
Supplementary Materials

We provide the supplements of “Contextual Gaussian Process Bandits with Neural Networks” here.
Specifically, we discuss alternative acquisition functions that can be incorporated with the neural
network-accompanied Gaussian process (NN-AGP) model in Section 6. In Section 7, we discuss
the bandit algorithm with NN-AGP, where the neural network approximation error is considered.
In Section 8, we provide the detailed proof of theorems. We provide the experimental details and
include additional numerical experiments in Section 9. Last we discuss the limitations of NN-AGP
and propose the potential approaches to addressing the limitations for future work, including sparse
NN-AGP for alleviating computational burdens and transfer learning with NN-AGP to address
cold-start issue; see Section 10.

6 Acquisition functions

In the main text, we employ the upper confidence bound function as the acquisition function in the
contextual Bayesian optimization approach. Here, we provide two alternative choices: Thompson
sampling (TS) and knowledge gradient (KG). We describe the two procedures of the contextual GP
bandit problems with NN-AGP, where the acquisition function is replaced by TS or KG. Both of
them utilize the posterior distribution of the NN-AGP model

f (x;θt) | Dt−1 ∼ N
(
µt−1 (x;θt) , σ

2
t−1 (x;θt)

)
(8)

with
µt−1 (x;θt) =K̃⊤

(x;θt)

[
K̃Dt−1

+ σ2
ϵ It−1

]−1

yt−1,

σ2
t−1 (x;θt) =g(θt)

⊤K (x,x) g(θt)− K̃⊤
(x;θt)

[
K̃Dt−1

+ σ2
ϵ It−1

]−1

K̃(x;θt).

6.1 NN-AGP-TS

Thompson sampling (TS) is a heuristic for choosing actions in the multi-armed bandit problem.
It chooses the action that maximizes the expected reward with respect to a random belief that is
drawn for a posterior distribution. Besides the multi-armed bandit problems, TS has also achieved
both theoretical and practical success in BO and Gaussian process regression. For more detailed
discussions on TS, we refer to [87, 88].

Specifically, we propose a neural network-accompanied Gaussian process Thompson sampling (NN-
AGP-TS) approach to address contextual GP bandits. The approach works as follows. In each
iteration, NN-AGP-TS first fits an NN-AGP model with the historic data. Then, given the current
contextual variable, a realization of the Gaussian process with respect to x ∈ X is sampled from the
posterior distribution conditional on the historic data1. That is,

f̂ (x;θt) ∼ N
(
µt−1 (x;θt) , σ

2
t−1 (x;θt)

)
,x ∈ X .

The realization f̂ (x;θt) is a deterministic function and adopts a closed-form expression with respect
to x. Thus, efficient optimization approaches (e.g. global heuristic search) can be applied to find the
next point to sample xt by solving the optimization problem

xt = argmax
x∈X

f̂ (x;θt) .

The complete procedure of NN-AGP-TS is summarized as in Algorithm 2.

Different from the upper confidence bound (UCB)-based algorithms, the TS method considers a
Bayesian cumulative regret

R̃T =

T∑
t=1

E
[
sup
x′∈X

f (x′,θt)− f (xt,θt)

]
,

1An efficient implementation of sampling Gaussian processes given the mean and covariance functions can
be found in https://www.r-bloggers.com/2019/07/sampling-paths-from-a-gaussian-process/.
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Algorithm 2 NN-AGP-TS
Input: A prior of

(
W,Φ, σ2

ϵ

)
;

for t = 1, 2, . . . , T do
Observe the contextual variable θt;
Sample a realization f̂ (x;θt) ∼ N

(
µt−1 (x;θt) , σ

2
t−1 (x;θt)

)
,x ∈ X ;

Select xt = argmaxx∈X f̂ (x;θt);
Sample yt at (θt,xt);
Update

(
Ŵt, Φ̂t,

ˆσ2
ϵ;t

)
;

end for

where the expectation is taken over the prior distribution of f(x;θ). We provide the upper bound of
the cumulative regret for the NN-AGP-TS as a sanity check. For simplicity, we consider the scenario
when |X | is finite. For a more general setting when X is continuous, the strategy of discretization
that is adopted in the proof of Theorem 1 can be applied as well.
Theorem 3. Suppose that g(θ) is a known continuous mapping of θ ∈ Θ; p(x) is sampled from a
known MGP prior and the variance of the noise σ2

ϵ is known. In addition, |X | is finite and Θ is a
convex and compact set. The Bayesian cumulative regret of NN-AGP-TS is bounded by

R̃T ⩽ C + 2

√
CTγT

log
(
1 + Cσ−2

ϵ

) log( (T 2 + 1)|X |√
2π

)
,

where C =
((∑Q

q=1

∑m
l=1 a

2
l,q

)
+ 1
)
supθ∈Θ ∥g(θ)∥22 is a constant.

The proof is largely based on the methodology proposed in [87] (therefore we will not present here
considering the length of the supplements) and the upper bound of the posterior variance σ2

t (x;θt).
We postpone the discussion on the upper bound of posterior variance to Section 8, which is also used
in the proof of Theorem 1.

6.2 NN-AGP-KG

In this section, we present the procedure of the neural network-accompanied knowledge gradient
(NN-AGP-KG) approach, where the acquisition function employed in each iteration is contextual
knowledge gradient (C-KG). The C-KG function at time t is defined as

C-KGt (x;θt) = Eyt

[
µ∗
t (θt)− µ∗

t−1 (θt) | xt = x
]
, (9)

where µ∗
t−1 (θt) = maxx∈X µt−1 (x;θt) and µ∗

t (θt) = maxx∈X µt (x;θt). The difference between
µ∗
t−1 (θt) and µ∗

t (θt) is that, given the data-set Dt−1, µ∗
t−1 (θt) is deterministic, while µ∗

t (θt)
depends on yt and therefore is random. Thus, the C-KG function requires taking the expectation with
the unrevealed observation yt. As is the regular KG acquisition function, simulated samples of yt as in
(8) are required to approximate both the value of C-KGt (x;θt) and the gradient ∇x C-KGt (x;θt).

We present the procedure of selecting the decision variable xt in each iteration with the C-KG and the
NN-AGP model in Algorithm 3. For more detailed discussions on the knowledge gradient, including
the statistical properties, we refer to [50, 93].

