
that the probabilities from our fitted model are far from the true probabilities from a model fit on infinite
data, and so the oracle properties are not a good predictor of observed performance. In particular, we
noted above that in practice we observe that APS is overcovering the hard examples and undercovering
the easy examples (see Table 4). Our regularization serves to fix this issue. While our procedure includes
a tuning parameter, this improves performance in practical situations, and can be automatically selected
as in Appendix E. This discussion is summarized in the new Section 4; thank you for this point.

[R2: 5] “Additional Feedback:

Section B in the appendix is an essential reading for anyone looking to implement the procedure. I think it ought to
be included in the paper. It looks to me that the method could suffer from poor choices of λ and kreg . To prevent
such choices, if is in some sense an oracle choice, wouldn’t it be better to give the procedure with the particular
hyper-parameter tuning procedure already incorporated?”

We enthusiastically agree, and we have implemented an automatic tuning of the procedure, now de-
scribed in depth in Appendix E. Moreover, as suggested, we now include the experiment showing the
performance of RAPS with different values of the tuning parameters in the main text; see Section 3.5 and
Table 3.
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[R2: 6] “Personally, I found Tables 4 and 5 far more informative than Figure 4. I would prefer to see the tables in the paper.”

We thank the reviewer for this suggestion. We now include one such table (Table 4 in the new numbering)
in the main text, and have removed the violin plots from the manuscript. We did not have space to include
both tables, so the second table is presented in the appendix.

[R2: 7] “I am not sure if the median-of-means is the right metric for performance comparisons. One way to view the RAPS
is that it ”tames” the tail of the distribution of the size of uncertainty sets produced by the APS . Personally, I would
prefer a direct comparison of the distributions, as in the tables in the appendix. However, even if a summary measure
must be used, there are probably better options.”

We thank the reviewer for this comment. We find the “taming the tail” language to be helful and have
included it in our discussion of this point in Section 3.3. The updated text reads, “the RAPS procedure
truncates sets larger than the smallest fixed set that provides coverage, taming the heavy tail of the APS
procedure.” Turning to the question of the right summary statistic, we considered reporting the median,
but the median set size for all conformal methods is usually 1. Reporting a larger quantile is an option, but
there is no obvious choice for the right quantile. We settled on reporting the mean for each experiment,
which capture the effect of the large tail of APS set sizes. The comparison of the full distributions of each
method is included in Figure 4 for one choice of model, and we have now included Table 4 as suggested
earlier. However, it is hard to summarize this information across the many architectures in our main
experiment.

[R2: 8] “I find the comment in Section 3.2 ”The result shows that our method can still provide exact coverage under a
significant distribution shift” somewhat misleading. In a split conformal setup, the only distribution shift of any
import (with regards to the marginal coverage guarantee) is the one between the calibration set and a new test point.
”

We thank the reviewer for this suggestion and agree that this was stated poorly. As the reviewer points
out, the coverage guarantee of conformal prediction only requires that the test and calibration sets have
the same distribution. This experiment serves as a demonstration of this point, since we see that the
coverage holds even for models fit on a slightly different data set. The updated text reads:

The result shows that our method can still provide coverage even for models trained on differ-
ent distributions, as long as the conformal calibration set comes from the new distribution.

[R2: 9] “Recommendation: A borderline reject. The paper has some significant weaknesses, but does contain some interest-
ing insights. ”

We thank the reviewer for their detailed feedback of our work, which has helped us improve the manuscript.
In view of the new Section 4 explaining possible formalizations of adaptiveness for image classication
(explaining why existing notions fail, and suggesting an alternative), Appendix E, as well as new exper-
iments implementing the automatic tuning and comparing our procedure to a top-K baseline, we invite
the reviewer to consider again the contribution this work would make to the computer vision community.

Comments by AnonReviewer3

[R3: 1] “=== Summary ===

In this paper, the authors propose a regularized conformal score for use in a conformal prediction framework. This
regularizer is motivated by the instabilities of top-p variations on conformal scores (cf. Romano et. al., 2020) and
the resulting high-variance in output conformal prediction set sizes. The proposed regularizer smooths top-p scores
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with top-k scores, which empirically results in more robust predictive sets. The authors also perform a large-scale
evaluation on ImageNet with modern architectures, which serves as a helpful benchmark for conformal prediction
algorithms.

For those not familiar with the goal of conformal prediction: it is a method to provide prediction sets in-place of single
(top-1) predictions, where the sets satisfy marginal probabilistic performance guarantees (i.e., the correct answer is
included in the set with probability ≥ 1− α). ”

We thank the reviewer for their detailed feedback of our manuscript. The above description is well-
phrased and captures all the key ideas of the work.

[R3: 2] “=== Justification for Score ===

The main contribution of the paper (RAPS ) is reasonable, but has perhaps somewhat limited novelty when taken in
context with the broader conformal prediction literature. The paper, at least at its current version, also has several
presentational and clarity issues which makes it somewhat hard to follow at points, and some of the results difficult
to verify. I am willing to be convinced to increase my score if at least 1) the language of the introduction is reworked
to reflect the broad conformal prediction literature, and 2) it is demonstrated that RAPS significantly improves over a
naive ”adaptive” (i.e., conformalized) top-k baseline (see ”Concerns”). ”

We agree with all of the reviewer’s criticisms and have made significant revisions to the paper in light
of these comments. On 1), we have attempted to be very forthright that our major contribution is not to
conformal prediction, but rather some detailed experiments and simple modifications to Romano et al.
that make the method more useful for modern image classification. In particular, we added the following
lines to the problematic sections of the abstract and introduction the reviewer identified:

Our method modifies an existing conformal prediction algorithm to give more stable predictive
sets by regularizing the small scores of unlikely classes after Platt scaling.

Our method modifies a conformal predictor [Vovk et al., 2005] given in Romano et al. [2020]
for the purpose of modern image classification in order to make it more stable in the presence
of noisy small probability estimates. Just as importantly, we provide extensive evaluations and
code for conformal prediction in computer vision.

At the heart of conformal prediction is the conformal score - a measure of similarity between la-
belled examples which is used to compare a new point to among those in a hold out set. Our
theoretical contribution can be summarized as a modification of the conformal score from Ro-
mano et al. [2020] to have smaller, more stable sets.

We have also updated the discussion to emphasize that the virtues of moving to uncertainty-aware, set-
valued predictors are a reason to use RAPS , but are not unique to it and would apply to other conformal
methods. The updated part of the discussion is as follows:

Predictive sets in computer vision (from RAPS and other conformal methods) have many fur-
ther uses, since they systematically identify hard test-time examples. Finding such examples is
useful in active learning where one only has resources to label a small number of points. . .

We envision this paper as a simple introduction to conformal prediction for computer vision practitioners
interested in uncertainty quantification, that shows via detailed experiments how it can be useful for
their practical problems. Thus, it is doubly important that we correctly cite the relevant literature, as the
reviewer suggests.

The reviewer’s novelty concern should be viewed in the following context: our contribution is primarily
towards a well-designed application of conformal prediction for computer vision practitioners, who are
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typically not familiar with recent developments in statistical theory but desire uncertainty quantification.
As a contribution to that community, this paper is significant. It represents a theoretically simple but
experimentally rigorous methodology computer vision classification, the first experiments of this level
of detail of conformal prediction methods in this setting. The experiments are accompanied by RAPS, a
relatively simple algorithmic change to the score function that nonetheless is vital in practice. Indeed, we
began this project simply by experimentally evaluating APS on Imagenet, hoping to use it in applications,
but found the instability suprising. When then found a simple fix leading to the RAPS method.

We think RAPS will help adoption because it beats the adaptive K baseline the reviewer suggested, while
Romano et al. does not—it is unsettling to have a prediction set of size 10 (or 100!) when you know that
the top-3 accuracy of a classifier is already above the 1 − α level. Therefore, we think these ideas will be
useful to the CV community, particularly if the prose is accessible and code is provided. See our Tables 1,
5, 2, and 6 for the results of the reviewer-suggested adaptive K baseline against RAPS .

We hope our revision is convincing in this sense, and would appreciate any further feedback.

[R3: 3] “=== Strengths ===

Uncertainty quantification is a relevant and timely topic.

Conformal prediction and the resulting uncertainty sets they produce is also a practical and important instantiation
of uncertainty quantification/prediction with performance guarantees.

The proposals put forth in the paper are interesting and potentially useful. ”

We are pleased that the reviewer find our work valuable in this way.

[R3: 4] “=== Concerns ===

Overall, there are unfortunately several clarity and presentation issues (see also ”Minor Comments” below for more
on this). At a high level, however, it seems to me that the framing in this paper is confusing when it comes to
distinguishing the contributions put forth here, versus those of the broader conformal prediction literature. This
stems from language in the abstract, such as ”we present an algorithm that...” or in the introduction, such as ”Our
paper describes a novel method for constructing prediction sets...”. Yet, the main contribution appears to rather be a
particular formulation of a conformal scoring function, i.e., S(x, y) := ρx(y)+ π̂x(y)∗u+λ∗ (ox(y)−kreg)+. Similar
variants (as the authors do point out) have already been proposed in Romano et. al., 2020 and Cauchois et. al., 2020.
I would strongly recommend updating the language and introductory claims so as not to mislead readers. ”

We have updated our abstract and introduction to be explicit about exactly where our work fits within
conformal prediction from the very first mention. This is somewhat delicate, since for an inexperienced
reader may not know what conformal prediction is, let alone a conformal score. However, following
the reviewer’s advice, we now highlight that our theoretical contribution can be summarized as a mod-
ification of the conformal score from Romano et al. immediately after we introduce the reader to these
concepts in the introduction. We hope this is a forthright way of explaining the conformal methodology
to all readers while further clarifying the provenance of the theoretical results. Should the reviewer think
that further changes are needed to address this concern, we would be open to further modifications.

