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Abstract

Time series foundation models (TSFMs) pre-
trained on data from multiple domains have
shown strong performance on diverse model-
ing tasks. Various efforts have been made
to develop foundation models specific to elec-
troencephalography (EEG) data, which records
brain electrical activity as time series. How-
ever, no comparative analysis of EEG-specific
foundation models (EEGFMs) versus general
TSFMs has been performed on EEG-specific
tasks. We introduce a novel Spatial-Temporal
Adapter with Multi-Head Pooling (STAMP),
which leverages univariate embeddings pro-
duced by a general TSFM, implicitly models
spatial-temporal characteristics of EEG data,
and achieves performance comparable to state-
of-the-art EEGFMs. A comprehensive analysis
is performed on 8 benchmark datasets of clin-
ical tasks using EEG for classification, along
with ablation studies. Our proposed adapter is
lightweight in trainable parameters and flexible
in the inputs it can accommodate, supporting
easy modeling of EEG data using TSFMs.
Keywords: Time series foundation mod-
els (TSFM), electroencephalography (EEG)
data, spatial-temporal adapter, EEG founda-
tion models (EEGFM)

Data and Code Availability We use 8 EEG
benchmarking datasets, which are publicly available,
to evaluate our method. We use four datasets for ab-
lation experiments: SHU-MI (Ma et al., 2022), Men-
talArithmetic (Goldberger et al., 2000; Zyma et al.,
2019), BCIC-IV-2a (Brunner et al., 2008), PhysioNet-
MI (Goldberger et al., 2000; Schalk et al., 2004).
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For final evaluation of our methods, we use those
same datasets, in addition to Mumtaz2016 (Mum-
taz, 2016), SEED-V (Liu et al., 2022), TUEV (Obeid
and Picone, 2016), and FACED (Chen et al., 2023).
Details about these datasets are provided in Ap-
pendix A. Our code is publicly available at https:
//github.com/autonlab/STAMP.

Institutional Review Board (IRB) This work
does not require IRB approval since we performed
experiments on publicly available datasets.

1. Introduction

Foundation models can achieve strong performance
on diverse modeling tasks by leveraging large-scale
pretraining using data from a particular modality.
Due to an abundance of modeling applications and
available data, one modality of particular interest
is time series. Various efforts have been made to
build general-purpose time series foundation mod-
els (TSFMs) (Goswami et al., 2024; Ansari et al.,
2024; Das et al., 2024), pretrained on data from mul-
tiple domains. Concurrently, there have been efforts
to build foundation models specifically for electroen-
cephalography (EEG) data, where electrical activity
of the brain is measured and recorded as time se-
ries (Wang et al., 2025, 2024; Jiang et al., 2024).
To our knowledge, no comparative analysis of EEG-
specific foundation models (EEGFMs) versus TSFMs
has yet been performed on EEG-specific tasks.

EEG measures electrical activity generated by neu-
rons in the brain’s cortex by placing electrodes on the
scalp in standard locations. They are connected to
an amplifier that applies basic bandpass filtering and
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converted to digital signals for recording. The re-
sulting signals are spatiotemporal in nature and pro-
vide valuable information on brain health and activ-
ity, useful for predicting emotion, sleep stage, seizure
activity, and Alzheimer’s disease (Craik et al., 2019).

While most EEGFMs attempt to model both
spatial and temporal dependencies, TSFMs typi-
cally model univariate time series and are not nat-
urally effective at EEG-related tasks. We introduce
STAMP (Spatial-Temporal Adapter with Multi-
Head Pooling), a lightweight, flexible adapter for
use on top of general-purpose TSFMs that achieves
performance comparable to state-of-the-art EEGFMs
across multiple EEG classification tasks. The adapter
enables direct use of existing pre-trained TSFMs,
potentially reducing solution development costs and
time, and greatly outperforms naive mean pooling
with TSFMs, which yields near-random performance.
STAMP leverages univariate embeddings produced
by a TSFM and implicitly models relationships across
both spatial and temporal dimensions present in
EEG. There are three main components within the
adapter: 1) positional encodings (PEs) that enable
our model to earmark spatial and temporal locations
associated to TSFM embeddings, 2) a criss-cross
gated MLP (CC-GMLP) that captures spatial and
temporal relationships between the resulting embed-
dings, and 3) multi-head attention pooling (MHAP;
India et al. (2019); Zhao et al. (2022)) that extracts
relevant information to produce a final prediction.
While EEGFMs have millions, and sometimes tens
of millions, of trainable parameters, our adapter has
a fraction of that (approximately 750 thousand), re-
ducing data requirements. Since we freeze the pa-
rameters of the TSFM, embeddings can be generated
once for a dataset and the hyperparameters of our
adapter can be easily tuned. We perform extensive
ablation experiments to compare various choices for
our adapter and justify the need for each component.
Next, we run a full evaluation of STAMP and com-
pare it against 2 EEGFMs and 2 non-foundation EEG
models. Lastly, we compare STAMP when used with
embeddings from different TSFMs.

2. Related Works

2.1. Time Series Foundation Models

TSFMs gained traction by demonstrating that large-
scale pretraining in this modality unlocks abilities
that transfer across various time series tasks and di-

verse domains (Rasul et al., 2023; Das et al., 2024;
Ansari et al., 2024; Goswami et al., 2024). Their
pretraining data includes millions of time series and
spans multiple domains such as finance, healthcare,
energy, weather, and more. Most of the focus on
TSFMs has been on their architectures and pretrain-
ing using self-supervised learning (SSL), while less
attention has been paid to adapting and fine-tuning
them for downstream tasks. For example, Goswami
et al. (2024) pretrain their model using SSL and a re-
construction head. Then, to perform a downstream
task of classification, a single linear layer replaces the
reconstruction head and is further fine-tuned on a
per-dataset basis.

2.2. EEG Foundation Models

At the same time that TSFMs were being developed,
EEGFMs were also being built. EEGFMs have sim-
ilar goals to TSFMs, however, their pretraining and
use have been restricted to only EEG data and tasks.
Early EEGFMs, such as Neuro-GPT (Cui et al.,
2024), followed similar architectures as TSFMs and
did not leverage any specific characteristics present
in EEG data.

Recent EEGFMs attempt to address this. For ex-
ample, LaBraM (Jiang et al., 2024) employs multiple
EEG-specific components such as spatial and tem-
poral embeddings and Fourier spectrum prediction.
CBraMod (Wang et al., 2025) uses a different ap-
proach, in particular, asymmetric conditional posi-
tional encoding (ACPE) and a criss-cross transformer
(CC-TF). ACPE encodes spatial and temporal posi-
tional information while prioritizing short-range tem-
poral information and long-range spatial information.
The CC-TF applies self-attention spatially and tem-
porally separately, rather than across a single axis.