At the end of this section, we note that some classical acquisition functions that are widely adopted
in Bayesian optimization might not be directly employed when the objective function involves
contextual variables. An example is the expected improvement (EI) acquisition function, which is
formulated as

EI(x) = E [max {f(x)− f∗, 0}] ,
where f∗ denotes the maximum values among the observations up to now, and the expectation is
taken with the posterior distribution of the GP model f conditional on the observed data. In other
words, f∗ serves as a so-called incumbent that guides how to select the next point. However, when the
objective function involves contextual variables, it is very likely that there are no observed data under
the current value of the contextual variable. Thus, we can not define an incumbent for the EI function
with the current contextual variable. A similar difficulty appears in the probability of improvement
(PI) acquisition function as well. The comparison between different acquisition functions with our
NN-AGP model will be contained in future work.
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Algorithm 3 Selection of xt based on C-KG
Input: Number of points for the multi-start global optimization approach R; Number of iterations
in the gradient descent for each starting point T; A rule to decide the step size αt;
for r = 1, 2, . . . ,R do

Select x(r)
0 uniformly at random from X ;

for t = 1, 2, . . . ,T do
Attain the stochastic gradient estimate of ∇x C-KGt

(
x
(r)
t ;θt

)
as in Algorithm 5, denoted

as G;
Decide the step size αt;
x
(r)
t = x

(r)
t−1 + αtG;

end for
Estimate C-KGt

(
x
(r)
T ;θt

)
as in Algorithm 4;

end for
Return xt = argmax

x
(r)
T

C-KGt

(
x
(r)
T ;θt

)
.

Algorithm 4 Estimation of C-KG
Input: The conditional mean µt−1 (x;θt) and variance σ2

t−1 (x;θt) as attained in (2);
Attain µ∗

t−1 (θt) = maxx∈X µt−1 (x;θt);
for j = 1, 2, . . . , J do

Sample yt ∼ N
(
µt−1 (x;θt) , σ

2
t−1 (x;θt)

)
;

Update µt (x
′;θt) ,x

′ ∈ X with Dt−1 ∪ {(θt,x, yt)};
Attain µ∗

t (θt) = maxx′∈X µt (x
′;θt);

∆(j) = µ∗
t (θt)− µ∗

t−1 (θt);
end for
Return C-KGt (x;θt) =

1
J

∑J
j=1 ∆

(j).

7 NN-AGP with neural network error

In the main text, we provide an NN-AGP-UCB algorithm in Section 3.2 and provide the upper
bound of the regrets in Theorem 1, where the error of approximating the mapping g(θ) using the
neural networks is not taken into consideration. In this section, we provide a detailed discussion on
incorporating the neural network approximation error into consideration. Specifically, we select the
MGP model p(x) in (4) as well. That is,

f(x;θ) =g(θ)⊤p(x)

=

Q∑
q=1

(
m∑
l=1

gl (θ) al,quq (x)

)
+

m∑
l=1

gl (θ) vl (x)

where uq’s and vl’s are independent scalar Gaussian processes with known kernel functions, and
al,q’s are also known in advance. We note that the prior knowledge of the Gaussian process model
is a regular assumption in Gaussian process bandits; see [68, 96]. Meanwhile, in terms of g(θ) =
(g1(θ), g2(θ), . . . , gm(θ))

⊤, we use

ĝt(θ) = (ĝ1;t(θ), ĝ2;t(θ), . . . , ĝm;t(θ))
⊤

as the approximation, where ĝt denotes the learned neural network in round t with the historical data
set Dt−1. Here, we select the rectified linear unit (ReLU) function as the activation function in the
neural networks and assume that each entry of the deterministic mapping g(θ) is an α-Hölder function.
That is, given a Hölder index α > 0, for any multi-index s ∈ Nd′

with |s| =
∑d′

i=1 si ≤ ⌊α⌋, the

derivative ∂sgl = ∂|s|gl

∂θ
s1
(1)

...∂θ
s
d′

(d′)
exists, where θ(i) denotes the i-th entry of θ. Meanwhile, for any s

satisfying |s| = ⌊α⌋, we have

sup
θ ̸=θ′

|∂sgl(θ)− ∂sgl (θ
′)|

∥θ − θ′∥α−⌊α⌋
2

<∞
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Algorithm 5 Estimation of ∇x C-KG

Input: The conditional mean µt−1 (x;θt) and variance σ2
t−1 (x;θt) as attained in (2);

Attain µ∗
t−1 (θt) = maxx∈X µt−1 (x;θt);

for i = 1, 2, . . . ,I do
Sample yt ∼ N

(
µt−1 (x;θt) , σ

2
t−1 (x;θt)

)
;

Update µt (x
′;θt) ,x

′ ∈ X with Dt−1 ∪ {(θt,x, yt)};
Attain x∗ = argmaxx′∈X µt (x

′;θt);
G(i) = ∇xµt (x;θt) |x=x∗ ;

end for
Return ∇x C-KGt (x;θt) =

1
I

∑I
i=1 G

(i).

for any θ,θ′ in the interior of Θ.

By the universal approximation theorem of neural networks [28], when the weight parameters are
properly chosen, the difference between ĝl;t(θ) and gl(θ) can be arbitrarily small (denoted by et)
when providing enough layers of neurons. Therefore, in our bandit algorithm, we iteratively reduce
the error bound et and enlarge the used neural network structure by adding more layers of nodes,
since more observations are observed. We note that, since the data (observations yt) come in stream,
it is challenging to pre-specify a fixed, precise and relatively small error bound when the data is
not sufficient at the beginning. Meanwhile, the training of the neural network may also suffer from
overparameterization with a large amounts of layers of nodes when there is no sufficient data. Thus,
our strategy of iteratively reducing the error bound and enlarging the neural network is reasonable. In
practical implementations, when the neural network is enlarged in some iteration, we can first fix the
trained components of the neural network and train the added components with the data. We note
that similar strategies have been widely used in transfer learning technology; see [106, 123].

Next, we present the corresponding bandit algorithms of NN-AGP with the neural network error.
Specifically, the selection of the next point is based on the NN-AGP model with the approximated
NN

f̂t (x,θ) = ĝt (θ)
⊤
p(x).