[R3: 5] “It should be clarified that the guarantee expressed in Eq. 1 is marginal, i.e., taken over all permutations of (X1, Y1), ..., (Xn+1, Yn+1).
It also should hold for exchangeable rather than just i.i.d. samples; I didn’t see a reason in the method to weaken this
standard CP result. Finally, the comment on ”require only 1000 held-out data points in practice” is confusing to me...
in practice to achieve what? The guarantee in Eq. 1 should hold for all finite samples. ”

This is an important point that we thank the reviewer for suggesting. Now we write the following after
introducing the coverage definition:

Note that the guarantee in Eq. 1 is marginal overX and Y—it holds on average over the dataset,
not for a particular image X .
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Turning to exchangeability, we chose to write the standard conformal prediction coverage result with the
i.i.d. assumption since many computer vision practitioners do not know the definition of exchangeabilty
offhand, but you are right that we should mention this. We have included a new remark:

As a technical remark, the theorem also holds if the observations to satisfy the weaker condition
of exchangeability; see Vovk et al. (2005).

Regarding the comment about the 1000 data points, our motivation here is that most practitioners want
to use conformal prediction to quantify their model’s uncertainty on a new image, and we want to com-
municate to the reader that this does not take much data, given how many images are already used for
model fitting in this context. Turning to the specific choice of the number 1000, as you say, the conformal
guarantee holds for smaller choices of conformal set sizes, but the sets will have more variance when the
calibration set is small. The theory describing how the variance decays with the size of the calibration
set is presented in Vovk [2012], a paper that we recommend and think deserves to be much more well-
known. One implication of that work is that for 90% or 95% coverage, n = 1000 will give relatively stable
results in the sense described therein. We have decided to avoid an explicit discussion of this point in the
manuscript, fearing that it would confuse a reader less familiar with conformal inference, but we clarify
this point by changing ”require only 1000 held-out data points in practice” to “output useful estimates of
the model’s uncertainty on a new image given, say, 1000 held-out examples.” The exact meaning of the
word ‘useful’ is left informal, which is somewhat unsatisfying, but we think is the best compromise to
serve less familiar readers.

[R3: 6] “Eq. 1 stipulates a≥ 1−α criterion (which the methods support)—but Section 2 begins by saying ”exactly 1 - alpha”
coverage. Can you clarify? ”

The referee is correct, and we have removed the word “exact.”

[R3: 7] “In the introduction it states, ”for examples where the model is not confident, naive must select many classes...”. It’s
not immediately apparent why this is a problem. If the model probability p(y|x) is indeed calibrated, then it seems
that naive should indeed be the oracle method (in order to guarantee both marginal and conditional coverage). Of
course, softmax outputs in standard deep nets can be far from calibrated, which leads to the suboptimal behavior.
But this doesn’t seem to be the problem the introduction is pin-pointing. ”

The previous text was sloppy. We have changed this section to read:

Second, image classification models’ tail probabilities are often badly miscalibrated, leading to
large sets that do not faithfully articulate the uncertainty of the model; see Section 2.3. Third,
smaller sets that achieve the same coverage level can be generated with other methods.

[R3: 8] “In fact, related to the above, both Romano et. al., 2020 and Cauchois et. al., 2020 motivate their conformalizations
as an approach to asymptotically get conditional coverage (assuming p(y — x) converges with more data and better
models). Accordingly they also measure a ”worst slab coverage” to quantify how far the method deviates from
conditional coverage in the worst case. The proposed top-k regularizer breaks this asymptotic property, which at least
should be something to note relative to those related works. It would be even better if some additional experiments in
the appendix showed what realized trade-off, if any, there is between WSC and tighter set sizes due to regularization.
”

We thank the reviewer for this point and respond with two new sections, Section 4 and Section E.2, in-
cluding a new supplemental experiment. In summary, we now talk explicitly about conditional coverage,
propose a new way to measure conditional coverage (like WSC, but simpler and perhaps more natural
for images), and show that RAPS with light regularization outperforms APS according to this measure.
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Moreover, we include software to automatically tune RAPS for this purpose. Due to the large amount of
text, we refer the reviewer to the marked-up version of the paper at the end of this document.

Turning to some further details, WSC measures the worst-case deviation of a method from conditional
coverage over slabs in X space. Since conditional coverage implies WSC, WSC serves as a proxy for
measuring the deviation from conditional coverage, a traditional notion of adaptiveness from conformal
prediction. The reviewer makes a valuable point here: in the previous version of the paper, we did not
explicitly address conditional coverage—the most established notion of adaptiveness. However, in the
context of image classification, we do not find WSC to be compelling, since a ”slab” in pixel-space is
essentially meaningless. Furthermore, as we argue in the newly included Section 4, conditional coverage
has shortcomings as notion of adaptiveness for image classification or other high-signal problems.

Prompted by the reviewer’s discusson of WSC, we wrote a new Section 4 in the paper that evaluates
adaptiveness with a different metric: coverage stratified by set size. If conditional coverage holds, then
coverage will also hold when stratified by set size; see Proposition 3. However, we find that APS violates
this property. Instead, it undercovers easy examples and overcovers difficult ones. This is further moti-
vation for RAPS ; it improves adaptiveness by this criterion for small values of lambda. For large values
of lambda, as the reviewer would expect, RAPS trades off set size for lower coverage when large sets are
predicted. Our detailed discussion in Section 4 thereby proposes a certain formalization of adaptiveness
and includes evaluations of RAPS and APS under that formalization. We are optimistic that this simple
and easily-verified consequence of conditional coverage will be of use when evaluating adaptiveness or
conditional coverage for many conformal prediction problems.

Furthermore, in Appendix E.2, we show that by picking λ to minimize the violation of size-stratified
coverage, RAPS actually improves the adaptiveness of APS .

[R3: 9] “Proposition 2 claims strictly better than top-k performance, but the proof seems to suggest that this is rather only
⊆? ”

The referee is correct, and we have removed this language throughout the text to avoid the imprecision.
In view of the new experiments that show RAPS beats the top-k baseline in terms of set size, in practice
we think RAPS would always be preferable to the top-k procedure, but since the formal results do not
directly imply this we avoid claiming this in the text.

[R3: 10] “In a similar vein, Proposition 2 makes comparisons to top-k performance, but (adaptive) top-k isn’t shown in Table
1. Only top-1 and top-5 are. If simply using the rank as the conformal score, how does the set size compare to RAPS
? Note that top-k will have many ties, so it also makes sense to use a randomized variant of top-k (i.e., S(x, y) :=

ox(y) + u) for fair comparison. ”

We think this is a fantastic suggestion and now include the conformalized top-k procedure in our main
tables. We implement the randomized version, as suggested by the reviewer. Thank you very much for
this comment.

[R3: 11] “λ and kreg are hyper-parameters that must be set. In addition to the n calibration data points, it would seem that
one would also require additional development data to use to pick these.”

In the new version of the manuscript, we use 1000 data points to automatically tune these parameters;
see the new Appendix E. Using the extra data is not a major limitation in our data-rich setting. For
problems where using 1000 data points to tune the parameters is infeasible, one could use less data. If
tuning is not feasible at all, Table 3 suggests that choosing some small λ is still probably preferable to
using unregularized APS . Here is a short excerpt from Appendix E:
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To produce Tables 1, 5, 2, and 6, we chose kreg and λ adaptively. This required an extra data
splitting step, where a small amount of tuning data

{
xi, yi

}m
i=1

were used to estimate k∗, and
then kreg is set to k∗. Taking m ≈ 1000 was sufficient, since the algorithm is fairly insensitive
to kreg (see Table 3). Then, k̂∗ was calculated with Algorithm 4. We produced the Imagenet V2
tables with m = 1000 and the Imagenet tables with m = 10000.
After choosing k̂∗, we chose λ to have small set size. We used the same tuning data to pick k̂∗

and λ for simplicity (this does not invalidate our coverage guarantee since conformal calibration
still uses fresh data). A coarse grid search on λ sufficed, since small parameter variations have
little impact on RAPS . For example, we chose the λ ∈ {0.001, 0.01, 0.1, 0.2, 0.5} that achieved
the smallest size on the m holdout samples in order to produce Tables 1, 5, 2, and 6. We include
a subroutine that automatically chooses k̂∗ and λ to optimize size in our GitHub codebase.

We include more details and an experiment in Appendix E that show how to pick λ to optimize the
adaptiveness of RAPS , improving the performance of APS .

[R3: 12] “It’s also unclear what data was used to do the platt scaling. If on the same calibration data, it’s not clear to me that
this is retains exchangeability, which will affect the formal guarantees. ”

We thank the reviewer for this comment. Yes, we did do Platt scaling on the conformal calibration data,
for simplicity. We now explicitly note this in the text as follows:

Before applying naive , APS , or RAPS , we calibrated the classifiers using the standard tem-
perature scaling/Platt scaling procedure as in Guo et al. [2017] on the calibration set.

As the reviewer points out, the points are technically not guaranteed to be exchangeable after Platt scaling.
We could instead do the Platt scaling on a small holdout set, seperate from the conformal calibration set,
to avoid this issue. However, in our experiments we find that we have exactly the desired coverage, so
we do not think the added round of data splitting is needed in practice.

[R3: 13] “=== Minor Comments ===

The pseudo code in the algorithms, which uses a mixture of python-style notation and mathematical indexing (e.g.,
Ii[j] in Algorithm 2), is quite hard to follow. I suggest sticking to one.

Algorithm 1 line 7 is missing a sum of some sort around scores[0: L].

Algorithm 2 lines 3-4 has sloppy notation: it appears a set (Li) is being added to a scalar (kreg + 1). ”

We thank the reviewer for helping us fix this issue. We have updated the pseudocode in the algorithms
to use only mathematical indexing, avoiding the inelegant pythonic/math mixture syntax the reviewer
points out. We also added the missing sum.

[R3: 14] “Though I certainly appreciate the page constraints, Tables 1 and 2 are too small to easily read. I don’t think that the
Top-1 and Top-5 accuracy add much (see earlier comments on adding a conformalized top-k result).

Similarly, the left side of Fig. 4 is hard to read. ”

To help alleviate this issue, we have increased the font size of the tables by reporting only one value of
α and moving the other value to the appendix. Also, we increased the font size of the left-side label in
Figure 4. We hope that the modifications improve readability.