Another difference between TSFMs and EEGFMs
is the sampling rate of the pretraining data. Specif-
ically, Goswami et al. (2024)’s pretraining data con-
tains datasets with varying sampling rates ranging
from 15 minutes to daily to weekly, with only a few
high frequency datasets. In contrast, EEGFMs often
resample their pretraining data to a single sampling
rate such as 200 Hz for Jiang et al. (2024) and Wang
et al. (2025). Table 1 shows a comprehensive com-
parison between the two types of foundation models.

Despite the related architectures and goals of
TSFMs and EEGFMs, to our knowledge, no research
has been published comparing the two on EEG tasks.



STAMP: SPATIAL-TEMPORAL ADAPTER WITH MULTI-HEAD POOLING

Table 1: Comparison between general-purpose TSFMs and EEGFMs.

Aspect

TSFM

EEGFM

Pretraining Data

Diverse datasets from multiple domains
(energy, weather, finance, health, etc.)

EEG datasets from various clinical do-
mains

Data Varying sampling rates, seasonality, di- | High frequency sampling, clinically sig-
Characteristics verse patterns nificant artifacts, spatial relationships

Modeling General architectures which are | Architectures that leverage the charac-

Architectures domain-agnostic such as transformers teristics of EEG (Fourier spectrum pre-

diction, criss-cross transformers, etc.)

Typical Tasks

Forecasting, anomaly detection, impu-
tation, classification, and regression

Classification and regression

2.3. Token Mixing and Aggregation

As will be further detailed in our methods section,
adapting a TSFM to handle EEG data requires
strategies for token “mixing” and “aggregation.” A
token, for our purposes, refers to a discrete segment
of time series processed by the TSFM. Since EEG
data are available from different spatial channels and
over potentially long periods of time, EEG data is
decomposed into a “spatialtemporal grid” of tokens.
Using this grid for predictions requires both “mixing”
(capturing relationships between tokens throughout
the grid) and “aggregation” (summarizing across the
grid for a final prediction).

Transformer encoders (Vaswani et al., 2017) are an
obvious choice for mixing tokens due to their suc-
cess in language modeling. The problem with a stan-
dard transformer encoder is that attention is applied
across all tokens, rather than taking advantage of the
distinct spatial and temporal patterns of EEG. An
option aiming to better leverage EEG structure is
the CC-TF from Wang et al. (2025). The authors
demonstrated that for EEG tasks, the CC-TF outper-
forms the standard transformer encoder architecture.
An architecturally simpler option for token mixing is
a gated MLP (GMLP) (Liu et al., 2021). GMLPs
have shown competitive performance to transformers
in both language and image modeling. The standard
GMLP formulation models interactions across all to-
kens.

For token aggregation, naive strategies include av-
eraging tokens before input to a prediction head, or
averaging predictions made on each token. These
strategies have the disadvantage of treating each to-
ken as carrying information of equal value: A more
advanced solution designed to extract and weight fea-
tures from each token is multi-head attention pool-

ing, previously introduced by India et al. (2019) and
expanded upon by Zhao et al. (2022).

3. Methods

3.1. Embedding Generation

Let X € RS*T represent a collection of time se-
ries with S spatial channels containing 7 observa-
tions each. For each channel, we partition the associ-
ated time series of length 7 = T'K into sequences of
length K = 200 (corresponding to 1 second of data),
yielding X € RS*XT*K_ Each sequence or “token”
serves as an input vector to a TSFM with frozen
parameters. The output is an embedding of each
token in R, yielding a grid of TSFM embeddings
E € RT*¢  Unless otherwise noted, MOMENT
Large (Goswami et al., 2024) is used as the TSFM,
yielding embeddings in R? for £ = 1024.

To reduce the total number of parameters in our
adapter, we start by applying a learnable linear map-
ping W from Rf to RP to each embedding. Using
- to denote the application of such a mapping along
the appropriate dimension when unambiguous, this
yields a grid B/ = E - W € R¥*T*D of embeddings
with reduced dimensionality.

3.2. Positional Encoding

In order to encode spatial, temporal, and token posi-
tional information, we next add learnable positional
embeddings to the embeddings in our grid E’.

In particular, we learn token-wise positional em-
beddings p;; € RP for (i,j) € S x T, unique to
each embedding in our grid, along with spatial-wise
and temporal-wise positional embeddings s;,t; € RP
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Figure 1: A diagram showing how EEG data is processed by MOMENT and STAMP. The EEG data is
separated into tokens, which are embedded using MOMENT before positional encoding is applied.
The resulting tokens are passed through the CC-GMLP, where spatial and temporal relationships
are incorporated into embeddings. MHAP then determines relevant features and generates final
predictions by projecting embeddings into lower dimensional spaces.

for i € S,7 € T, unique to an embedding’s spa-
tial and temporal position in our grid, respectively.
Thus, if e;j € RP denotes one embedding in our grid
E' € RS*T*D  from this stage we obtain a modified
grid E € RS*XT*D with entries €ij = e;j +pij+si+t;.
A visualization of this procedure is seen in Figure 1.

While it may seem more natural to include only
the [S x T'| token embeddings (i.e. set é;; = e}; +pij)
or only the |S|+|T| spatial and temporal embeddings
(ie. set &; = e}; + s; +t;), in our ablation studies,
we find that the structure enforced by using all three
typically improves performance.

3.3. Criss-Cross GMLP

In order to model spatial and temporal relationships,
we use a novel criss-cross GMLP (CC-GMLP) in-
spired by the original GMLP (Liu et al., 2021) and
the CC-TF (Wang et al., 2025). We found the criss-
cross architecture used in CBraMod appealing due
to its separate modeling of spatial and temporal rela-
tionships, which we hoped would enable parameter-
efficient learning of cross-channel relationships inde-
pendent of a particular signal’s temporal evolution.
In line with this intuition, during the development of
STAMP, we found that the criss-cross architecture of-
ten improved performance for both transformers and

GMLP, as highlighted by Figure 3. The CC-GMLP
is made up of L blocks, each block taking inputs
E € R¥*T*D and computing:

Z=0o(E-U) (1)

Zr = gr(2), Zs = gs(Z) (2)
Z = Concat(Zr, Zs) (3)
E=7-V (4)

where o is the GELU activation function, gr(-) and
gs(+) are the temporal gating unit and spatial gating
unit, respectively, and U : R? — R V : R — RP
are linear maps applied along the token dimension.
The temporal and spatial gating units follow the same
formulation as the original GMLP, Equation 5, except
that the linear projection is applied only along the
respective axis. For example, the spatial gating unit
separates Z € RS>*Tx" into Z,, 7, € RSXTx 5 and,
using ® to denote element-wise multiplication, learns
a linear mapping W : RS — RS along the spatial
dimension so that

9s(Z) =2, 0 (W - Zy). (5)

In accordance with the original GMLP implemen-
tation, we initialize W with mean 0 and standard
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deviation 1076, Note that layer normalization is ap-
plied to the input of each block and a residual con-
nection is used, such that the final block output is
(E + E) € RSXTxD,

The GMLP paper (Liu et al., 2021) reports that
their model does not require positional embeddings
because that information is captured by g(-). How-
ever, we have found that positional embeddings sig-
nificantly improve the performance of our adapter,
as demonstrated by Figure 2. We hypothesize that
positional encoding is specifically helpful for the task
of EEG modeling due to the extensive spatial and
temporal correlations within the data.