Moreover, we denote

µ̂t−1 (x;θt) =
˜̃K⊤
(x;θt);t

[
˜̃K(Dt−1);t + σ2

ϵ It−1

]−1

ỹt−1,

σ̃2
t−1 (x;θt) =ĝt(θt)

⊤K (x,x) ĝt(θt)− ˜̃K⊤
(x;θt);t

[
˜̃K(Dt−1);t + σ2

ϵ It−1

]−1 ˜̃K(x;θt);t.

Compared with the posterior mean and variance in (2), here we use ĝt(θ) in stead of g(θ). Besides,
we also note that, µ̂t−1 (x;θt) depends on the observations yt while σ̃2

t−1 (x;θt) does not. In this
way, we provide the acquisition function as

xt = argmax
x∈X

{
µ̂t−1 (x;θt) +

(
β̃
1/2
t +

ẽt
√
t

σϵ

)
σ̃t−1 (x;θt)

}
. (10)

Here, β̃t is an increasing sequence to address the exploitation-exploration trade-off, similar as βt in
NN-AGP-UCB, and ẽt is a decreasing sequence that depends on the neural network error bound et.
Both β̃t and ẽt will be illustrated. We note that, by taking the neural network error into consideration,
the exploration term will be enlarged. In other words, the bandit algorithm is performed more
conservatively. In this way, we name the bandit algorithm that uses the acquisition function (10)
as NN-AGP-UCB+. In Section 9, we present the numerical experiments of NN-AGP-UCB+. We
note that NN-AGP-UCB+ does not always outperform NN-AGP-UCB in practical since the enlarged
exploration terms is overly conservative. At the end of this section, we provide the theoretical support
of NN-AGP-UCB+.
Theorem 4. Suppose δ ∈ (0, 1) and the following.

1. The decision variable x ∈ X ⊆ [0, r]d and X is convex and compact. The contextual
variable θ ∈ Θ ⊆ [0, 1]d

′
and Θ is convex and compact; each entry of g(θ) is an α-Hölder

function (α > 1); p(x) is sampled from a known MGP prior as in (4) and the variance of
the noise σ2

ϵ is known.
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2. In terms of the neural network gt (θ), we use the ReLU activation function. Meanwhile, in
the t-th iteration, weight parameters are properly chosen such that each entry satisfies

sup
θ∈Θ

|ĝl;t(θ)− gl(θ)| ⩽ et,

where neural network error sequence is selected as et = O
(

1
t1+∆

)
,∆ > 0.

3. For the components of the MGP, there exist constants {aq}Qq=1 , {bq}
Q
q=1 , {ãl}

m
l=1 ,

{
b̃l

}m

l=1
satisfying

P
{
sup
x∈X

∣∣∣∣∂uq(x)∂xj

∣∣∣∣ > Lq

}
⩽ aqe

−(Lq/bq)
2

;P
{
sup
x∈X

∣∣∣∣∂vl(x)∂xj

∣∣∣∣ > L̃l

}
⩽ ãle

−(L̃l/b̃l)
2

∀Lq, L̃l > 0 and ∀j = 1, 2, . . . , d, q = 1, 2, . . . , Q and l = 1, 2, . . . ,m.

4. We choose as a hyper-parameter in (10)

β̃t = 2 log
(
t22π2/(3δ)

)
+ 2d log

(
˜̃Mt2dbr

√
log(4da/δ)

)
,

where d and r are the dimension and the upper bound of the decision variable, a =∑Q
q=1 aq +

∑m
l=1 ãl and b =

∑Q
q=1 bq +

∑m
l=1 b̃l. Meanwhile,

˜̃M = sup
θ∈Θ;t


{∣∣∣∣∣

m∑
l=1

ĝl;t(θ)al,q

∣∣∣∣∣
}Q

q=1

, {|ĝl;t(θ)|}ml=1

 .

Then the cumulative regret is bounded with high probability as

P
{
RT = O

(√
TγT β̃T

)
+O

(
T (γT )

1
4

(
β̃T

) 1
2

)
, ∀T ⩾ 1

}
⩾ 1− δ.

Here C =
((∑Q

q=1

∑m
l=1 a

2
l,q

)
+ 1
)
supθ∈Θ ∥g(θ)∥22. In addition, γT is the maximum information

gain associated with the NN-AGP f(x;θ), defined by (7). We also note that ẽt = C1et and the
neural network in the t-th iteration ĝt has (i) no more than C2 (1− log (et)) layers and (ii) at most

C3e
− d′

α
t (1− log (et)) neurons and weight parameters, where C1, C2, C3 are all constants.

Compared with the results in Theorem 1, the regret bound of NN-AGP-UCB+ involves additional

term O
(
T (γT )

1
4

(
β̃T

) 1
2

)
, which results from the neural network approximation error. The proof

of Theorem 4 is contained in Section 8.

8 Proof

We present the detailed discussions on Theorem 1, Theorem 2 and Theorem 4 in this section,
as well as the consistency of training the NN-AGP model from the data. We note that all these
theoretical results are based on the assumption that p(x) is a linear combination of independent
GP realizations (uq’s and vl’s). It is a common assumption that uq’s and vl’s are realizations from
GP’s, while an alternative review is to assume that each uq or vl is a deterministic function that
lives in reproducing kernel Hilbert space (RKHS), which is consistent with relevant literature [95].
The difference between modeling the reward function as a GP sample or an element in an RKHS
reflects the difference between Bayesianists and frequentists, as discussed in [95]. In our work, we
adopt a Bayesian view since it helps us better understand the construction of the acquisition function.
If the reward function f(x;θ) is assumed as a linear combination of deterministic functions uq’s
and vl’s that are from RKHS, martingale-based technologies introduced in [31] can be employed to
derive the regret bound as well. This technology leads to a slightly tighter bound with less restrictive
assumptions on X , while it is beyond the scope of this work.
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8.1 Proof of Theorem 1

In this section, we present the detailed proof of Theorem 2. The employed methodologies borrow
the ideas from [95] and [68].
Lemma 1 ([95]). The information gain for the points selected can be expressed in terms of the
predictive variances. Specifically,

I (yT ; fT ) =
1

2

T∑
t=1

log
(
1 + σ−2

ϵ σ2
t−1 (xt;θt)

)
.