We thank this reviewer for their detailed comments which have significantly improved the paper, and
in particular, the addition of the fixed-k baseline and the many writing improvements. In view of our
changes to the introductory framing, the new experiments showing that RAPS outperforms the fixed-k
baseline, and the new metric of conditional coverage/adativeness, we invite the reviewer to consider
anew the contribution this work would make to the computer vision community.
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Comments by AnonReviewer4

[R4: 1] “Summary:

Prediction sets are used to quantify the uncertainty of classification. The naive approach which include the labels
until a pre-specified coverage probability is satisfied often leads to large prediction sets. Adaptive Prediction Sets
(APS ) can output prediction sets with desired coverage but set sizes are still not satisfyingly small and the results are
unstable, especially when many probability estimations fall into the tail of the distribution.

In order to make the prediction stable and sets as narrow as possible under pre-specified coverage probability, this
paper extends APS to Regularized Adaptive Prediction Sets (RAPS ) by penalizing those class with small probabilities
beyond k many classes already included, which leads to a small prediction size. The regularization is an interesting
idea in terms of minimizing prediction sets, which is different from previous works where most of them directly min-
imize a quantity related to the cardinality of prediction sets or intervals. Empirically, compared with other set-valued
classifiers extracting information from the same base model CNNs, the proposed method outperforms significantly
in terms of set sizes when fixing pre-specified coverage. Moreover, this work shows adaptiveness: it tries to allow
large prediction size for difficult instances and small prediction size for easy instances.

Reasons for score:

Overall, I vote for accepting. I think the method is well motivated and the solution is simple and portable (can be
applied to many base methods). However, there could be more discussions on several aspects of the problem.

Pros:

Studies an important problem.

The proposed method is easy to implement and can be applied to general scores or be used to improve base conformal
prediction methods.

Very impressive empirical performance. ”

We thank the reviewer for their thorough evaluation of our work, and are gratified that they find it valu-
able. We hope to improve the manuscript based on the the points brought to our attention here, and we
will discuss each of these changes below.

[R4: 2] “Cons:

Theoretically the ”optimal” set-valued classifier is based on P (Y = k | X = x). In this sense, the naive approach can
be viewed as a plug-in approach when the score is an estimate of P (Y = k | X = x). When regularization is applied,
something must be lost. This is as much like in lasso for high-dimensional regression, a penalty function makes the
coefficient estimate biased (to trade for sparsity). It is unclear what is lost here with regularization. Is the solution no
longer ”Fisher consistent” in a sense? ”

This is a good point, and we thank the reviewer for bringing this up. Indeed, the regularization does bias
RAPS away from large sets. Some amount of this bias is desirable for finite samples, because it increases
the stability to the errors in the small probability estimates. However, as the reviewer states, this bias may
not be desirable if we had access to the best possible model. In particular, if we wish to converge to the
oracle naive algorithm, the naive algorithm run on with the model fit on infinite data, then we would use
less regularization as the sample size increases. This is analogous to the lasso, where for a fixed dimension
we would use less regularization with more data, and in the large-sample limit we would not use any
regularization. Based on this and other reviewer feedback, we now include a more thorough discussion
of adaptiveness in the new Section 4. In particular, we address this point in the following new text:

. . . In words, if conditional coverage holds, then coverage holds after stratifying by set size.
Based on this result, In Appendix E, we introduce the size-stratified coverage violation criterion, a
simple and pragmatic way of quantifying adaptiveness. Then, we automatically tune λ on this
metric so RAPS markedly outperforms the adaptiveness of APS (see Table 8).
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In Table 4, we report on the coverage of APS and RAPS , stratified by the size of the prediction
set. Turning our attention to the λ = 0 column, we see that when APS outputs a set of size 101−
1000, APS has coverage 97%, substantially higher than 90% nominal rate. By Proposition 3, we
conclude that APS is not achieving exact conditional coverage, because the scores are far from
the oracle probabilities. The APS procedure still achieves marginal coverage by overcovering
hard examples and undercovering easy ones, an undesirable behavior. Alternatively, RAPS can
be used to regularize the set sizes—for λ = .001 to λ = .01 the coverage stratified by set size is
more balanced. In summary, even purely based on the adaptiveness desideratum, RAPS with
light regularization is preferable to APS . Note that as the size of the training data increases,
as long as π̂ is consistent, naive and APS will become more stable, and so we expect less
regularization will be needed.

The last sentence above explicitly brings up the point the reviewer mentions about regularization and
consistency, which we think will be of use to many readers.

[R4: 3] “More to the point: it seems that the proposed method is cut out for problems in which there are MANY classes. I
wonder whether it will perform just as well for traditional problems in which there are only a few classes (like in the
medical field.) ”

We thank the reviewer for this point. We agree; RAPS was created with problems like ImageNet in mind.
As the reviewer is perhaps suggesting, the regularization toward smaller sets is less useful with a small
number of classes. Based on this comment, we’ve updated the discussion to make this explicit.

For classification tasks with many possible labels, our method enables a researcher to take any
base classifier and return predictive sets guaranteed to achieve a pre-specified error level, such
as 90%, while retaining small average size.

We now also mention a medical case that has this structure: pre-screening medical diagnostics.

Prediction sets are most useful for problems with many classes; returning to our initial medical
motivation, we envision RAPS could be used by a doctor to automatically screen for a large
number of diseases (e.g. via a blood sample) and refer the patient to relevant specialists.

While we do not think RAPS would be directly applicable to a medical classification example with only
a handful of classes, a better understanding of uncertainty quantification for image classifiers is building
toward this broader goal. For example, based on feedback from reviewers, our manuscript now spends
time explaining why conditional coverage, a traditional notion of adaptiveness in conformal prediction,
is not the right notion for high-signal image classification problems—see the newly included Section 4.
Similarly, this work provides some empirical evidence that naive methods based on the softmax scores
(like our naive baseline) may fail when they make decisions based on the small (unstable) softmax
scores, and advocates for methods with explicit statistical guarantees. Both of these points apply even
to image classification with a small number of classes. In summary, we agree with the reviewer’s point,
but hope the reviewer agrees that this work nonetheless makes useful progress toward the general goal
of uncertainty quantification for image classifiers.

[R4: 4] “Choose a good value for kreg and λ seems to be critical. How sensitive is the result to kreg? Is there any general
theory or guidelines about tuning parameter lambda?”

We thank the reviewer for this comment. Prompted by this, we now include an algorithm to automat-
ically tune these parameters; see Appendix E. Morever, we include a new table (Table 3) in the main
text showing the performance of RAPS is relatively stable with different values of the parameters. The
updated text reads as follows:
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While any value of the tuning parameters λ and kreg lead to coverage (Proposition 1), some
values will lead to smaller sets. In Experiments 1 and 2, we chose kreg and λ adaptively from
data (see Appendix E), achieving strong results for all models and choices of the coverage level.
Table 3 gives the performance of RAPS with many choices of kreg and λ for ResNet-152.

[R4: 5] “In the experiments, the validation (calibration) data sets have huge sample size, which may be common in image
data domains, but can be unrealistic for broader applications domains. I wonder if the good performance is largely
relying on the large validation (calibration) sample size. ”

In this work, we use a large calibration set size just because it is available. Conformal prediction still
applies and can work well with a smaller calibration set. The sets won’t necessarily be larger, but they
will have more variance when the calibration set is small. The theory describing how the variance decays
with the size of the calibration set is presented in Vovk [2012], a paper that we think deserves to be much
more well-known. Roughly speaking, if one is seeking 90% or 95% coverage, then n = 1000 calibration
points is will have relatively low variance, in a sense described therein.

[R4: 6] “Questions during rebuttal period:

The goal of narrowing prediction set size is achieved with the help of regularization, which does not directly try
to minimize the cardinality of the prediction set. Can we theoretically prove it is asymptotically optimal? Any
comparison to these direct approaches? There is a literature called high-quality prediction interval which directly
minimizes the prediction size.

Tim Pearce, Mohamed Zaki, Alexandra Brintrup, and Andy Neely. High-quality prediction intervals for deep learn-
ing: A distribution-free, ensembled approach. arXiv preprint arXiv:1802.07167, 2018.

Any comments on the relation of the uncertainty set approach with the classification with rejection/abstain methods?

Zhang, C., Wang, W. and Qiao, X. (2018), On Reject and Refine Options in Multicategory Classification, Journal
of the American Statistical Association, 113 (522), pp. 730745. Ramaswamy HG, Tewari A, Agarwal S. Consistent
algorithms for multiclass classification with an abstain option. Electronic Journal of Statistics. 2018;12(1):530-54. ”

We thank the reviewer for pointing out these references, and agree that it is important to indicate to the
reader that there are non-conformal approaches aimed at returning prediction sets. We now include this
in the text as follows:

Lastly, there are alternative approaches to returning prediction sets not based on conformal
prediction [Pearce et al., 2018, Zhang et al., 2018]. These methods can be used as input to a
conformal procedure to potentially improve performance, but they do not have finite-sample
coverage guarantees when used alone.

As a more detailed discussion, the first reference introduces a loss function for training neural networks
to return prediction intervals with small size. This approach seems to be highly promising in conjuction
with conformal prediction, since training in such a way would probably lead to a better network in terms
of prediction sets. Using conformal prediction is still desirable with this network, however, in order
to guarantee correct coverage for any distribution. The second reference also addresses the multiclass
classification problem, and sometimes returns sets of labels (the refine option). This paper describes a way
to return prediction sets, based on how close an observation is to the decision boundary of a classifier. We
again view this a promising way to construct sets that can be calibrated with conformal prediction.