3.4. Multi-Head Attention Pooling

Our adapter uses a variant of multi-head attention
pooling (MHAP) to aggregate the tokens (Zhao et al.,
2022). MHAP allows the adapter to learn to weight
the importance of each token with respect to the final
prediction. Given our grid of mixed token embed-
dings E e RSXT*D A heads, Q queries per head,
and d = D/A, MHAP begins by linearly mapping
tokens to lower-dimensional dimensional spaces via
W, : RP — R? for each a € A. Subsequently, the
projected tokens for a given a are measured against
queries rqq € R¥>1 for each ¢ € Q. The result-
ing scores determine an aggregate vector for each ¢
via weighted summation of token projections over the
spatiotemporal grid. The sum of these scores are fur-
ther used to measure the query’s overall importance
in a final aggregation step across queries. Formally,
for each a € A we obtain a vector z, aggregated over
all queries as follows:

Project) H, = (E : Wa) € RSXTxd (6)
(7)

H. .
Attend) o, 4 = softmax(aT;a’q) e R*T ()

9)

For each ¢ € :

Pool) u,,q = ( Z D )Y e RY

a,q
,j€ESXT
Weight) Boq=( > of)eR
i,7€SXT

Combine) S, = softmax((Ba,q)o;) € R?
Q
Zg = Zﬁa’qua’q € R%
q=1

The final vector in R¢ for each head is concatenated
into a summary in [21, - ,2,] = 2 € RP. Adding a

residual connection to the mean mixed token embed-
ding ¢ = ([5hgy Sy jeswr B0 € R, final predic-
tions are produced with a linear map W : RP — R™
via g = softmax(W - (Az + (1 — A\)é)).

4. Experimental Setup

4.1. Evaluation Datasets

We evaluate our approach on 8 common EEG
datasets. The datasets and their characteristics are
reported in Table 4. In order to make our evalua-
tions comparable to other EEGFMs, our datasets are
preprocessed using the same procedure as CBraMod.
In short summary, the EEG signals in each dataset
are noise filtered, resampled to 200 Hz, and split into
training, validation, and test splits. For more details
on pre-processing, see Wang et al. (2025).

4.2. Baseline Methods

Multiple baseline methods are used for comparison.
Specifically, we compare against two non-foundation
EEG models: EEG Conformer (Song et al., 2023)
and ST-Transformer (Song et al., 2021). As for
EEGFMs, we include CBraMod (Wang et al., 2025)
and LaBraM-Base (Jiang et al., 2024). During our ex-
periments, we found that running CBraMod with the
suggested default configurations sometimes yielded
performance metrics lower than those reported in
their paper!. Given this discrepancy, we report only
the reproduced CBraMod performance. Due to com-
putational limitations, we do not reproduce the re-
sults of the other baselines, but rather report the per-
formance metrics and parameter counts detailed pre-
viously by Wang et al. (2025), which were obtained
as described in Section 3.2 of that work.

4.3. Evaluation Metrics

Following the work of Jiang et al. (2024) and Wang
et al. (2025), we report the same evaluation met-
rics. For binary classification, we use Balanced Accu-
racy, AUC-PR, and AUROC as evaluation metrics,
with AUROC as our monitor metric during valida-
tion. Note that a threshold of 0.5 is used to calculate
the balanced accuracy in the binary setting, consis-
tent with Wang et al. (2025). For multiclass classi-
fication, we use Balanced Accuracy, Cohen’s Kappa

1. Multiple users have reported similar issues reproducing
CBraMod results on certain datasets: https://github.
com/wjq-learning/CBraMod/issues
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Score, and Weighted F1, with Cohen’s Kappa Score
as our monitor metric for validation.

4.4. Experiments

All of our experiments were run using Pytorch 2.6.0
and CUDA 12.4. Embeddings were generated in par-
allel using multiple NVIDIA GeForce RTX 2080 Ti
GPUs each with 12GB of VRAM. Most experiments
were run on a single NVIDIA GeForce RTX 2080
Ti GPU (with 12GB of VRAM), but a minority of
the experiments used an NVIDIA RTX A6000 GPU
with 48GB of VRAM or an NVIDIA Tesla V100 with
32GB of VRAM.

In order to justify the component choices in our
adapter, we performed ablation studies that exam-
ined the impact of the positional encoding (PE),
token mixing, and token aggregation components.
Each ablation study fixes two of our three compo-
nents, namely (token, spatial, and temporal) PE, CC-
GMLP, and MHAP, and varies one component of in-
terest. The parameter counts for different variants
are averaged across the datasets and noted in the cor-
responding figure caption. The frozen parameters of
MOMENT are not included in our parameter counts.
We considered tuning a subset of MOMENT’s param-
eters alongside the adapter, for example using pop-
ular low rank adaptation (LoRA) introduced by Hu
et al. (2022), but did not observe performance im-
provements meriting the additional complexity (see
Figure 14).

In the positional encoding ablation study, we per-
form experiments with various PE options. These
options are no PE, token PE (N), spatial and tem-
poral PE (ST), or token, spatial, and temporal PE
(NST). The token mixing ablation experiment varies
the token mixing component. We compare the ba-
sic GMLP (B-GMLP), CC-GMLP, basic transformer
(B-TF), and CC-TF. The token aggregation ablation
experiment compares mean pooling and MHAP. All
ablations compare performance on the test split. For
brevity, we mainly compare AUROC and Cohen’s
Kappa Score, however, detailed performance metrics
are found in Tables 2, 3, 6 and 7.

Each ablation experiment uses the same 3 ran-
domly generated seeds. These seeds ensure that the
experiments are reproducible and that all variabil-
ity is consistent across experiments. The mean and
standard deviation across the seeds is calculated for
each performance metric and used as our reporting

statistics. Details about our hyperparameters are dis-
cussed in Appendix B.

A full evaluation of STAMP is run using 5 ran-
domly generated seeds (including the 3 used in the
ablation studies). We made efforts to ensure that
our evaluation methodology mirrored what is done by
Wang et al. (2025) so that the performance between
different methods can be fairly compared. This in-
cludes ensuring that our training, validation, and test
splits matched and that our performance evaluation
was calculated the same.