Lemma 2. When βt’s are selected nondecreasing,
T∑

t=1

4βtσ
2
t−1 (xt;θt) ⩽

8CβT γT

log
(
1 + Cσ−2

ϵ

) ,∀T ⩾ 1.

Here C =
((∑Q

q=1

∑m
l=1 a

2
l,q

)
+ 1
)
supθ∈Θ ∥g(θ)∥22 is a constant.

Proof. Note that

K̃ ((x,θ) , (x′,θ′)) =

Q∑
q=1

g(θ)⊤Aqg(θ
′)kq (x,x

′) +

m∑
l=1

gl(θ)gl(θ
′)k̃l(x,x

′).

With the regular conditions that all the kernel functions of uq’s and vl’s are less than one,

σ2
t−1 (xt;θt) ⩽ K̃ ((xt,θt) , (xt,θt))

⩽
Q∑

q=1

g (θt)
⊤
Aqg (θt) +

m∑
l=1

(gl (θt))
2

⩽

((
Q∑

q=1

m∑
l=1

a2l,q

)
+ 1

)
sup
θ∈Θ

∥g(θ)∥22

= C.

Indeed, since Aq =

a1,q
...

am,q

 (a1,q . . . am,q), the only non-zero eigenvalue of Aq is

(a1,q . . . am,q)

a1,q
...

am,q

 =
∑m

l=1 a
2
l,q. This is the reason why the last inequality holds.

Next, since βt’s are nondecreasing as t increases,

4βtσ
2
t−1 (xt;θt) ⩽ 4βTσ

2
ϵ

(
σ−2
ϵ σ2

t−1 (xt;θt)
)

⩽ βT
8C

log
(
1 + Cσ−2

ϵ

) 1
2
log
(
1 + σ−2

ϵ σ2
t−1 (xt;θt)

)
.

The second inequality holds since s/ log(1 + s) is an increasing function with s and
σ−2
ϵ σ2

t−1 (xt;θt) ⩽ Cσ−2
ϵ . Thus, summing up the inequalities with t to T , we have

T∑
t=1

4βtσ
2
t−1 (xt;θt) ⩽

8CβT γT

log
(
1 + Cσ−2

ϵ

) .

Lemma 3 ([95]). ∀δ ∈ (0, 1), choose βt = 2 log(πt/δ), where
∑

t⩾1 π
−1
t = 1.

P
{
∀t, |f(xt;θt)− µt−1(xt;θt)| ⩽ β

1/2
t σt−1(xt;θt)

}
⩾ 1− δ.
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Lemma 4 ([95]). Suppose that candidate decision variables xt are finite in each round, that is, |Xt|
is finite. ∀δ ∈ (0, 1), choose βt = 2 log(|Xt|πt/δ), where

∑
t⩾1 π

−1
t = 1.

P
{
∀t, ∀x ∈ Xt, |f(x;θt)− µt−1(x;θt)| ⩽ β

1/2
t σt−1(x;θt)

}
⩾ 1− δ.

The difference between Lemma 3 and Lemma 4 is that Lemma 3 considers a specific xt while
Lemma 4 considers a uniform bound on Xt.

To connect the continuous decision variable space X to results with finite selections of xt, we then
discretize X based on the smoothness condition imposed in Theorem 1. Recall that

f(x;θ) =

Q∑
q=1

(
m∑
l=1

gl (θ) al,quq (x)

)
+

m∑
l=1

gl (θ) vl (x) ,

where uq’s and vl’s are independent scalar Gaussian processes. Meanwhile, for smoothness, we as-

sume that for the components of the MGP, there exist constants {aq}Qq=1 , {bq}
Q
q=1 , {ãl}

m
l=1 ,

{
b̃l

}m

l=1
satisfying

P
{
sup
x∈X

∣∣∣∣∂uq(x)∂xj

∣∣∣∣ > Lq

}
⩽ aqe

−(Lq/bq)
2

,

P
{
sup
x∈X

∣∣∣∣∂vl(x)∂xj

∣∣∣∣ > L̃l

}
⩽ ãle

−(L̃l/b̃l)
2

,

∀Lq, L̃l > 0 and ∀j = 1, 2, . . . , d for q = 1, 2, . . . , Q and l = 1, 2, . . . ,m.

For any fixed k, we could select Lq and L̃l such that,

k =
L2
1

b21
= . . . =

L2
Q

b2Q
=
L̃2
1

b̃21
= . . . =

L̃2
m

b̃2m
.

Let L = M̃(L1 + . . .+ L̃m), we have

P
{
sup
x∈X

∣∣∣∣ ∂f∂xj

∣∣∣∣ > L

}
⩽ P

{
sup
x∈X

{
Q∑

q=1

∣∣∣∣∂uq(x)∂xj

∣∣∣∣+ m∑
l=1

∣∣∣∣∂vl(x)∂xj

∣∣∣∣
}
>

L

M̃

}

⩽
Q∑

q=1

P
{
sup
x∈X

∣∣∣∣∂uq(x)∂xj

∣∣∣∣ > Lq

}
+

m∑
l=1

P
{
sup
x∈X

∣∣∣∣∂vl(x)∂xj

∣∣∣∣ > L̃l

}

⩽
Q∑

q=1

aqe
−(Lq/bq)

2

+

m∑
l=1

ãle
−(L̃l/b̃l)

2

⩽ ae−k,

where a = a1 + . . .+ aQ + ã1 + . . .+ ãm. That is,

P {∀θ,∀x,x′, |f(x;θ)− f (x′;θ)| ⩽ L ∥x− x′∥1} ⩾ 1− dae−k, (11)

where L = M̃b
√
k, b = b1 + . . .+ bQ + b̃1 + . . .+ b̃m.

In this way, we discretize X as Xt of size (τt)
d in each round so that for all x ∈ X , we can find

∥x− [x]t∥1 ≤ rd/τt,

where [x]t denotes a point in Xt that is the closest to x. A sufficient discretization has each coordinate
in X with τt uniformly spaced points.