[R4: 7] “Small comments:

Most of the figures and tables are far away from the descriptions which makes it hard to read. ”

We thank the reviewer for this suggestion. We have attempted to rearrange the tables and figures to try
to keep relevant passages of the text nearby.
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ABSTRACT

Convolutional image classifiers can achieve high predictive accuracy, but quanti-
fying their uncertainty remains an unresolved challenge, hindering their deploy-
ment in consequential settings. Existing uncertainty quantification techniques,
such as Platt scaling, attempt to calibrate the network’s probability estimates, but
they do not have formal guarantees. We present an algorithm that modifies any
classifier to output a predictive set containing the true label with a user-specified
probability, such as 90%. The algorithm is simple and fast like Platt scaling, but
provides a formal finite-sample coverage guarantee for every model and dataset.
Our method modifies an existing conformal prediction algorithm to give more sta-
ble predictive sets by regularizing the small scores of unlikely classes after Platt
scaling. In experiments on both Imagenet and Imagenet-V2 with ResNet-152 and
other classifiers, our scheme outperforms existing approaches, achieving coverage
with sets that are often factors of 5 to 10 smaller.

1 INTRODUCTION

Imagine you are a doctor making a high-stakes medical decision based on diagnostic information
from a computer vision classifier. What would you want the classifier to output in order to make
the best decision? This is not a casual hypothetical; such classifiers are already used in medical
settings (e.g., Razzak et al., 2018; Lundervold & Lundervold, 2019; Li et al., 2014). A maximum-
likelihood diagnosis with an accompanying probability may not be the most essential piece of in-
formation. To ensure the health of the patient, you must also rule in or rule out harmful diagnoses.
In other words, even if the most likely diagnosis is a stomach ache, it is equally or more important
to rule out stomach cancer. Therefore, you would want the classifier to give you—in addition to
an estimate of the most likely outcome—actionable uncertainty quantification, such as a set of pre-
dictions that provably covers the true diagnosis with a high probability (e.g., 90%). This is called
a prediction set (see Figure 1). Our paper describes a method for constructing prediction sets from
any pre-trained image classifier that are formally guaranteed to contain the true class with the de-
sired probability, relatively small, and practical to implement. Our method modifies a conformal
predictor (Vovk et al., 2005) given in Romano et al. (2020) for the purpose of modern image classi-
fication in order to make it more stable in the presence of noisy small probability estimates. Just as
importantly, we provide extensive evaluations and code for conformal prediction in computer vision.

Formally, for a discrete response Y ∈ Y = {1, . . . ,K} and a feature vector X ∈ Rd, we desire an
uncertainty set function, C(X), mapping a feature vector to a subset of {1, . . . ,K} such that

P (Y ∈ C(X)) ≥ 1− α, (1)
for a pre-specified confidence level α such as 10%. Conformal predictors like our method can mod-
ify any black-box classifier to output predictive sets that are rigorously guaranteed to satisfy the
desired coverage property shown in Eq. (1). For evaluations, we focus on Imagenet classification
using convolutional neural networks (CNNs) as the base classifiers, since this is a particularly chal-
lenging testbed. In this setting, X would be the image and Y would be the class label. Note that the
guarantee in Eq. (1) is marginal over X and Y—it holds on average, not for a particular image X .

A first approach toward this goal might be to assemble the set by including classes from highest to
lowest probability (e.g., after Platt scaling and a softmax function; see Platt et al., 1999; Guo et al.,
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Figure 1: Prediction set examples on Imagenet. We show three examples of the class fox squirrel and
the 95% prediction sets generated by RAPS to illustrate how the size of the set changes as a function of the
difficulty of a test-time image.

2017) until their sum just exceeds the threshold 1 − α. We call this strategy naive and formulate
it precisely in Algorithm 1. There are three problems with naive: first, the probabilities output by
CNNs are known to be incorrect (Nixon et al., 2019), so the sets from naive do not achieve cov-
erage. Second, image classification models’ tail probabilities are often badly miscalibrated, leading
to large sets that do not faithfully articulate the uncertainty of the model; see Section 2.3. Third,
smaller sets that achieve the same coverage level can be generated with other methods.

The coverage problem can be solved by picking a new threshold using holdout samples. For exam-
ple, with α =10%, if choosing sets that contain 93% estimated probability achieves 90% coverage
on the holdout set, we use the 93% cutoff instead. We refer to this algorithm, introduced in Ro-
mano et al. (2020), as Adaptive Prediction Sets (APS). The APS procedure provides coverage but
still produces large sets. To fix this, we introduce a regularization technique that tempers the in-
fluence of these noisy estimates, leading to smaller, more stable sets. We describe our proposed
algorithm, Regularized Adaptive Prediction Sets (RAPS), in Algorithms 2 and 3 (with APS as a
special case). As we will see in Section 2, both APS and RAPS are always guaranteed to satisfy
Eq. (1)—regardless of model and dataset. Furthermore, we show that RAPS is guaranteed to have
better performance than choosing a fixed-size set. Both methods impose negligible computational
requirements in both training and evaluation, and output useful estimates of the model’s uncertainty
on a new image given, say, 1000 held-out examples.

In Section 3 we conduct the most extensive evaluation of conformal prediction in deep learning to
date on Imagenet and Imagenet-V2. We find that RAPS sets always have smaller average size than
naive and APSsets. For example, using a ResNeXt-101, naive does not achieve coverage, while
APS and RAPS achieve it almost exactly. However, APS sets have an average size of 19, while RAPS
sets have an average size of 2 at α = 10% (Figure 2 and Table 1). We will provide an accompanying
codebase that implements our method as a wrapper for any PyTorch classifier, along with code to
exactly reproduce all of our experiments.

1.1 RELATED WORK

Reliably estimating predictive uncertainty for neural networks is an unsolved problem. Historically,
the standard approach has been to train a Bayesian neural network to learn a distribution over net-
work weights (Quinonero-Candela et al., 2005; MacKay, 1992; Neal, 2012; Kuleshov et al., 2018;
Gal, 2016). This approach requires computational and algorithmic modifications; other approaches
avoid these via ensembles (Lakshminarayanan et al., 2017; Jiang et al., 2018) or approximations of
Bayesian inference (Riquelme et al., 2018; Sensoy et al., 2018). These methods also have major
practical limitations; for example, ensembling requires training many copies of a neural network ad-
versarially. Therefore, the most widely used strategy is ad-hoc traditional calibration of the softmax
scores with Platt scaling (Platt et al., 1999; Guo et al., 2017; Nixon et al., 2019).

This work develops a method for uncertainty quantification based on conformal prediction. Origi-
nating in the online learning literature, conformal prediction is an approach for generating predictive
sets that satisfy the coverage property in Eq. (1) (Vovk et al., 1999; 2005). We use a convenient data-
splitting version known as split conformal prediction enables conformal prediction methods to be
deployed for essentially any predictor (Papadopoulos et al., 2002; Lei et al., 2018). While mechani-
cally very different from traditional calibration as discussed above, we will refer to our approach as
conformal calibration to highlight that the two methodologies have overlapping but different goals.

Conformal prediction is a general framework, not a specific algorithm—important design decisions
must be made to achieve the best performance for each context. To this end, Romano et al. (2020)
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Figure 2: Coverage and average set size on Imagenet for prediction sets from three methods. All methods
use a ResNet-152 as the base classifier, and results are reported for 100 random splits of Imagenet-Val, each of
size 20K. See Section 3.1 for full details.

and Cauchois et al. (2020) introduce techniques aimed at achieving coverage that is similar across
regions of feature space, whereas Hechtlinger et al. (2018) introduce a technique aimed at achieving
equal coverage for each class. While these methods have conceptual appeal, thus far there has been
limited empirical evaluation of this general approach for state-of-the-art CNNs. Concretely, the only
works that we are aware of that include some evaluation of conformal methods on ImageNet—the
gold standard for benchmarking computer vision methods—are Hechtlinger et al. (2018), Park et al.
(2019), Cauchois et al. (2020), and Messoudi et al. (2020), although in all four cases further experi-
ments are needed to more fully evaluate their operating characteristics for practical deployment. At
the heart of conformal prediction is the conformal score - a measure of similarity between labeled
examples which is used to compare a new point to among those in a hold out set. Our theoretical
contribution can be summarized as a modification of the conformal score from Romano et al. (2020)
to have smaller, more stable sets. Lastly, there are alternative approaches to returning prediction sets
not based on conformal prediction (Pearce et al., 2018; Zhang et al., 2018). These methods can be
used as input to a conformal procedure to potentially improve performance, but they do not have
finite-sample coverage guarantees when used alone.

2 METHODS

In developing uncertainty set methods to improve upon naive, we are guided by three desiderata.
First and most importantly, the coverage desideratum says the sets must provide 1−α coverage, as
discussed above. Secondly, the size desideratum says we want sets of small size, since these convey
more detailed information and may be more useful in practice. Lastly, the adaptiveness desidera-
tum says we want the sets to communicate instance-wise uncertainty: they should be smaller for
easy test-time examples than for hard ones; see Figure 1 for an illustration. Coverage and size
are obviously competing objectives, but size and adaptiveness are also often in tension. The size
desideratum seeks small sets, while the adaptiveness desideratum seeks larger sets when the classi-
fier is uncertain. For example, always predicting a set of size five could achieve coverage, but it is
not adaptive. As noted above, both APSand RAPS achieve correct coverage, and we will show that
RAPS improves upon APS according to the other two desiderata.

We now turn to the specifics of our proposed method. We begin in Subsection 2.1 by describing an
abstract data-splitting procedure called conformal calibration that enables the near-automatic con-

Algorithm 1 Naive Prediction Sets

Input: α, sorted scores s, associated permutation of classes I , boolean rand
1: procedure NAIVE(α, s, I, rand)
2: L← 1
3: while

∑L
i=1 si < 1− α do . Stop if 1− α probability exceeded

4: L← L+ 1
5: if rand then . Break ties randomly (explained in Appendix B)
6: U ← Unif(0, 1)

7: V ← (
∑L
i=1 si − (1− α))/sL

8: if U ≤ V then
9: L← L− 1

10: return
{
I1, ..., IL

}
Output: The 1− α prediction set,

{
I1, ..., IL

}
3
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Figure 3: Visualizations of conformal calibration and RAPS sets. In the left panel, the y-axis shows the
empirical coverage on the conformal calibration set, and 1−α′ = d(n+1)(1−α)e/n. In the right panel, the
printed numbers indicate the cumulative probability plus penalty mass. For the indicated value τ̂ccal, the RAPS
prediction set is {c, d, f, b}.

struction of valid predictive sets (that is, sets satisfying Eq. (1)). Subsequently, in Subsection 2.2, we
provide a detailed presentation of our procedure, with commentary in Section 2.3. In Subsection 2.4
we discuss the optimality of our procedure, proving that it is at least as good as the procedure that
returns sets of a fixed size, unlike alternative approaches.