To demonstrate that the success of STAMP is
not contingent on using MOMENT Large, we fur-
ther evaluated performance when using embeddings
from other TSFMs, specifically MOMENT Small
and Base, Chronos Large (Ansari et al., 2024), and
TSPulse (Ekambaram et al., 2025). These evalua-
tions followed the same 5 seed regiment as previously
described.

5. Results and Analysis
5.1. Positional Encoding Ablation

BN NoPE MMM PE-N W PE-ST WM PE-NST

SHU-MI
(2-Class, 11,988 Samples)
AUROC

PhysioNet-MI
(4-Class, 9,837 Samples)
Cohen's Kappa

} MentalArithmetic
(2-Class, 1,707 Samples)

AUROC

BCIC-IV-2a
(4-Class, 5,088 Samples)

Cohen's Kappa

| i

Figure 2: Performance comparison between four po-
sitional encoding options: No PE (0.71M),
PE-N (0.73M), PE-ST (0.72M), and PE-
NST (0.74M). The value in parentheses in-
dicates the average number of trainable pa-
rameters across the 4 datasets.

Through our ablation of positional encoding (see
Figure 2), we find that PE-NST yields the best per-
formance in 3 of the 4 datasets. For the SHU-MI
dataset, token-wise positional encoding outperformed
the other options. In general, the more positional
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encoding used, the better the performance. The ex-
clusion of positional encoding consistently results in
the worst performance across each dataset, indicating
that positional encoding is essential to the adapter.

Our speculation is that positional encoding is par-
ticularly important for EEG data due to extensive
spatiotemporal correlations and dependencies. PEs
make both spatial and temporal locations associated
with embeddings more explicit to the adapter. Com-
petitive performance of PE-N and boosts in perfor-
mance from PE-NST suggest that the adapter even
benefits from the additional parameters and flexibil-
ity needed to encode token-wise (vs. only axis-wise)
relationships.

5.2. Token Mixing Ablation

BN B-GMLP mEM CC-GMLP W BTF WM CCTF
PhysioNet-MI
(4-Class, 9,837 Samples)

Cohen's Kappa

SHU-MI
(2-Class, 11,988 Samples)

AUROC
0.84 0.51

MentalArithmetic
(2-Class, 1,707 Samples)

AUROC
0.84 0.51

0.72 0.38 i
0.60 0.25

Figure 3: Performance comparison between four
different token mixer options: B-GMLP
(0.79M), CC-GMLP (0.74M), B-TF
(1.25M), and CC-TF (0.99M). The value
in parentheses indicates the average num-
ber of trainable parameters across the 4
datasets.

BCIC-IV-2a
(4-Class, 5,088 Samples)
Cohen's Kappa

In our ablation study comparing token mixing
strategies, we see that CC-GMLP performs strongly
across each dataset. Across all four datasets, the
GMLP architecture performs better than its trans-
former counterpart.

5.3. Token Aggregation Ablation

Our last ablation study indicates that the choice of
token aggregation strategy is less impactful than the

N Mean Pooling W MHAP

SHU-MI
(2-Class, 11,988 Samples)
AUROC

PhysioNet-MI
(4-Class, 9,837 Samples)
Cohen's Kappa

063 | I | 0.3

MentalArithmetic
(2-Class, 1,707 Samples)
AUROC

BCIC-IV-2a
(4-Class, 5,088 Samples)

Cohen's Kappa
0.73 0.43 -
0.63 0.35

Figure 4: Performance comparison between token
aggregation strategies: mean pooling
(0.70M) and MHAP (0.74M). The value
in parentheses indicates the average num-
ber of trainable parameters across the 4
datasets.

positional encoding and token mixer choices. Specifi-
cally, performance between mean pooling and MHAP
on every dataset except BCIC-IV-2a is similar. How-
ever, MHAP demonstrates a significant performance
boost on the BCIC-IV-2a dataset, indicating that
MHAP may be beneficial on other datasets. In Fig-
ure 13, we show that MHAP greatly outperforms
mean pooling when a token mixing component is not
used. We suspect that this performance difference
is diminished when token mixing is included because
MHAP and token mixing both implicitly model cross-
token relationships. Since our CC-GMLP is able to
capture cross-token relationships, mean pooling usu-
ally still performs competitively.

5.4. Full Evaluation

Figure 5 presents a comparison between STAMP,
EEGFMs and non-foundation model EEG baselines.
We see that STAMP yields similar or better perfor-
mance compared to CBraMod and LaBraM across all
datasets, while strictly outperforming all other meth-
ods. In Tables 2 and 3, the explicit performance met-
rics for each of the 4 datasets are shown. STAMP
uses an average of 0.74M parameters while CBraMod
uses an average of 29M and LaBraM uses 5.8M. De-
spite the model size difference, STAMP frequently
outperforms both fully supervised model baselines
and achieves overlapping or better performance with



STAMP: SPATIAL-TEMPORAL ADAPTER WITH MULTI-HEAD POOLING

Table 2: Performance comparison of different methods on SHU-MI and PhysioNet-MI datasets.

ST-Transformer

3.56M

0.5992 £ 0.0206

0.6394 £ 0.0122

0.6431 £ 0.0111

0.6035 £ 0.0081

0.4712 £ 0.0199

SHU-MI (2-Class, 11,988 Samples) PhysioNet-MI (4-Class, 9,837 Samples)
Methods #Params | Balanced Acc. AUC-PR AUROC Balanced Acc. Cohen’s Kappa Weighted F1
EEG Conformer 0.55M | 0.5900 £+ 0.0107  0.6370 £ 0.0093 0.6351 £+ 0.0101 | 0.6049 £+ 0.0104  0.4736 £ 0.0171  0.6062 = 0.0095

0.6053 £ 0.0075

LaBraM
CBraMod

5.8M
25.5M/46M

0.6166 £ 0.0192
0.6043 £ 0.0069

0.6761 £ 0.0083
0.6729 £ 0.0172

0.6604 £ 0.0091
0.6572 £ 0.0191

0.6173 £ 0.0122
0.6305 £ 0.0017

0.4912 £ 0.0192
0.5072 £ 0.0023

0.6177 £ 0.0141
0.6313 £ 0.0016

STAMP

0.73M/0.78M

0.5983 + 0.0096

0.6630 £ 0.0128

0.6603 £ 0.0109

0.6098 £ 0.0084

0.4797 £ 0.0112

0.6111 £ 0.0102

Table 3: Performance comparison of different methods on MentalArithmetic and BCIC-IV-2a datasets.

MentalArithmetic (2-Class, 1,707 Samples)

BCIC-IV-2a (4-Class, 5,088 Samples)

AUROC

Balanced Acc.