Lemma 5. ∀δ ∈ (0, 1), choose βt = 2 log (2πt/δ) + 2d log

(
dt2rM̃b

√
log
(
2ad
δ

))
, where∑

t⩾1 π
−1
t = 1.

P
{
∀t, |f(x∗

t ;θt)− µt−1([x
∗
t ]t ;θt)| ⩽ β

1/2
t σt−1([x

∗
t ]t ;θt) +

1

t2

}
⩾ 1− δ.

17



Proof. For any δ ∈ (0, 1), we let k = log
(
2ad
δ

)
in (11). We have

P
{
|f(x;θ)− f ([x]t ;θ)| ⩽

1

t2

}
⩾ 1− δ

2
,

with

τt = dt2rM̃b

√
log

(
2ad

δ

)
.

Choose βt = 2 log
(
2 (τt)

d
πt/δ

)
= 2 log (2πt/δ) + 2d log

(
dt2rM̃b

√
log
(
2ad
δ

))
, we have

P
{
|f(x∗

t ;θ)− f ([x∗
t ]t ;θ)| ⩽

1

t2

}
⩾ 1− δ

2
.

Based on Lemma 4, we have

P
{
∀t, |f([x∗

t ]t ;θt)− µt−1([x
∗
t ]t ;θt)| ⩽ β

1/2
t σt−1([x

∗
t ]t ;θt)

}
⩾ 1− δ

2
.

for the reason that βt here is larger than the required βt in Lemma 4. Thus,

P
{
∀t, |f(x∗

t ;θt)− µt−1([x
∗
t ]t ;θt)| ⩽ β

1/2
t σt−1([x

∗
t ]t ;θt) +

1

t2

}
⩾ 1− δ.

Lemma 6. Choose βt = 2 log (4πt/δ) + 2d log

(
dt2rM̃b

√
log
(
4ad
δ

))
, where

∑
t⩾1 π

−1
t = 1.

P
{
∀t, rt ⩽ 2β

1/2
t σt−1(xt;θt) +

1

t2

}
⩾ 1− δ.

Proof. Select δ/2 in Lemma 3 and Lemma 5. With probability at least 1− δ, we have

∀t, |f (xt;θt)− µt−1 (xt;θt)| ⩽ β
1/2
t σt−1 (xt;θt)

and

∀t, |f(x∗
t ;θt)− µt−1([x

∗
t ]t ;θt)| ⩽ β

1/2
t σt−1([x

∗
t ]t ;θt) +

1

t2
,

since βt here is larger than that required in Lemma 3. Thus,

rt = f (x∗
t ;θt)− f (xt;θt)

⩽ µt−1([x
∗
t ]t ;θt) + β

1/2
t σt−1([x

∗
t ]t ;θt) +

1

t2
− f (xt;θt)

⩽ β
1/2
t σt−1 (xt;θt) +

1

t2
+ µt−1 (xt;θt)− f (xt;θt)

⩽ 2β
1/2
t σt−1 (xt;θt) +

1

t2
,

Based on these results, we provide the proof of Theorem 1 in the main text.

Proof. Recall that RT =
∑T

t=1 rt and

T∑
t=1

4βtσ
2
t−1 (xt;θt) ⩽

8CβT γT

log
(
1 + Cσ−2

ϵ

) .
18



Based on Lemma 6, with probability at least 1− δ, we have

RT ⩽

√√√√T

T∑
t=1

4βtσ2
t−1 (xt;θt) +

π2

6

⩽

√
8CβT γTT

log
(
1 + Cσ−2

ϵ

) + π2

6
.

The first inequality holds because of the Cauchy–Schwarz inequality. Choose πt = 2π2t2

3δ , we attain
the results in Theorem 1.

At the end of this section, we compare our result with that of [68]. First, we impose the smoothness
conditions on the separate components of the MGP (for further discussion on this condition refer to
Theorem 5 in [53]. [68] impose a similar condition directly on the joint GP with composite kernels.
Thus, we offer a more explicit condition to verify. Second, we discretize the decision variable space,
instead of the joint space of the decision variable and the contextual variable. Therefore, the upper
bound on the cumulative regret RT increases as the dimension of the decision variable space increases
and is not related to the size of the contextual variable space. In comparison, the cumulative regret
bound derived in [68] increases when the dimension of either the decision variable or the contextual
variable increases. Therefore, NN-AGP-UCB adopts the advantage of a smaller upper bound on the
cumulative regret when the dimension of the contextual variable is relatively high, which is also
supported by experiment results in Section 9.

8.2 Proof of Theorem 2

The discussion of Theorem 2 is based on the Mercer decomposition and is inspired by [100]. To
begin with, we first present the Mercer Theorem.
Theorem 5 (Mercer Theorem [47]). Suppose K(x,x′) is a continuous symmetric non-negative
definite kernel defined on X × X . The kernel function K(x,x′) is called positive semi-definite
(PSD) if any Gram-matrix generated by the kernel function is PSD. That is, for any sequence
{x1 < x2 < . . . < xn}, the matrix K (x1,x1) · · · K (x1,xn)

...
. . .

...
K (xn,x1) · · · K (xn,xn)

 ⩾ 0.

Furthermore, there exists an orthonormal basis {ei}i consisting of eigenfunctions such that the
corresponding sequence of eigenvalues {λi} is non-negative. The eigenfunctions corresponding to
non-zero eigenvalues are continuous on X and K has the representation

K(x,x′) =

∞∑
i=1

λiei(x)ei(x
′),

where the convergence is absolute and uniform. Specifically, the eigenfunctions and eigenvalues
satisfy that ∫

X
ei(x)ej(x) dx = δij =

{
1, i = j
0, i ̸= j∫

X
ei(x)K (x,x′) dx = λiei(x

′).