2.1 CONFORMAL CALIBRATION

We first review a general technique for producing valid prediction sets, following the articulation
in Gupta et al. (2019). Consider a procedure that outputs a predictive set for each observation,
and further suppose that this procedure has a tuning parameter τ that controls the size of the sets.
(In RAPS, τ is the cumulative sum of the sorted, penalized classifier scores.) We take a small
independent conformal calibration set of data, and then choose the tuning parameter τ such that
the predictive sets are large enough to achieve 1 − α coverage on this set. See Figure 3 for an
illustration. This calibration step yields a choice of τ , and the resulting set is formally guaranteed to
have coverage 1− α on a future test point from the same distribution; see Theorem 1 below.

Formally, let (Xi, Yi)i=1,...,n be an independent and identically distributed (i.i.d.) set of variables
that was not used for model training. Further, let C(x, u, τ) : Rd × [0, 1] × R → 2Y be a set-
valued function that takes a feature vector x to a subset of the possible labels. The second argument
u is included to allow for randomized procedures; let U1, . . . , Un be i.i.d. uniform [0, 1] random
variables that will serve as the second argument for each data point. Suppose that the sets are
indexed by τ such that they are nested, meaning larger values of τ lead to larger sets:

C(x, u, τ1) ⊆ C(x, u, τ2) if τ1 ≤ τ2. (2)

To find a function that will achieve 1 − α coverage on test data, we select the smallest τ that gives
at least 1 − α coverage on the conformal calibration set, with a slight correction to account for the
finite sample size:

τ̂ccal = inf

{
τ :
|{i : Yi ∈ C(Xi, Ui, τ)}|

n
≥ d(n+ 1)(1− α)e

n

}
. (3)

The set function C(x, u, τ) with this data-driven choice of τ is guaranteed to have correct finite-
sample coverage on a fresh test observation, as stated formally next.

Theorem 1 (Conformal calibration coverage guarantee). Suppose (Xi, Yi, Ui)i=1,...,n and
(Xn+1, Yn+1, Un+1) are i.i.d. and let C(x, u, τ) be a set-valued function satisfying the nesting prop-
erty in Eq. (2). Suppose further that the sets C(x, u, τ) grow to include all labels for large enough
τ : for all x ∈ Rd, C(x, u, τ) = Y for some τ . Then for τ̂ccal defined as in Eq. (3), we have the
following coverage guarantee:

P
(
Yn+1 ∈ C(Xn+1, Un+1, τ̂ccal)

)
≥ 1− α.

This is the same coverage property as Eq. (1) in the introduction, written in a more explicit manner.
The result is not new—a special case first appears in the regression setting in Papadopoulos et al.
(2002), and subsequent work adapts the idea to classification (e.g., Hechtlinger et al., 2018).

4
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As a technical remark, the theorem also holds if the observations to satisfy the weaker condition
of exchangeability; see Vovk et al. (2005). In addition, for most families of set-valued functions
C(x, u, τ) there is a matching upper bound:

P
(
Yn+1 ∈ C(Xn+1, Un+1, τ̂ccal)

)
≤ 1− α+

1

n+ 1
.

Roughly speaking, this will hold whenever the sets grow smoothly in τ . See Lei et al. (2018) for a
formal statement of the required conditions.

2.2 OUR METHOD

Conformal calibration is a powerful general idea, allowing one to achieve the coverage desideratum
for any choice of sets C(x, u, τ). Nonetheless, this is not yet a full solution, since the quality of the
resulting prediction sets can vary dramatically depending on the design of C(x, u, τ). In particular,
we recall the size and adaptiveness desiderata from Section 1—we want our uncertainty sets to be
as small as possible while faithfully articulating the instance-wise uncertainty of each test point. In
this section, we explicitly give our algorithm, which can be viewed as a special case of conformal
calibration with the uncertainty sets C designed to extract information from CNNs.

Our algorithm has three main ingredients. First, for a feature vector x, the base model computes
class probabilities π̂x ∈ Rk, and we order the classes from most probable to least probable. Then,
we add a regularization term to promote small predictive sets. Finally, we conformally calibrate the
penalized prediction sets to guarantee coverage on future test points.

Formally, let ρx(y) =
∑K
y′=1 π̂x(y′)I{π̂x(y′)>π̂x(y)} be the total probability mass of the set of labels

that are more likely than y. These are all the labels that will be included before y is included. In
addition, let ox(y) = |{y′ ∈ Y : π̂x(y′) ≥ π̂x(y)}| be the ranking of y among the label based on the
probabilities π̂. For example, if y is the third most likely label, then ox(y) = 3.1 We take

C∗(x, u, τ) :=
{
y : ρx(y) + π̂x(y) · u+ λ · (ox(y)− kreg)+︸ ︷︷ ︸

regularization

≤ τ
}
, (4)

where (z)+ denotes the positive part of z and λ, kreg ≥ 0 are regularization hyperparameters that
are introduced to encourage small set sizes. See Figure 3 for a visualization of a RAPS predictive
set and Appendix E for a discussion of how to select kreg and λ.

Since this is the heart of our proposal, we carefully parse each term. First, the ρx(y) term increases
as y ranges from the most probable to least probable label, so our sets will prefer to include the y that
are predicted to be the most probable. The second term, π̂x(y) · u, is a randomized term to handle
the fact that the value will jump discretely with the inclusion of each new y. The randomization term
can never impact more than one value of y: there is at most one value of y such that y ∈ C(x, 0, τ)
but y /∈ C(x, 1, τ). These first two terms can be viewed as the CDF transform after arranging the
classes from most likely to least likely, randomized in the usual way to result in a continuous uniform
random variable (cf. Romano et al., 2020). We discuss randomization further in Appendix B.

Lastly, the regularization promotes small set sizes: for values of y that occur farther down the ordered
list of classes, the term λ · (ox(y)− kreg)+ makes that value of y require a higher value of τ before
it is included in the predictive set. For example, if kreg = 5, then the sixth most likely value of y
has an extra penalty of size λ, so it will never be included until τ exceeds ρx(y) + π̂x(y) · u + λ,
whereas it enters when τ exceeds ρx(y) + π̂x(y) · u in the nonregularized version. Our method has
the following coverage property:
Proposition 1 (RAPS coverage guarantee). Suppose (Xi, Yi, Ui)i=1,...,n and (Xn+1, Yn+1, Un+1)
are i.i.d. and let C∗(x, u, τ) be defined as in Eq. (4). Suppose further that π̂x(y) > 0 for all x and
y. Then for τ̂ccal defined as in Eq. (3), we have the following coverage guarantee:

1− α ≤ P
(
Yn+1 ∈ C∗(Xn+1, Un+1, τ̂ccal)

)
≤ 1− α+

1

n+ 1
.

Note that the first inequality is a corollary of Theorem 1, and the second inequality is a special case
of the remark in Section 2.1. The restriction that π̂x(y) > 0 is not necessary for the first inequality.

1For ease of notation, we assume distinct probabilities. Else, label-ordering ties should be broken randomly.
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Algorithm 2 RAPS Conformal Calibration

Input: α; s ∈ [0, 1]n×K , I ∈ {1, ...,K}n×K , and one-hot y ∈ {0, 1}K corresponding respectively
to the sorted scores, the associated permutation of indexes, and labels for each of n examples in
the calibration set; kreg; λ; boolean rand

1: procedure RAPSC(α,s,I ,y,λ)
2: for i ∈ {1, · · · , n} do
3: Li ← { j : Ii,j = yi }
4: Ei ← ΣLi

j=0si,j + λ(Li − kreg + 1)+

5: if rand then
6: U ∼ Unif(0, 1)
7: Ei ← Ei − si,Li

+ U ∗ si,Li

8: τ̂ccal ← the d(1− α)(1 + n)e largest value in {Ei}ni=1
9: return τ̂ccal

Output: The generalized quantile, τ̂ccal . The value in Eq. (3)

Algorithm 3 RAPS Prediction Sets

Input: α, sorted scores s and the associated permutation of classes I for a test-time example, τ̂ccal
from Algorithm 2, kreg , λ, boolean rand

1: procedure RAPS(α, s, I, τ̂ccal, kreg, λ, rand)
2: L← | j ∈ Y : Σji=0si + λ(L− kreg)+ ≤ τ̂ccal |+ 1

3: V ← (τ̂ccal − ΣL−1i=0 si − λ(L− kreg)+ + sL−1)/sL−1
4: if rand & V ≤ U ∼ Unif(0, 1) then
5: L← L− 1
6: return C =

{
I1, ...IL

}
. The L most likely classes

Output: The 1− α confidence set, C . The set in Eq. (4)

2.3 WHY REGULARIZE?

In our experiments, the sets from APS are larger than necessary, because APS is sensitive to the
noisy probability estimates far down the list of classes. This noise leads to a permutation problem of
unlikely classes, where ordering of the classes with small probability estimates is determined mostly
by random chance. If 5% of the true classes from the calibration set are deep in the tail due to the
permutation problem, APS will choose large 95% predictive sets; see Figure 2. The inclusion of the
RAPS regularization causes the algorithm to avoid using the unreliable probabilities in the tail; see
Figure 4. We discuss how RAPS improves the adaptiveness of APS in Section 4 and Appendix E.