Cohen’s Kappa

‘Weighted F1

0.7424 £ 0.0128
0.7132 £ 0.0174

0.4696 £+ 0.0106
0.4575 £+ 0.0145

0.2924 £ 0.0141
0.2733 £ 0.0198

0.4533 £ 0.0128
0.4471 £ 0.0142

0.7721 £ 0.0093
0.7487 £ 0.0502

0.4869 £ 0.0085
0.4092 £ 0.0221

0.3159 £ 0.0154
0.2123 £ 0.0294

0.4758 £ 0.0103
0.3417 £ 0.0359

0.8114 £ 0.0206

0.5564 £ 0.0212

0.4086 £ 0.0282

0.5512 £ 0.0242

the EEGFMs.

Further analysis demonstrated that

Methods #Params | Balanced Acc. AUC-PR

EEG Conformer 0.55M | 0.6805 + 0.0123  0.5829 =+ 0.0134
ST-Transformer 3.5M | 0.6631 £+ 0.0173  0.5672 £ 0.0259
LaBraM 5.8M | 0.6909 £ 0.0125 0.5999 =+ 0.0155
CBraMod 25.1M/19.1M | 0.6160 =+ 0.0387  0.5272 £ 0.0769
STAMP 0.72M/0.72M | 0.6438 £+ 0.0728  0.5889 =+ 0.0525
I STAMP I CBraMod s LaBraM B ST-Transformer I EEG Conformer

SHU-MI PhysioNet-MI

(2-Class, 11,988 Samples)
AUROC

(4-Class, 9,837 Samples)
Cohen's Kappa

oo D | o1e

MentalArithmetic
(2-Class, 1,707 Samples)
AUROC

BCIC-IV-2a
(4-Class, 5,088 Samples)
Cohen's Kappa

Figure 5: Performance comparison between the full
evaluation of 5 methods: STAMP (0.74M),
CBraMod (29M), LaBraM (5.8M), ST-
Transformer (3.5M), and EEG Conformer
(0.55M). The value in parentheses indicates
the average number of trainable parame-
ters across the 4 datasets.

STAMP can often provide the same level of perfor-
mance with even fewer parameters (see Appendix D).

We also provide a performance comparison be-
tween each method on 4 additional datasets (see Fig-
ure 16 and Tables 6 and 7). STAMP continues to
show strong performance, especially on TUEV and
Mumtaz2016, where it matches each EEGFM and
outperforms non-foundation model EEG baselines.
Mumtaz2016 is generally an easier to model dataset,
given all models yield near perfect classification, so
that result is less significant. However, the result
for TUEV points to MOMENT and STAMP’s abil-
ity to extract and classify clinically-relevant EEG
events. For SEED-V and FACED, STAMP yields in-
ferior performance compared to the other methods.
Both of those datasets are emotion recognition tasks,
which implies that MOMENT may not be able to ex-
tract features relevant to the task of emotion recogni-
tion, resulting in poor downstream performance with
STAMP. Due to this finding, we evaluated STAMP on
these two emotion recognition datasets using embed-
dings from Chronos Large. We found that Chronos
provided a small performance boost, yet performance
on FACED was still lackluster (see Appendix F).

5.5. TSFM Comparison

The comparison of TSFMs demonstrates that
STAMP can achieve strong results when used on top
of varying TSFMs. Figure 6 shows that for SHU-MI
and PhysioNet-MI, each TSFM yields similar per-
formance. Interestingly, MOMENT Small performs
just as well as MOMENT Large on three out of the
four datasets, while using only ~ 10% of the pa-



STAMP: SPATIAL-TEMPORAL ADAPTER WITH MULTI-HEAD POOLING

rameters, significantly reducing embedding genera-
tion time. T'SPulse performs worse for the Mental Ar-
ithmetic and BCIC-IV-2a datasets, however, its per-
formance is exceptional for the other datasets given
its small size. Also of note, we found that aggregating
output embeddings from Chronos using mean pool-
ing, instead of only using the end of sequence (EOS)
embedding, provided stronger downstream perfor-
mance with STAMP (see Appendix E).

Each variant of MOMENT pretrains on diverse
time series data, a very small portion of which is
EEG data. However, to our knowledge, TSPulse
and Chronos do not include any EEG data in their
pretraining. Thus, these results demonstrate that
TSFMs can extract meaningful features from EEG
signals, regardless of whether the TSFM was pre-
trained on any EEG. We are optimistic that per-
formance achievable with STAMP will improve as
TSFMs continue to advance.

B TSPulse
N MOMENT Small
s MOMENT Base

I MOMENT Large
W Chronos Large

SHU-MI
(2-Class, 11,988 Samples)

AUROC
0.85 0.51

MentalArithmetic
(2-Class, 1,707 Samples)

AUROC
0.85 0.51

0.63 0.25

Figure 6: Performance comparison between using the
following TSFMs with STAMP: TSPulse
(IM, 0.63M), MOMENT Small (40M,
0.67M), MOMENT Base (125M, 0.7M),
MOMENT Large (385M, 0.74M), and
Chronos Large (710M, 0.74M). The first
value in the parentheses indicates the size
of the TSFM and the second value denotes
the average number of trainable parame-
ters in STAMP across the 4 datasets.

PhysioNet-MI
(4-Class, 9,837 Samples)
Cohen's Kappa

BCIC-IV-2a
(4-Class, 5,088 Samples)
Cohen's Kappa

6. Conclusion and Future Work

We present the first spatial-temporal adapter,
STAMP, to be used on top of TSFMs for the mod-

eling of EEG data. We demonstrate that the adapter
works with multiple TSFMs, performing comparably
to EEGFMs with a fraction of the trainable param-
eters. Throughout the development of the adapter,
we learned valuable lessons on employing foundation
models for EEG modeling.

Using the TSFM MOMENT out of the box, with
only the addition of mean pooling, resulted in near-
random performance (see Figure 12). As shown in our
ablations, both positional encodings and a token mix-
ing strategy were necessary for generating good pre-
dictions with MOMENT embeddings. Although our
more advanced token aggregation strategy MHAP
performed mostly similarly to mean pooling, better
results on the BCIC-IV-2a dataset suggest that our
adapter may have more robust performance across
datasets when using learnable aggregation schemes.

In summary, without additional modeling to cap-
ture relationships between channels and the rela-
tive importance of different time points, TSFMs may
seem to underperform compared to EEGFMs. How-
ever, relatively few adaptations and additional train-
able parameters are needed to achieve results com-
petitive with what can be achieved with large-scale
EEG pretraining and fine-tuning as in Wang et al.
(2025). While there are added computational re-
sources needed to generate the initial embeddings for
downstream use with STAMP, this can be done up-
front and in parallel.