Next, we present the Mercer decomposition for our NN-AGP model. Recall that the MGP employed
in the NN-AGP model is determined by the linear transformation of multiple independent scalar
Gaussian processes

pl(x) =

Q∑
q=1

al,quq(x) + vl(x).
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Here, pl(x) is the l-th element of p(x), where {uq(x)}Qq=1 and {vl (x)}ml=1 are independent scalar-
output Gaussian processes. In addition, al,q’s are coefficient parameters. In this way, the correlation
between different entries in the MGP p(x) is captured by {uq(x)}Qq=1 through al,q. Meanwhile,
vl (x) represents specific independent features of pl(x) itself, for l = 1, 2, . . . ,m. Suppose the kernel
function of uq(x)’s and vl(x)’s are kq (x,x′)’s and k̃l (x,x′)’s, the matrix-valued kernel function of
p(x) is

K (x,x′) =

Q∑
q=1

Aqkq (x,x
′) + Diag

{
k̃1 (x,x

′) , . . . , k̃m (x,x′)
}
.

Here, Aq denotes the semi-definite matrix, of which the (l, l′)-th entry is al,qal′,q. In this way, the
kernel function for the NN-AGP is

K̃ ((x,θ) , (x′,θ′)) =

Q∑
q=1

g(θ)⊤Aqg(θ
′)kq (x,x

′) +

m∑
l=1

gl(θ)gl(θ
′)k̃l(x,x

′).

Thus, the kernel function of the NN-AGP model is decomposed into a summation, where each term
is a product of the two kernel functions.

Proposition 3 ([68]). Suppose a kernel function K (x,x′) can be represented by a summation of
kernel functions. That is, K (x,x′) =

∑n
i=1Ki (x,x

′). Then

γT (K) ⩽
n∑

i=1

γT (Ki).

Here γT
(
K( · )

)
denotes the maximum information gain associated with kernel function K( · ).

That is, the maximum information gain of K̃ ((x,θ), (x′,θ′)) is bounded by the summation of
maximum information gains of each term. Thus, for ease of notion, we focus on the scenario when
Q = 1 and there are no vl’s. We also relax the restriction on A1 so that A1 = A is a positive
semi-definite matrix and not necessarily a rank-one matrix.

Proposition 4 (Mercer decomposition of k̃). Given a positive semi-definite matrix A and a continuous
function g(θ),θ ∈ Θ,

k̃ (θ,θ′) = g(θ)⊤Ag (θ′)

defines a positive semi-definite (PSD) kernel function. Furthermore, when Θ is compact, the kernel
function k̃ (θ,θ′) has a finite-rank Mercer decomposition

k̃ (θ,θ′) =
m∑
i=1

µiϕi(θ)ϕi (θ
′) .

Proof. Since A is a PSD matrix, it has a Cholesky decomposition as A = LL⊤, where L is a lower
triangular matrix. Denote g̃(θ) = L⊤g(θ), we have k̃ (θ,θ′) = g̃(θ)⊤g̃ (θ′). In this way, the
covariance matrix of any sequence {θτ}tτ=1 is k̃ (θ1,θ1) · · · k̃ (θ1,θt)

...
. . .

...
k̃ (θt,θ1) · · · k̃ (θt,θt)

 =

g̃ (θ1)
⊤

. . .

g̃ (θt)
⊤

 (g̃(θ1) . . . g̃(θt)) ⩾ 0.

Thus, k̃ (θ,θ′) defines a PSD kernel function. With a slight abuse of notation, we let k̃ (θ,θ′) =∑m
l=1 gl(θ)gl (θ

′) and will re-define g̃ and g̃l in the following part. Since Θ is bounded, we define

⟨gl, gl′⟩ =
∫
Θ

gl(θ)gl′(θ) dθ

and
∥gl∥ =

√
⟨gl, gl⟩.
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Next, we let g̃1(θ) = g(θ). For l = 2, . . . ,m, we sequentially let

g̃l(θ) = gl(θ)−
l−1∑
i=1

⟨gl, g̃i⟩
∥g̃i∥2

g̃i(θ).

Without loss of generality, we assume that ∥g̃l(θ)∥ = 1. In fact, {gl}ml=1 composes a basis of a
reproducing kernel Hilbert space, and the above procedure is exactly the Gram-Schmidt process of
the basis. It can be easily verified that

⟨gl, gl′⟩ =
∫
Θ

gl(θ)gl′(θ) dθ = δll′ ,

where δll′ = 1 when l = l′ and δll′ = 0 otherwise. Since the aforementioned procedure is entirely
based on linear operations, we denote

g1
g2
...

gm

 =M


g̃1
g̃2
...

g̃m

 .

In this way, we have that
k̃ (θ,θ′) =g̃(θ)⊤M⊤M g̃(θ)

=g̃(θ)⊤Q⊤ΛQg̃(θ).

Here g̃(θ) = (g̃1(θ), g̃2(θ), . . . , g̃m(θ))
⊤. Q⊤ΛQ is the eigendecomposition of a PSD matrix

M⊤M . That is, Λ is a diagonal matrix and Q is an orthogonal matrix. Let µi the i-th entry of Λ and
ϕi(θ the i-th entry of Qg̃(θ). It can be easily verified that {µi, ϕi}mi=1 satisfies the conditions in the
Mercer theorem. That is, we get the Mercer decomposition of k̃(θ,θ′).

Next, we show that the kernel function of NN-AGP adopts a Mercer decomposition as well.
Proposition 5 (Mercer decomposition of NN-AGP). Suppose that the kernel function with respect to
decision variable k(x,x′) is PSD, and therefore adopts a Mercer decomposition

k (x,x′) =

∞∑
j=1

λjψj (x)ψj (x
′) ,

the kernel function of the NN-AGP then adopts a Mercer decomposition

K̃ ((x,θ), (x′,θ′)) =

∞∑
j=1

m∑
i=1

µiλjϕi (θ)ψj (x)ϕi (θ
′)ψj (x

′) ,

if both Θ and X are compact, g(θ) is a continuous mapping.

Proof. Recall that K̃ ((x,θ), (x′,θ′)) = k̃ (θ,θ′) k (x,x′) . Based on the previous proposition and
the Mercer decomposition of k(x,x′) (the convergence is uniform), we have

K̃ ((x,θ), (x′,θ′)) =

∞∑
j=1

m∑
i=1

µiλjϕi (θ)ψj (x)ϕi (θ
′)ψj (x

′) .

Meanwhile, it can be easily verified that {(µiλj , ϕi (θ)ψj (x))} for i = 1, 2, . . . ,m and j =

1, 2, . . . ,∞, are eigenvalues and eigen-functions of K̃ ((x,θ), (x′,θ′)), which also completes the
proof of Proposition 2 in the main text.