2.4 OPTIMALITY CONSIDERATIONS

To complement these experimental results, we now formally prove that RAPS with the correct reg-
ularization parameters will always dominate the simple procedure that returns a fixed set size. (Sec-
tion 3.5 shows the parameters are easy to select and RAPS is not sensitive to their values). For a
feature vector x, let ŷ(j)(x) be the label with the jth highest predicted probability. We define the
top-k predictive sets to be {ŷ(1)(x), . . . , ŷ(k)(x)}.
Proposition 2 (RAPS dominates top-k sets). Suppose (Xi, Yi, Ui)i=1,...,n and (Xn+1, Yn+1, Un+1)
are i.i.d. draws. Let k∗ be the smallest k such that the top-k predictive sets have coverage at least
d(n+ 1)(1−α)e/n on the conformal calibration points (Xi, Yi)i=1,...,n. Take C∗(x, u, τ) as in Eq.
(4) with any kreg ≤ k∗ and λ = 1. Then with τ̂ccal chosen as in Eq. (3), we have

C∗(Xn+1, Un+1, τ̂ccal)⊆{ŷ(1)(x), . . . , ŷ(k∗)(x)}.

In words, the RAPS procedure with heavy regularization will be at least as good as the top-k proce-
dure in the sense that it has smaller or same average set size while maintaining the desired coverage
level. This is not true of either the naive baseline or the APS procedure; Table 2 shows that these
two procedures usually return predictive sets with size much larger than k∗.

3 EXPERIMENTS
In this section we report on experiments that study the performance of the predictive sets from
naive, APS, and RAPS, evaluating each based on the three desiderata above. We begin with a brief

6
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Accuracy Coverage Size

Model Top-1 Top-5 Top K Naive APS RAPS Top K Naive APS RAPS

ResNeXt101 0.793 0.945 0.900 0.889 0.900 0.900 2.42 17.1 19.7 2.00
ResNet152 0.783 0.94 0.900 0.895 0.900 0.900 2.63 9.78 10.4 2.11
ResNet101 0.774 0.936 0.900 0.896 0.900 0.900 2.83 10.3 10.7 2.25
ResNet50 0.761 0.929 0.900 0.896 0.900 0.900 3.14 11.8 12.3 2.57
ResNet18 0.698 0.891 0.900 0.895 0.900 0.900 5.72 15.5 16.2 4.43
DenseNet161 0.771 0.936 0.900 0.894 0.900 0.900 2.84 11.2 12.1 2.29
VGG16 0.716 0.904 0.900 0.895 0.901 0.900 4.75 13.4 14.1 3.54
Inception 0.695 0.887 0.900 0.885 0.900 0.901 6.30 75.4 89.1 5.32
ShuffleNet 0.694 0.883 0.900 0.891 0.900 0.900 6.46 28.9 31.9 5.05

Table 1: Results on Imagenet-Val. We report coverage and size of the optimal, randomized fixed sets, naive,
APS, and RAPS sets for nine different Imagenet classifiers. The median-of-means for each column is reported
over 100 different trials. See Section 3.1 for full details.
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Figure 4: Set sizes produced with ResNet-152. See Section 3.3 for details.

preview of the experiments. In Experiment 1, we evaluate naive, APS, and RAPS on Imagenet-
Val. Both APS and RAPS provided almost exact coverage, while naive sets had coverage slightly
below the specified level. APS has larger sets on average than naive and RAPS. RAPS has a
much smaller average set size than APS and naive. In Experiment 2, we repeat Experiment 1 on
Imagenet-V2, and the conclusions still hold. In Experiment 3, we produce histograms of set sizes
for naive, APS, and RAPS for several different values of λ, illustrating a simple tradeoff between
set size and adaptiveness. In Experiment 4, we compute histograms of RAPS sets stratified by
image difficulty, showing that RAPS sets are smaller for easier images than for difficult ones. In
Experiment 5, we report the performance of RAPS with many values of the tuning parameters.

In our experiments, we use nine standard, pretrained Imagenet classifiers from the torchvision
repository (Paszke et al., 2019) with standard normalization, resize, and crop parameters. Before
applying naive, APS, or RAPS, we calibrated the classifiers using the standard temperature scal-
ing/Platt scaling procedure as in Guo et al. (2017) on the calibration set. Thereafter, naive, APS,
and RAPS were applied, with RAPS using a data-driven choice of parameters described in Ap-
pendix E. We use the randomized versions of these algorithms—see Appendix B for a discussion.

3.1 EXPERIMENT 1: COVERAGE VS SET SIZE ON IMAGENET

In this experiment, we calculated the coverage and mean set size of each procedure for two different
choices of α. Over 100 trials, we randomly sampled two subsets of Imagenet-Val: one conformal
calibration subset of size 20K and one evaluation subset of size 20K. The median-of-means over
trials for both coverage and set size are reported in Table 1. Figure 2 illustrates the performances of
naive, APS, and RAPS; RAPS has much smaller sets than both naive and APS, while achieving
coverage. We also report results from a conformalized fixed-k procedure, which finds the smallest
fixed set size achieving coverage on the holdout set, k∗, then predicts sets of size k∗ − 1 or k∗ on
new examples in order to achieve exact coverage; see Algorithm 4 in Appendix E.

3.2 EXPERIMENT 2: COVERAGE VS SET SIZE ON IMAGENET-V2

The same procedure as Experiment 1 was repeated on Imagenet-V2, with exactly the same normal-
ization, resize, and crop parameters. The size of the calibration and evaluation sets was 5K, since
Imagenet-V2 is a smaller dataset. The result shows that our method can still provide coverage even
for models trained on different distributions, as long as the conformal calibration set comes from the
new distribution. The variance of the coverage is higher due to having less data.

3.3 EXPERIMENT 3: SET SIZES OF NAIVE , APS, AND RAPS ON IMAGENET

We investigate the effect of regularization in more detail. For three values of λ, we collected the set
sizes produced by each of naive, APS, and RAPS and report their histograms in Figure 4.
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Accuracy Coverage Size

Model Top-1 Top-5 Top K Naive APS RAPS Top K Naive APS RAPS

ResNeXt101 0.679 0.875 0.900 0.888 0.900 0.900 7.6 43.2 51.5 6.43
ResNet152 0.670 0.876 0.900 0.895 0.901 0.900 7.27 25.6 27.4 5.84
ResNet101 0.657 0.860 0.900 0.893 0.899 0.900 9.11 28.2 30.6 7.03
ResNet50 0.634 0.846 0.901 0.894 0.900 0.901 10.5 30.4 32.7 8.06
ResNet18 0.572 0.802 0.899 0.894 0.901 0.900 17.2 35.5 37.2 13.8
DenseNet161 0.652 0.861 0.899 0.894 0.899 0.900 8.41 29.8 32.1 7.04
VGG16 0.588 0.816 0.898 0.897 0.900 0.899 14.9 32.0 32.9 11.5
Inception 0.573 0.798 0.900 0.892 0.899 0.900 21.7 143. 153. 21.0
ShuffleNet 0.560 0.781 0.901 0.892 0.900 0.900 26.3 66.4 71.4 23.4

Table 2: Results on Imagenet-V2. We report coverage and size of the optimal, randomized fixed sets, naive,
APS, and RAPS sets for nine different Imagenet classifiers. The median-of-means for each column is reported
over 100 different trials. See Section 3.2 for full details.

kreg|λ 0 1e-4 1e-3 0.01 0.02 0.05 0.2 0.5 0.7 1.0

1 11.2 10.2 7.0 3.6 2.9 2.3 2.1 2.3 2.2 2.2
2 11.2 10.2 7.1 3.7 3.0 2.4 2.1 2.3 2.2 2.2
5 11.2 10.2 7.2 3.9 3.4 2.9 2.6 2.5 2.5 2.5
10 11.2 10.2 7.4 4.5 4.0 3.6 3.4 3.4 3.4 3.4
50 11.2 10.6 8.7 7.2 7.0 6.9 6.9 6.9 6.9 6.9

Table 3: Set sizes of RAPS with parameters kreg and λ, a ResNet-152, and coverage level 90%.

3.4 EXPERIMENT 4: ADAPTIVENESS OF RAPS ON IMAGENET

We now show that RAPS sets are smaller for easy images than hard ones, addressing the adaptiveness
desideratum. Table 4 reports the size-stratified coverages of RAPS at the 90% level with kreg = 5
and different choices of λ. When λ is small, RAPS allows sets to be large. But when λ = 1, RAPS
clips sets to be a maximum of size 5. Table 7 (in the Appendix) stratifies by image difficulty, showing
that RAPS sets are small for easy examples and large for hard ones. Experiments 3 and 4 together
illustrate the tradeoff between adaptiveness and size: as the average set size decreases, the RAPS
procedure truncates sets larger than the smallest fixed set that provides coverage, taming the heavy
tail of the APS procedure. Since RAPS with large λ undercovers hard examples, it must compensate
by taking larger sets for easy examples to ensure the 1− α marginal coverage guarantee. However,
the size only increases slightly since easy images are more common than hard ones, and the total
probability mass can often exceed τ̂ccal by including only one more class. If this behavior is not
desired, we can instead automatically pick λ to optimize the adaptiveness of RAPS; see Section 4.

3.5 EXPERIMENT 5: CHOICE OF TUNING PARAMETERS

While any value of the tuning parameters λ and kreg lead to coverage (Proposition 1), some values
will lead to smaller sets. In Experiments 1 and 2, we chose kreg and λ adaptively from data (see
Appendix E), achieving strong results for all models and choices of the coverage level. Table 3 gives
the performance of RAPS with many choices of kreg and λ for ResNet-152.

4 ADAPTIVENESS AND CONDITIONAL COVERAGE

In this section, we point to a definition of adaptiveness that is more natural for the image classifi-
cation setting than the existing notion of conditional coverage. We show that APS does not satisfy
conditional coverage, and that RAPS with small λ outperforms it in terms of adaptiveness.