Further exploration of adapter performance using
other TSFMs in conjunction with TSFM fine-tuning
would be of interest (we evaluate only one LoRA con-
figuration), particularly on datasets where STAMP
struggled. However, we also found it encouraging
that performance benefits were minimal: MOMENT
is able to capture representations of EEG data suffi-
cient for various downstream tasks even without ad-
justment. Other future work of interest could explore
STAMP from an interpretability perspective, for ex-
ample by examining the relative contributions of dif-
ferent tokens to final predictions. Exploring strate-
gies for explicitly incorporating geometric or topo-
graphical relationships between electrodes is also a
potentially interesting avenue. STAMP in its current
form has the advantage of being relatively agnostic to
the specifics of EEG data, and so evaluating perfor-
mance on additional modeling tasks requiring multi-
variate time-series (e.g. vital signs, imaging, medica-
tion dosages) would also be of interest.
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Appendix A. Datasets

There are a total of 8 datasets that we use for evalu-
ation. Each dataset was preprocessed using the pub-
licly available code from Wang et al. (2025). The pre-
processing resamples the samples to 200Hz and each
temporal channel is a duration of 1 second, resulting
in patches of length 200. We refer to EEG channels as
spatial channels and the 1 second durations as tem-
poral channels. The train, validation, and test splits
are the same as Wang et al. (2025). In the following,
we provide a brief overview of each dataset.

SHU-MI: An EEG dataset containing recordings
from a motor imagery task. The task consisted of
sitting in a chair in front of an LCD monitor and an
image denoting a right-handed or left-handed move-
ment (2 classes) was presented on screen. When the
movement was shown, the subject repeatedly imag-
ined the movement. The original dataset description
and methodology is provided by Ma et al. (2022).

PhysioNet-MI: An EEG motor imagery dataset.
The task involved a target appearing on a screen and
the subject performing one of 4 actions, which serves
as our classes: opening and closing a fist, imagining
opening and closing a fist, opening and closing both
fists or both feet, imagining opening and closing both
fists or both feet. For the original dataset description,
see Schalk et al. (2004).

MentalArithmetic: An EEG cognitive dataset
involving the study of mental activity while perform-
ing a cognitively intensive task, mental arithmetic.
Subjects were asked to subtract a 2-digit number
from a 4-digit number. The EEG recordings before
the task are labeled as ”without mental stress” and
the recordings during the task are labeled as ”with
mental stress”, resulting in 2 classes. The original
dataset description can be found via Zyma et al.
(2019).

BCIC-IV-2a An EEG motor imagery dataset
containing 4 movements (4 classes). Each subject sat
in front of a screen and a visual cue displayed on the
screen indicating which movement to perform. The
movements involved one of 4 body parts: left hand,
right hand, both feet, and tongue. A detailed de-
scription of the dataset is written by Brunner et al.
(2008).

SEED-V: An EEG emotion recognition dataset
focusing on the emotional response of subjects af-
ter viewing movie clips intended to provoke a spe-
cific emotion. There are 5 classes of emotions in the
dataset: happy, sad, neutral, fear, and disgust. Li
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et al. (2019) describes the dataset collection and pre-
processing.

Mumtaz2016: An EEG mental health dataset
concentrating on the identification of major depres-
sive disorder based on EEG. The EEG recordings
were performed on normal control patients and pa-
tients with major depressive disorder, resulting in 2
classes. Only limited details about the dataset are
available (Mumtaz, 2016).

TUEV: An EEG event type dataset containing
EEG signals belonging to one of 6 classes: spike and
sharp wave (SPSW), generalized periodic epilepti-
form discharges (GPED), periodic lateralized epilep-
tiform discharges (PLED), eye movement (EYEM),
artifact (ARTF), and background (BCKG). To note,
CBraMod reports using 112,491 samples. Despite
using their preprocessing code, our preprocessed
dataset had a total of 113,353 samples. For a de-
tailed description of the dataset, refer to Harati et al.
(2015); Obeid and Picone (2016).

FACED: A 9-class EEG emotion recognition
dataset. The subjects watched 28 video clips in-
tended to elicit a specific emotion. The emotions
included amusement, inspiration, joy, tenderness,
anger, fear, disgust, sadness, and neutral emotion.
Chen et al. (2023) gives a detailed summary of the
collection and preprocessing of the dataset.

Appendix B. Hyperparameters

All STAMP experiments (excluding those with
LoRA) used the hyperparameters listed in Table 5.

All of our experiments used L 8 and
Feedforward Dimension = 256, where L denotes the
number of blocks in the case of GMLP and both the
number of attention heads and layers in transform-
ers. Note the feedforward dimension corresponds to
h in our CC-GMLP formulation. In all experiments,
MHAP used 4 heads and 8 query vectors per head.
The best epoch during training was chosen based on
the validation monitor metric and the model weights
at that checkpoint were used for evaluation on the
test split.

When LoRA was part of an experiment, alpha was
set to 32, rank to 16, and its dropout rate to 0.05.
For the LoRA experiments, we were forced to use
a smaller batch size (16) due to GPU memory limi-
tations. Additionally, we used 15 epochs, an initial
learning rate of le — 4, and a max learning rate of
le—3. All other hyperparameters were kept the same.
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Table 4: Dataset characteristics.

Dataset Classes Cshr;frllzlls ’gehr;lﬁzzisl Samples Training Validation Test
SHU-MI 2 32 4 11,988 7,210 2,431 2,347
Mental Arithmetic 2 20 5 1,707 1,343 172 192

BCIC-IV-2a 4 22 4 5,088 2,784 1,152 1,152
PhysioNet-MI 4 64 4 9,837 6,300 1,734 1,803
Mumtaz2016 2 19 5 7,143 4,891 1,041 1,211
SEED-V 5 62 1 117,744 34,432 42,960 40,352
TUEV 6 16 5 113,353 68,445 15,487 29,421
FACED 9 32 10 10,332 6,720 1,680 1,932

Table 5: Hyperparameters used in our experiments.

Hyperparameter Value
Learning rate scheduler OneCycle
Initial learning rate de-b
Max learning rate 0.0003
Batch size 64
Optimizer AdamW
Epsilon le-8
Weight decay 0.05
Dropout rate 0.3
Epochs 50

D 128
Normalization Instance

When reproducing the CBraMod results, we used
the hyperparameters mentioned by Wang et al.
(2025) and if any were not mentioned, we set them
to the default value used in their code repository?.

The main seed that we used was 42 and from that
we randomly generated seeds 654, 114, 25, 759, and
281. The first three seeds were used for ablation ex-
periments and hyperparameter tuning. All five seeds
were used for our full evaluation. As a result of our
fixed seeds, each experiment is fully reproducible.

Appendix C. Hyperparameter Tuning

During the development of the adapter, many hyper-
parameters were searched over. Our final hyperpa-
rameters were selected based on performance on the
validation splits of the four main datasets. We found
that there was not a consistent performance trend
between 0.1, 0.3, and 0.5 dropout rate. After deter-
mining CC-GMLP yielded stronger performance than
the other token mixing alternatives, we searched over

2. https://github.com/wjq-learning/CBraMod
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combinations of different D € {128,256,512,1024}
and CC-GMLP hyperparameters: L € {2,4,8} and
Feedforward Dimension € {256,512}. This search
demonstrated that D = 128, L = 8 and Feedfor-
ward Dimension= 256 provided the best performance
to parameter count ratio; increasing the adapter size
did not provide a consistent change in performance.