Lemma 7. The NN-AGP model adopts a representation

f(x;θ) =

∞∑
j=1

m∑
i=1

ξjiλ
1
2
j µ

1
2
i ϕi (θ)ψj (x) ,

where ξji’s are i.i.d. standard normal random variables.
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Based on the Mercer decomposition of K̃ ((x,θ), (x′,θ′)), we derive the maximum information
gain of the NN-AGP based on the technologies in [100]. Specifically, we select the first D largest
eigenvalues of the kernel function k(x,x′). Recall that in terms of the kernel function k̃(θ,θ′), there
are at most m non-zero eigenvalues. In this way, we project the NN-AGP onto the subspace and
attain

f̂(x;θ) =

D∑
j=1

m∑
i=1

ξjiλ
1
2
j µ

1
2
i ϕi (θ)ψj (x)

and the residual part

f̂r(x;θ) =

∞∑
j=D+1

m∑
i=1

ξjiλ
1
2
j µ

1
2
i ϕi (θ)ψj (x) .

We then derive the bound of the maximum information gain by first considering the two separate
terms.
Lemma 8. Suppose that 1) K̃ ((x,θ), (x′,θ′)) satisfies the conditions in Proposition 2; 2) ∀x,x′ ∈
X , |k (x,x′)| ⩽ k̄ for some k̄ > 0 and 3) ∀j ∈ N,∀x ∈ X , |ψj(x)| ⩽ ψ, for some ψ > 0.

γT ⩽
1

2
mD log

(
1 +

¯̃
kk̄T

σ2
ϵmD

)
+
δmDT

2σ2
ϵ

. (12)

Here, δmD =
∑∞

j=D+1

∑m
i=1 λjµiψ

2ϕ2; σ2
ϵ is the variance of the noise ϵ; µ̄ = 1

m

∑m
i=1 µi denotes

the mean of the eigenvalues of the kernel function k̃ (θ,θ′); and ¯̃
k = supθ,θ′∈Θ

∣∣∣k̃ (θ,θ′)
∣∣∣ and

ϕ = supθ∈Θ |ϕ(θ)|.

This is a direct result from Theorem 3 in [100]. In terms of the right-hand side of (12), the first
term bounds the maximum information gain associated with the projected GP while the second term
bounds the remaining part of the GP. The NN-AGP can be projected onto such a sub-space for the
reason that the kernel function with respect to θ is a finite-rank kernel function. Otherwise, when
both the kernel functions have infinite Mercer decompositions, the truncation of a product of two
infinite series and the quantification of the residuals requires more cautious discussions.

Consider now a scalar GP with the kernel function k(x,x′), denoted as p(x). The observations
y′t = p(xt) + ϵt, where ϵt ∼ N (0, σ2

ϵ ). That is, we do not consider the contextual variable here. In
this way, the maximum information gain of p(x) is bounded as

γx;T ⩽
1

2
D log

(
1 +

k̄T

σ2
ϵD

)
+
δDT

2σ2
ϵ

,

where δD =
∑∞

j=D+1 λjψ
2. Compared with the result in (12), we have that

γT = O (mγx;T ) .

Next, we specifically consider two types of the kernel function k(x,x′) as in Definition 1. Consider
the eigenvalues {λj}∞j=1 of the kernel function k (x,x′) in decreasing order.

1. For some Cp > 0, αp > 1, k is said to have a (Cp, αp) polynomial eigendecay, if for all
j ∈ N, we have λj ⩽ Cpj

−αp . Examples include the Matérn kernel.
2. For some Ce,1, Ce,2, αe > 0, k is said to have a (Ce,1, Ce,2, αe) exponential eigendecay,

if for all j ∈ N, we have λj ⩽ Ce,1 exp (−Ce,2j
αe). Examples include the radial basis

function kernel.

Based on the discussions above, we finally present the proof of Theorem 2.

Proof. Under the polynomial eigendecay (Cp, αp), we have

δmD ⩽ mµ̄ϕ2ψ2
∞∑

j=D+1

Cpj
−βp

⩽ mµ̄ϕ2ψ2

∫ ∞

z=D

Cpz
−βp dz

= mµ̄CpD
1−βpψ2ϕ2.
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We select

D =


 µ̄ψ2ϕ2CpT

log
(
1 +

¯̃
kk̄T
mσ2

ϵ

)
σ2
ϵ

1/αp
 ,

so that
δmDT

σ2
ϵ

⩽ mD log

(
1 +

¯̃
kk̄T

σ2
ϵm

)
.

In this way, we have that

γT ⩽ m

( µ̄ϕ2ψ2CpT

σ2
ϵ

log−1

(
1 +

¯̃
kk̄T

mσ2
ϵ

)) 1
αp

+ 1

 log

(
1 +

¯̃
kk̄T

mσ2
ϵ

)
.

Under the exponential eigendecay (Ce,1, Ce,2, αe), we have

δmD ⩽ mµ̄ϕ2ψ2
∞∑

m=D+1

Ce,1 exp (−Ce,2m
αe)

⩽ mµ̄ϕ2ψ2

∫ ∞

z=D

Ce,1 exp (−Ce,2z
αe) dz.

When αe = 1, ∫ ∞

z=D

exp (−Ce,2z
αe) dz =

∫ ∞

z=D

exp (−Ce,2z) dz

=
1

Ce,2
exp (−Ce,2D) .

In this way, we select

D =

⌈
1

Ce,2
log

(
Ce,1mµ̄ϕ

2ψ2T

σ2
ϵCe,2

)⌉
,

so that δmDT/σ
2
ϵ ⩽ 1.

When αe ̸= 1,∫ ∞

z=D

exp (−Ce,2z
αe) dz =

1

αe

∫ ∞

z=Dαe

z
1

αe
−1 exp (−Ce,2z) dz

=
1

αe

∫ ∞

z=Dαe

z
1

αe
−1 exp

(
−Ce,2

z

2

)
exp

(
−Ce,2

z

2

)
dz

⩽
1

αe

∫ ∞

z=Dαe

(
2

Ce,2

(
1

αe
− 1

)) 1
αe

−1

exp

(
−
(

1

αe
− 1

))
exp

(
−Ce,2

z

2

)
dz

=
2

Ce,2αe

(
2

Ce,2

(
1

αe
− 1

)) 1
αe

−1

exp

(
−
(

1

αe
− 1

))
exp

(
−Ce,2

Dαe

2

)
.