We say that a set-valued predictor C : Rd → 2Y satisfies exact conditional coverage if P (Y ∈
C(X) | X = x) = 1 − α for each x. Distribution-free guarantees on conditional coverage are im-
possible (Vovk, 2012; Lei & Wasserman, 2014), but many algorithms try to satisfy it approximately
(Romano et al., 2019; 2020; Cauchois et al., 2020). In a similar spirit, Tibshirani et al. (2019) sug-
gest a notion of local conditional coverage, where one asks for coverage in a neighborhood of each
point, weighted according to a chosen kernel. Cauchois et al. (2020) introduce the worst-case slab
metric for measuring violations of the conditional coverage property. We present a different way of
measuring violations of conditional coverage.
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λ = 0 λ = 0.001 λ = 0.01 λ = 0.1 λ = 1

size cnt cvg cnt cvg cnt cvg cnt cvg cnt cvg

0 to 1 11627 0.88 11539 0.88 11225 0.89 10476 0.92 10027 0.93
2 to 3 3687 0.91 3702 0.91 3741 0.92 3845 0.93 3922 0.94
4 to 6 1239 0.91 1290 0.91 1706 0.92 4221 0.89 6051 0.83
7 to 10 688 0.93 765 0.93 1314 0.91 1436 0.71 0
11 to 100 2207 0.94 2604 0.93 2014 0.86 22 0.59 0
101 to 1000 552 0.97 100 0.90 0 0 0

Table 4: Coverage conditional on set size. We report average coverage of images stratified by the size of the
set output by RAPS using a ResNet-152 for varying λ. The marginal coverage rate is 90%.

Proposition 3. Suppose P (Y ∈ C(X) | X = x) = 1− α for each x ∈ Rd. Then,
P (Y ∈ C(X) | {|C(X)| ∈ A}) = 1− α for any A ⊂ {0, 1, 2, . . . }.

In words, if conditional coverage holds, then coverage holds after stratifying by set size. Based on
this result, In Appendix E, we introduce the size-stratified coverage violation criterion, a simple and
pragmatic way of quantifying adaptiveness. Then, we automatically tune λ on this metric so RAPS
markedly outperforms the adaptiveness of APS (see Table 8).

In Table 4, we report on the coverage of APS and RAPS, stratified by the size of the prediction set.
Turning our attention to the λ = 0 column, we see that when APS outputs a set of size 101− 1000,
APS has coverage 97%, substantially higher than 90% nominal rate. By Proposition 3, we conclude
that APS is not achieving exact conditional coverage, because the scores are far from the oracle
probabilities. The APS procedure still achieves marginal coverage by overcovering hard examples
and undercovering easy ones, an undesirable behavior. Alternatively, RAPS can be used to regularize
the set sizes—for λ = .001 to λ = .01 the coverage stratified by set size is more balanced. In
summary, even purely based on the adaptiveness desideratum, RAPS with light regularization is
preferable to APS. Note that as the size of the training data increases, as long as π̂ is consistent,
naive and APS will become more stable, and so we expect less regularization will be needed.

Lastly, we argue that conditional coverage is a poor notion of adaptiveness when the best possible
model (i.e., one fit on infinite data) has high accuracy. Given such a model, the oracle procedure
from Romano et al. (2020) would return the correct label with probability 1 − α and the empty set
with probability α. That is, having correct conditional coverage for high-signal problems where Y is
perfectly determined by X requires a perfect classifier. In our experiments on ImageNet, APS does
not approximate this behavior. Therefore, conditional coverage isn’t the right goal for prediction
sets with realistic sample sizes. Proposition 3 suggests a relaxation. We could require that we have
the right coverage, no matter the size of the prediction set: P (Y ∈ C(X) | {|C(x)| ∈ A}) ≥ 1− α
for any A ⊂ {0, 1, 2, . . . }; Appendix E.2 develops this idea. We view this as a promising way to
reason about adaptiveness in high-signal problems such as image classification.

5 DISCUSSION

For classification tasks with many possible labels, our method enables a researcher to take any base
classifier and return predictive sets guaranteed to achieve a pre-specified error level, such as 90%,
while retaining small average size. It is simple to deploy, so it is an attractive, automatic way to
quantify the uncertainty of image classifiers—an essential task in such settings as medical diag-
nostics, self-driving vehicles, and flagging dangerous internet content. Predictive sets in computer
vision (from RAPS and other conformal methods) have many further uses, since they systematically
identify hard test-time examples. Finding such examples is useful in active learning where one only
has resources to label a small number of points. In a different direction, one can improve efficiency
of a classifier by using a cheap classifier outputting a prediction set first, and an expensive one only
when the cheap classifier outputs a large set (a cascade; see, e.g., Li et al. 2015). One can also use
predictive sets during model development to identify failure cases and outliers and suggest strate-
gies for improving its performance. Prediction sets are most useful for problems with many classes;
returning to our initial medical motivation, we envision RAPS could be used by a doctor to automat-
ically screen for a large number of diseases (e.g. via a blood sample) and refer the patient to relevant
specialists.

9



Under review as a conference paper at ICLR 2021

REFERENCES

Maxime Cauchois, Suyash Gupta, and John Duchi. Knowing what you know: valid and validated
confidence sets in multiclass and multilabel prediction. 2020. arXiv:2004.10181.

Yarin Gal. Uncertainty in Deep Learning. University of Cambridge, 1(3), 2016.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. 2017. arXiv:1706.04599.

Chirag Gupta, Arun K Kuchibhotla, and Aaditya K Ramdas. Nested conformal prediction and
quantile out-of-bag ensemble methods. arXiv, pp. arXiv–1910, 2019.

Yotam Hechtlinger, Barnabs Pczos, and Larry Wasserman. Cautious deep learning, 2018.
arXiv:1805.09460.

Heinrich Jiang, Been Kim, Melody Guan, and Maya Gupta. To trust or not to trust a classifier. In
Advances in Neural Information Processing Systems, pp. 5541–5552, 2018.

Volodymyr Kuleshov, Nathan Fenner, and Stefano Ermon. Accurate uncertainties for deep learning
using calibrated regression. 2018. arXiv:1807.00263.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In Advances in Neural Information Processing
Systems, pp. 6402–6413, 2017.

Jing Lei and Larry Wasserman. Distribution-free prediction bands for non-parametric regression.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(1):71–96, 2014.

Jing Lei, Max GSell, Alessandro Rinaldo, Ryan J. Tibshirani, and Larry Wasserman. Distribution-
free predictive inference for regression. Journal of the American Statistical Association, 113
(523):1094–1111, 2018. doi: 10.1080/01621459.2017.1307116.

Haoxiang Li, Zhe Lin, Xiaohui Shen, Jonathan Brandt, and Gang Hua. A convolutional neural
network cascade for face detection. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 5325–5334, 2015.

Qing Li, Weidong Cai, Xiaogang Wang, Yun Zhou, David Dagan Feng, and Mei Chen. Medical
image classification with convolutional neural network. In International Conference on Control
Automation Robotics & Vision, pp. 844–848. IEEE, 2014.
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A PROOFS

Theorem 1. Let s(x, u, y) = infτ{y ∈ C(x, u, τ)}, and let si = s(Xi, Ui, Yi) for i = 1, . . . , n.
Then

{y : s(x, u, y) ≤ τ} = {y : y ∈ C(x, u, τ)}
because C(x, u, τ) is a finite set growing in τ by the assumption in Eq. (2). Thus,

{τ : |{i : si ≤ τ} | ≥ d(1−α)(n+ 1)e} =

{
τ :
|{i : Yi ∈ C(Xi, Ui, τ)}|

n
≥ d(n+ 1)(1− α)e

n

}
.

Considering the left expression, the infimum over τ of the set on the left hand side is the
d(1 − α)(n + 1)e smallest value of the si, so this is the value of τ̂ccal.
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Since s1, . . . , sn, s(Xn+1, Un+1, Yn+1) are exchangeable random variables, |{i :
s(Xn+1, Un+1, Yn+1) > si}| is stochastically dominated by the discrete uniform distribution
on {0, 1, . . . , n}. We thus have that

P (Yn+1 /∈ C(Xn+1, Un+1, τ̂ccal)) = P (s(Xn+1, Un+1, Yn+1) > τ̂ccal)

= P (|{i : s(Xn+1, Un+1, Yn+1) > si}| ≥ d(n+ 1)(1− α)e)

= P

(
|{i : s(Xn+1, Un+1, Yn+1) > si}|

n+ 1
≥ d(n+ 1)(1− α)e

n+ 1

)
≤ α.

Proposition 1. The lower bound follows from Theorem 1. To prove the upper bound, using the
result from Theorem 2.2 of Lei et al. (2018) it suffices to show that the variables s(Xi, Ui, Yi) =
inf{τ : Yi ∈ C(Xi, Ui, τ)} are almost surely distinct. To this end, note that that

s(Xi, Ui, Yi) = ρXi(Yi) + π̂Xi(Yi) · Ui + λ(oXi(Yi)− kreg)+,
and due to the middle term of the sum, these values are distinct almost surely provided π̂Xi(Yi) >
0.

Proposition 2. We first show that τ̂ccal ≤ 1 + k∗ − kreg . Note that since at least d(1 − α)(n + 1)e
of the conformal calibration points are covered by a set of size k∗, at least d(1 − α)(n + 1)e of the
Ei in Algorithm 2 are less than or equal to 1 + k∗ − kreg. Thus, by the definition of τ̂ccal, we have
that it is less than or equal to 1 + k∗ − kreg. Then, note that by the definition of C∗ in Eq. (4), we
have that

|C∗(Xn+1, Un+1, τ̂ccal)| ≤ k∗.
as long as τ̂ccal ≤ 1+k∗−kreg , since for the k∗+1 most likely class, the sum in Eq. (4) will exceed
λ · (1 + k∗ − kreg) = (1 + k∗ − kreg) ≥ τ̂ccal, and so the k∗ + 1 class will not be in the set.

Proposition 3. Suppose P (Y ∈ C(X) | X = x) = 1− α for each x ∈ Rd. Then,

P (Y ∈ C(X) | {|C(X)| ∈ A}) =

∫
x
P (Y ∈ C(x) | X = x})I{C(x)∈A}dP (x)

P (C(X) ∈ A)

=

∫
x
(1− α)I{C(x)∈A}dP (x)

P (C(X) ∈ A)

= 1− α.

B RANDOMIZED PREDICTORS

The reader may wonder why we choose to use a randomized procedure. The randomization is
needed to achieve 1 − α coverage exactly, which we will explain via an example. Note that the
randomization is of little practical importance, since the predictive set output by the randomized
procedure will differ from the that of the non-randomized procedure by at most one element.