Appendix D. Size Comparison

One hyperparameter that has a high impact on the
size of STAMP is D, which is the dimension to which
the initial TSFM embeddings are projected. Dur-
ing the development of STAMP, we found that using
D = 128 yielded consistently strong results, while
keeping the number of parameters low. However, we
additionally observe that STAMP can often perform
strongly at lower D values, even as low as D = 8.
Figure 7 shows how performance varies as D changes
and the effect of D on the parameter count. For each
dataset, except BCIC-IV-2a, STAMP with D = 8
achieves similar performance as D = 128 while using
on average ~ 91% less parameters. This finding high-
lights that, depending on the task, STAMP can be
made further lightweight while maintaining impres-
sive performance. To note, each of these experiments
used the previously mentioned 5 seeds and all other
hyperparameters of STAMP were fixed.

Appendix E. Chronos Embedding
Aggregation

Chronos was primarily built for forecasting and has
not been widely adapted for classification. However,
embeddings can be extracted from Chronos and used
for downstream tasks. When Chronos embeds a time
series x with length 200, the output is e € R?01x1024
where 1024 is the embedding dimension for Chronos
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Figure 7: Performance comparison of STAMP with

varying D values.

Bl Chronos Large - Mean Pooling

SHU-MI
(2-Class, 11,988 Samples)
AUROC

I Chronos Large - EOS

PhysioNet-MI
(4-Class, 9,837 Samples)
Cohen's Kappa

MentalArithmetic
(2-Class, 1,707 Samples)
AUROC

BCIC-IV-2a
(4-Class, 5,088 Samples)

Cohen's Kappa

_

Figure 8: Performance comparison of STAMP when
using embeddings from Chronos Large
with only the EOS embedding versus an
embedding from mean pooling.
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Large. The first 200 embeddings correspond to the
length of the time series and the last embedding cor-
responds to an EOS token. For use with STAMP, we
reduced these embeddings to a single representative
embedding. We tested two aggregation methods: 1)
mean pooling across all 200 embeddings and 2) us-
ing only the EOS embedding. Figure 8 shows that
using an embedding from mean pooling greatly out-
performs only using the EOS embedding. Notably,
only the 3 previously mentioned seeds were used for
this comparison.

Appendix F. Emotion Recognition
Results

m MOMENT + STAMP
B Chronos + STAMP
s CBraMod

s LaBraM
I sT-Transformer
W EEG Conformer

SEED-V
(5-Class, 117,744 Samples)

Cohen's Kappa

FACED
(9-Class, 10,332 Samples)

Cohen's Kappa

0.31

Figure 9: Performance comparison of baselines, MO-
MENT embeddings with STAMP, and
Chronos Large embeddings with STAMP
on the two emotion recognition datasets:
SEED-V and FACED.

To further analyze the reason that STAMP
performs poorly for the two emotion recognition
datasets, SEED-V and FACED, we ran an addi-
tional STAMP experiment using embeddings from
Chronos Large. The previously mentioned 5 seeds
were used for this experiment. In Figure 9, we see
that Chronos + STAMP performs slightly better than
MOMENT + STAMP. With Chronos embeddings,
STAMP is able to match the performance of the
EEGFM baselines on SEED-V, however, the perfor-
mance on FACED is still poor. Given the compara-
tively worse performance of both TSFM approaches
on FACED, we suspect that current TSFMs may not
be able to extract features necessary for distinguish-
ing between the relatively high number of fine-grained
classes in FACED.
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Appendix G. Temporal Channel
Selection Comparison

H 1 Temporal Channel
B 2 Temporal Channels
B 3 Temporal Channels

Bl 4 Temporal Channels
I 5 Temporal Channels

MentalArithmetic
(2-Class, 1,707 Samples)

AUROC

Mumtaz2016
(2-Class, 7,143 Samples)

AUROC

Figure 10: Performance comparison of STAMP using
varying numbers of temporal channels.

To investigate how the availability of temporal
channels affects performance, we performed STAMP
experiments using the first ¢ temporal channels,
where t € {1,2,3,4,5}. In Figure 10, we see that
performance for MentalArithmetic is similar for all
channel selections except the first temporal channel.
For Mumtaz2016, temporal channel availability did
not greatly affect performance.

Appendix H. STAMP vs. EEG

Conformer

BN STAMP with D=96 W EEG Conformer

SHU-MI
(2-Class, 11,988 Samples)
AUROC

PhysioNet-MI
(4-Class, 9,837 Samples)
Cohen's Kappa

i |

MentalArithmetic
(2-Class, 1,707 Samples)
AUROC

BCIC-IV-2a
(4-Class, 5,088 Samples)
Cohen's Kappa

0.38

.

Figure 11: Performance comparison of STAMP using
D = 96 versus EEG Conformer. Both
methods have ~ 0.55M trainable param-
eters.
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STAMP provides superior performance compared
to EEG Conformer for nearly all datasets and met-
rics evaluated. One may argue that this is due to
increased capacity in STAMP and that EEG Con-
former is a more efficient method for EEG modeling.
In order to demonstrate that this is not the case, we
evaluated STAMP using D = 96 which results in
0.55M parameters matching the parameter count of
EEG Conformer. In Figure 11, we see that STAMP
outperforms EEG Conformer on 3 of the 4 datasets.
As demonstrated by Appendix D, STAMP can use
even fewer parameters and still yield similar perfor-
mance.

~
~

Appendix I. Additional Results

N MOMENT + Mean Pooling . STAMP

PhysioNet-MI
(4-Class, 9,837 Samples)
Cohen's Kappa

SHU-MI
(2-Class, 11,988 Samples)
AUROC

0.84

—_

0.51

MentalArithmetic
(2-Class, 1,707 Samples)
AUROC

BCIC-IV-2a
(4-Class, 5,088 Samples)
Cohen's Kappa

0.51

Figure 12: Performance comparison between MO-
MENT with mean pooling (0.04M) versus
using MOMENT with STAMP (0.74M).
The value in parentheses indicates the
average number of trainable parameters
across the 4 datasets.

The most naive baseline involving MOMENT is to
use only mean pooling on the embeddings. Figure 12
demonstrates that this naive approach does not learn
to model the EEG data and instead results in near-
random performance. We see that STAMP provides a
significant performance boost compared to this base-
line.