Turning to an example, assume for a particular input image we expect a set of size k to have 91%
coverage, and a set of size k − 1 to have 89% coverage. In order to achieve our desired coverage of
90%, we randomly choose size k or k − 1 with equal probability. In general, the probabilities will
not be equal, but rather chosen so the weighted average of the two coverages is exactly 90%. If a
user of our method desires deterministic sets, it is easy to turn off this randomization with a single
flag, resulting in slightly conservative sets.

C IMAGENET AND IMAGENETV2 RESULTS FOR α = 5%

We repeated Experiments 1 and 2 with α = 5%. See the results in Tables 5 and 6.
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Accuracy Coverage Size

Model Top-1 Top-5 Top K Naive APS RAPS Top K Naive APS RAPS

ResNeXt101 0.794 0.945 0.905 0.938 0.950 0.950 5.64 36.4 46.3 4.21
ResNet152 0.783 0.940 0.950 0.943 0.950 0.950 6.36 19.6 22.5 4.40
ResNet101 0.774 0.936 0.950 0.944 0.950 0.950 6.79 20.6 23.2 4.79
ResNet50 0.762 0.929 0.951 0.943 0.950 0.950 8.12 22.9 26.2 5.57
ResNet18 0.698 0.891 0.950 0.943 0.950 0.950 16.0 28.9 33.2 11.7
DenseNet161 0.772 0.936 0.950 0.942 0.950 0.950 6.84 23.4 28.0 5.09
VGG16 0.716 0.904 0.950 0.943 0.950 0.950 12.9 24.6 27.8 8.98
Inception 0.695 0.887 0.950 0.937 0.950 0.950 20.3 142.0 168.0 18.5
ShuffleNet 0.694 0.883 0.950 0.940 0.950 0.950 19.3 58.7 71.6 16.3

Table 5: Results on Imagenet-Val. We report coverage and size of the optimal, randomized fixed sets, naive,
APS, and RAPS sets for nine different Imagenet classifiers. The median-of-means for each column is reported
over 100 different trials. See Section 3.1 for full details.

Accuracy Coverage Size

Model Top-1 Top-5 Top K Naive APS RAPS Top K Naive APS RAPS

ResNeXt101 0.679 0.875 0.950 0.937 0.950 0.950 21.7 86.3 107. 19.9
ResNet152 0.670 0.876 0.950 0.945 0.950 0.950 21.2 50.9 57.1 17.3
ResNet101 0.656 0.86 0.950 0.945 0.949 0.950 25.9 56.8 62.0 20.0
ResNet50 0.634 0.847 0.950 0.943 0.950 0.951 29.7 58.3 65.8 22.6
ResNet18 0.572 0.802 0.950 0.941 0.951 0.949 48.5 64.3 74.2 36.1
DenseNet161 0.653 0.862 0.950 0.942 0.950 0.951 25.7 60.2 72.4 21.5
VGG16 0.588 0.816 0.950 0.942 0.950 0.950 38.6 57.2 64.1 27.2
Inception 0.573 0.798 0.951 0.942 0.951 0.950 73.6 251. 276. 73.0
ShuffleNet 0.559 0.781 0.950 0.941 0.950 0.950 79.4 126. 144. 70.1

Table 6: Results on Imagenet-V2. We report coverage and size of the optimal, randomized fixed sets, naive,
APS, and RAPS sets for nine different Imagenet classifiers. The median-of-means for each column is reported
over 100 different trials. See Section 3.2 for full details.

D COVERAGE AND SIZE CONDITIONAL ON IMAGE DIFFICULTY

In order to probe the adaptiveness properties of APS and RAPS we stratified coverage and size by
image difficulty (the position of the true label in the list of most likely to least likely classes, based
on the classifier predictions) in Table 7. With increasing λ, coverage decreases for more difficult
images and increases for easier ones. In the most difficult regime, even though APS can output large
sets, those sets still rarely contain the true class. This suggests regularization is a sensible way to
stabilize the sets. As a final word on Table 7, notice that as λ increases, coverage improves for the
more common medium-difficulty examples, although not for very rare and difficult ones.

E CHOOSING kreg AND λ TO OPTIMIZE SET SIZE AND ADAPTIVENESS

This section describes two procedures for picking kreg and λ that optimize for set size or adaptive-
ness, outperforming APS in both cases.

E.1 OPTIMIZING SET SIZE WITH RAPS

Algorithm 4 Adaptive Fixed-K

Input: α; I ∈ {1, ...,K}n×K , and one-hot y ∈ {0, 1}K corresponding respectively to the classes
from highest to lowest estimated probability mass, and labels for each of n examples in the
dataset

1: procedure GET-KSTAR(α,I ,y)
2: for i ∈ {1, · · · , n} do
3: Li ← { j : Ii,j = yi }
4: k̂∗ ← the d(1− α)(1 + n)e largest value in {Li}ni=1

5: return k̂∗
Output: The estimate of the smallest fixed size set that achieves coverage, k̂∗
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λ = 0 λ = 0.001 λ = 0.01 λ = 0.1 λ = 1

difficulty count cvg sz cvg sz cvg sz cvg sz cvg sz

1 15668 0.95 5.2 0.95 3.8 0.96 2.5 0.97 2.0 0.98 2.0
2 to 3 2578 0.78 15.7 0.78 10.5 0.80 6.0 0.84 3.9 0.86 3.6
4 to 6 717 0.68 31.7 0.68 19.7 0.70 9.7 0.71 5.3 0.64 4.4
7 to 10 334 0.63 41.0 0.63 24.9 0.60 11.6 0.22 5.7 0.00 4.5
11 to 100 622 0.55 57.8 0.51 34.1 0.26 14.7 0.00 6.4 0.00 4.6
101 to 1000 81 0.23 96.7 0.00 51.6 0.00 19.1 0.00 7.1 0.00 4.7

Table 7: Coverage and size conditional on difficulty. We report coverage and size of RAPS sets using ResNet-
152 with kreg = 5 and varying λ (recall that λ = 0 is the APS procedure). The desired coverage level is 90%.
The ‘difficulty’ is the ranking of the true class’s estimated probability.

Violation at α = 10% Violation at α = 5%

Model APS RAPS APS RAPS

ResNeXt101 0.090 0.049 0.048 0.021
ResNet152 0.069 0.038 0.037 0.017
ResNet101 0.073 0.041 0.038 0.017
ResNet50 0.069 0.037 0.037 0.016
ResNet18 0.046 0.025 0.032 0.019
DenseNet161 0.080 0.047 0.040 0.016
VGG16 0.046 0.022 0.030 0.022
Inception 0.085 0.045 0.043 0.023
ShuffleNet 0.061 0.033 0.035 0.020

Table 8: Adaptiveness results after automatically tuning λ. We report the median size-stratified coverage
violations of APS and RAPS over 10 trials. See Appendix E.2 for experimental details.

To produce Tables 1, 5, 2, and 6, we chose kreg and λ adaptively. This required an extra data splitting
step, where a small amount of tuning data

{
xi, yi

}m
i=1

were used to estimate k∗, and then kreg is set
to k∗. Takingm ≈ 1000 was sufficient, since the algorithm is fairly insensitive to kreg (see Table 3).
Then, k̂∗ was calculated with Algorithm 4. We produced the Imagenet V2 tables with m = 1000
and the Imagenet tables with m = 10000.

After choosing k̂∗, we chose λ to have small set size. We used the same tuning data to pick k̂∗ and λ
for simplicity (this does not invalidate our coverage guarantee since conformal calibration still uses
fresh data). A coarse grid search on λ sufficed, since small parameter variations have little impact
on RAPS. For example, we chose the λ ∈ {0.001, 0.01, 0.1, 0.2, 0.5} that achieved the smallest size
on the m holdout samples in order to produce Tables 1, 5, 2, and 6. We include a subroutine that
automatically chooses k̂∗ and λ to optimize size in our GitHub codebase.

E.2 OPTIMIZING ADAPTIVENESS WITH RAPS

In this appendix, we show empirically that RAPS with an automatically chosen set of kreg and λ
improves the adaptiveness of APS. Recall our discussion in Section 4 and Proposition 3, wherein we
propose size-stratified coverage as a useful definition of adaptiveness in image classification. After
picking kreg as in Appendix E, we can choose λ using the same tuning data to optimize this notion
of adaptiveness.

We now describe a particular manifestation of our adaptiveness criterion that we will use to optimize
λ. Consider disjoint set-size strata {Si}i=si=1, where

⋃j=s
j=1 Si = {1, . . . , |Y|}. Then define the indexes

of examples stratified by the prediction set size of each example from algorithm C as Jj =
{
i :

|C(Xi, Yi, Ui)| ∈ Sj
}

. Then we can define the size-stratified coverage violation of an algorithm C
on strata {S}i=si=1 as

SSCV
(
C, {S}j=s

j=1

)
= sup

j

∣∣∣∣∣ |{i : Yi ∈ C(Xi,Yi,Ui), i ∈ Jj}|
|Jj|

− (1− α)

∣∣∣∣∣. (5)

In words, Eq. (5) is the worst-case deviation of C from exact coverage when it outputs sets of a
certain size. Computing the size-stratified coverage violation thus only requires post-stratifying the
results of C on a set of labeled examples. If conditional coverage held, the worst stratum coverage
violation would be 0 by Proposition 3.
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To maximize adaptiveness, we’d like to choose λ to minimize the size-stratified coverage violation
of RAPS. Write Cλ to mean the RAPS procedure for a fixed choice of kreg and λ. Then we would
like to pick

λ = arg min
λ′

SSCV(Cλ′ , {S}j=s
j=1). (6)

In our experiments, we choose a relatively coarse partitioning of the possible set sizes: 0-1, 2-3, 4-
10, 11-100, and 101-1000. Then, we chose the λ ∈ {0.00001, 0.0001, 0.0008, 0.001, 0.0015, 0.002}
which minimized the size-stratified coverage violation on the tuning set. The results in Table 8
show RAPS always outperforms the adaptiveness of APS on the test set, even with this coarse,
automated choice of parameters. The table reports the median size-stratified coverage violation over
10 independent trials of APS and RAPS with automated parameter tuning.
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