As demonstrated by Figure 13, PE-NST + mean
pooling results in near-random performance without
token mixing. However, PE-NST + MHAP is still
able to perform reasonably without token mixing.
When CC-GMLP is added, further improvement in
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W PE-NST + Mean Pooling ~ WM PE-NST + MHAP W STAMP (PE-NST + CC-GMLP + MHAP)

SHU-MI PhysioNet-MI
(2-Class, 11,988 Samples) (4-Class, 9,837 Samples)
AUROC Cohen's Kappa

0.62 . 025
0.40 .00
MentalArithmetic BCIC-IV-2a
(2-Class, 1,707 Samples) (4-Class, 5,088 Samples)
AUROC Cohen's Kappa

Figure 13: Performance comparison between three
variants of STAMP: PE-NST + Mean
Pooling, PE-NST + MHAP, PE-NST +
CC-GMLP + MHAP.

performance is provided. This comparison demon-
strates that the adapter requires some form of rela-
tionship modeling in the form of either token mixing
or MHAP.

Bl STAMP Finetuning B MOMENT + STAMP Finetuning

SHU-MI PhysioNet-MI
(2-Class, 11,988 Samples) (4-Class, 9,837 Samples)
AUROC Cohen's Kappa

0.84 0.51

0.74 0.45
MentalArithmetic BCIC-IV-2a
(2-Class, 1,707 Samples) (4-Class, 5,088 Samples)
AUROC Cohen's Kappa
0.84 0.51

0.39 _

Figure 14: Performance comparison between finetun-
ing MOMENT using LoRA and STAMP
(2.3M) versus only finetuning STAMP
(0.74M). The value in parentheses indi-
cates the average number of trainable pa-
rameters across the 4 datasets.

Figure 14 highlights that LoRA does not provide a
significant performance increase and the boost that
it does provide does not match the additional com-
putational complexity required for fine-tuning. How-
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ever, we only tested a single configuration of LoRA,
so other configurations may provide better results.
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Il STAMP I CBraMod I LaBraM Bl ST-Transformer @@ EEG Conformer

SHU-MI (2-Class, 11,988 Samples) PhysioNet-MI (4-Class, 9,837 Samples)
Balanced Accuracy AUC-PR AUROC Balanced Accuracy Cohen's Kappa Weighted F1
74 0.71 0.85 0.74 0.53 0.65

0.55 A 0.57 0.73 0.55 - 0.35 0.47 A

0.37 - 0.43 - 0.60 - 0.37 - 0.16 - 0.29 -
MentalArithmetic (2-Class, 1,707 Samples) BCIC-IV-2a (4-Class, 5,088 Samples)
Balanced Accuracy AUC-PR AUROC Balanced Accuracy Cohen's Kappa Weighted F1
0.74 0.71 0.85 0.74 0.53 0.65

0.55 4 0.57 4 0.73 4 0.55 1 0.35 1 0.47 4

0.37 - 0.43 - 0.60 - 0.37 - 0.16 - 0.29 -

Figure 15: Performance comparison (across all metrics) between the full evaluation of 5 methods: STAMP,
CBraMod, LaBraM, ST-Transformer, and EEG Conformer on SHU-MI, PhysioNet-MI, Menta-
lArithmetic, and BCIC-IV-2a.

I STAMP I CBraMod I LaBraM Bl ST-Transformer [ EEG Conformer

TUEV (6-Class, 113,353 Samples) Mumtaz2016 (2-Class, 7,143 Samples)
Balanced Accuracy Cohen's Kappa Weighted F1 Balanced Accuracy AUC-PR AUROC
97 0.70 0.86 0.97 1.00 1.00
) ) ) ) ) ﬁ ) ﬂ
0.28 - 0.08 - 0.25 0.28 - 0.93 - 0.93 -
SEED-V (5-Class, 117,744 Samples) FACED (9-Class, 10,332 Samples)

Balanced Accuracy Cohen's Kappa Weighted F1 Balanced Accuracy Cohen's Kappa Weighted F1

0.97 0.70 0.86 0.97 0.70 0.86

0.62 4 0.39 4 0.55 4 0.62 4

Figure 16: Performance comparison (across all metrics) between the full evaluation of 5 methods: STAMP,
CBraMod, LaBraM, ST-Transformer, and EEG Conformer on TUEV, Mumtaz2016, SEED-V,
and FACED.

5
;
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Table 6: Performance comparison of different methods on TUEV and Mumtaz2016 datasets.

Methods

#Params

TUEV (6-Class, 113,353 Samples)

Mumtaz2016 (2-Class, 7,143 Samples)

Balanced Acc.

Cohen’s Kappa

Weighted F1

Balanced Acc.

AUC-PR

AUROC

EEG Conformer
ST-Transformer

0.55M
3.56M

0.4074 £ 0.0164
0.3984 £ 0.0228

0.3967 £ 0.0195
0.3765 £ 0.0306

0.6983 £ 0.0152
0.6823 £ 0.0190

0.9308 £ 0.0117
0.9135 £ 0.0103

0.9684 £ 0.0105
0.9578 £ 0.0086

0.9702 £ 0.0101
0.9594 £ 0.0059

LaBraM
CBraMod

5.8M
21.1M/24.1M

0.6409 £ 0.0065
0.6076 £ 0.0178

0.6637 £ 0.0093
0.6177 £ 0.0391

0.8312 +£ 0.0052
0.8002 £ 0.0180

0.9409 £ 0.0079
0.8937 £ 0.0026

0.9798 £ 0.0093
0.9785 £ 0.0088

0.9782 £ 0.0057
0.9769 £ 0.0103

STAMP

0.72M/0.72M

0.5640 £ 0.0718

0.6622 £ 0.0193

0.8182 £ 0.0105

0.9172 £ 0.0100

0.9814 £ 0.0014

0.9773 £ 0.0020

Table 7: Performance comparison of different methods on SEED-V and FACED datasets.

Methods

SEED-V (5-Class, 117,744 Samples)

FACED (9-Class, 10,332 Samples)

#Params

Balanced Acc.

Cohen’s Kappa

‘Weighted F1

Balanced Acc.

Cohen’s Kappa

Weighted F1

EEG Conformer
ST-Transformer

0.55M
3.56M

0.3537 £ 0.0112
0.3052 + 0.0072

0.1772 + 0.0174
0.1083 + 0.0121

0.3487 + 0.0136
0.2833 + 0.0105

0.4559 + 0.0125
0.4810 + 0.0079

0.3858 + 0.0186
0.4137 £ 0.0133

0.4514 £ 0.0107
0.4795 + 0.0096

LaBraM
CBraMod

5.8M
15M/133M

0.3976 £ 0.0138
0.4006 £ 0.0059

0.2386 & 0.0209
0.2591 £ 0.0074

0.3974 + 0.0111
0.4101 % 0.0065

0.5273 £+ 0.0107
0.5649 % 0.0077

0.4698 £ 0.0188
0.5081 £ 0.0084

0.5288 £ 0.0102
0.5701 £ 0.0076

STAMP

0.75M/0.76M

0.3670 £ 0.0060

0.2077 + 0.0076

0.3673 + 0.0075

0.3606 & 0.0061

0.2783 + 0.0061

0.3578 £ 0.0042
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