In this way, we select

D =

⌈(
2

Ce,2

(
log(T ) + log

(
2Ce,1mµ̄ϕ

2ψ2

σ2
ϵαeCe,2

)
+

(
1

αe
− 1

)(
log

(
2

Ce,2

(
1

αe
− 1

))
− 1

))) 1
αe

⌉
,

so that δmDT/σ
2
ϵ ⩽ 1. Thus, whether αe = 1 or not, the second term in the upper bound of γT as in

(12) is bounded by 1/2, a constant. Therefore,

γT ⩽ mD log

(
1 +

¯̃
kk̄T

mσ2
ϵ

)
,
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when T is sufficiently large. To summarize the results for the exponential eigendecay, we have

γT ⩽ m

((
2

Ce,2
(log(T ) + Cαe

)

) 1
αe

+ 1

)
log

1 +
¯̃
kk̄T

mσϵ

2
 ,

where

Cαe
= log

(
Ce,1mµ̄ϕ

2ψ2

σ2
ϵCe,2

)
if αe = 1, and

Cαe
= log

(
2Ce,1mµ̄ϕ

2ψ2

σ2
ϵαeCe,2

)
+

(
1

αe
− 1

)(
log

(
2

Ce,2

(
1

αe
− 1

))
− 1

)
otherwise.

8.3 Proof of Theorem 4

In this section, we present the detailed proof of Theorem 4. For the following discussion, we assume
that the conditions described in Theorem 4 are satisfied.

First, we begin with a lemma that indicates the neural network approximation error ∥ĝt(θ)− g(θ)∥
can be arbitrarily small, providing enough layers of nodes. Here ĝt(θ) is the employed neural
networks in the t-th round and g(θ) is the ground-truth function, which is assume to be an α-Hölder
function as in Theorem 4.
Lemma 9. With properly chosen weight parameters, there exists a ReLU neural network, such that

sup
θ∈Θ

|ĝl;t(θ)− gl(θ)| ⩽ et, (13)

with a given et ∈ (0, 1). Here the neural network in the t-th iteration ĝt has (i) no more than

C2 (1− log (et)) layers and (ii) at most C3e
− d′

α
t (1− log (et)) neurons and weight parameters, where

C2, C3 are both constants.

Lemma 9 follows directly from Lemma 2 in [28]. For further discussions on neural network
generalization error, we refer to [117].

Based on Lemma 9, we then provide that, with a high probability, the error between the ground-truth
NN-AGP f(x;θ) and the NN-AGP with the approximated neural network f̂t (x;θ) can be bounded
Lemma 10. With probability at least 1− δ, we have that

∀x ∈ X ,θ ∈ Θ,
∣∣∣f̂t (x;θ)− f (x;θ)

∣∣∣ ⩽ C1et,

where C1 is a constant.

Proof. Note that,∣∣∣f̂t (x;θ)− f (x;θ)
∣∣∣ = ∣∣∣∣∣

Q∑
q=1

(
m∑
l=1

(ĝl;t(θ)− gl(θ)) al,quq (x)

)
+

m∑
l=1

(ĝl;t(θ)− gl(θ)) vl (x)

∣∣∣∣∣
⩽

(
Q∑

q=1

(
m∑
l=1

|al,q| |uq (x)|

)
+

m∑
l=1

|vl (x)|

)
et.

Recall that, based on the condition (6), all uq’s and vl’s are Lipschitz with probability at least 1− δ.
This also implies that uq’s and vl’s are bounded as well, since X is compact. Thus, we denote

C̃1
.
= sup

x∈X

(
Q∑

q=1

(
m∑
l=1

|al,q| |uq (x)|

)
+

m∑
l=1

|vl (x)|

)
and ẽt = C1et, and accomplish the proof.
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Next, we focus on the misspecified NN-AGP f̂t(x;θ) = ĝt(θ)
⊤p(x). Recall that, the ground-truth

observations satisfy that
yt = f(xt;θt) + ϵt.

We then construct “virtual” observations as

ỹt = f̂t(xt;θt) + ϵt.

Consequently, we have that

|yt − ỹt| =
∣∣∣f(x;θ)− f̂t(x;θ)

∣∣∣ ⩽ ẽt

with high probability, based on Lemma 10. Besides, suppose we are now in the t-th round. Then the
inference of the reward function uses the “virtual” observations. Specifically, the posterior mean and
covariance that is associated with the NN-AGP model in the t-th round f̂t (x;θt) are denoted as

µ̃t−1 (x;θt) =
˜̃K⊤
(x;θt);t

[
˜̃K(Dt−1);t + σ2

ϵ It−1

]−1

ỹt−1,

σ̃2
t−1 (x;θt) =ĝt(θt)

⊤K (x,x) ĝt(θt)− ˜̃K⊤
(x;θt);t

[
˜̃K(Dt−1);t + σ2

ϵ It−1

]−1 ˜̃K(x;θt);t.

Compared with the quantities used in the acquisition function (10) in NN-AGP-UCB+, the differ-
ence lies in between the posterior means µ̂t−1 and µ̃t−1, where the real/“virtual” observations are
incorporated. Actually, we have the following lemma to quantify the difference.

Lemma 11. It is satisfied that, ∀t

|µ̃t (x;θt)− µ̂t (x;θt)| ⩽
ẽt
√
t

σϵ
σ̃t (x;θt) ,

if |yt − ỹt| ⩽ ẽt.

The proof of Lemma 11 is similar to Lemma 2 in [14]. In addition, since µ̃t−1 (x;θt) and
σ̃2
t−1 (x;θt) denote the posterior mean and variance of f̂t (x;θt), we could still employ the union

bound and discretization technologies in Lemma 5 and Lemma 6, and reach the following lemma.

Lemma 12. Choose β̃t = 2 log (4πt/δ) + 2d log

(
dt2r ˜̃Mb

√
log
(
4ad
δ

))
, we have

P


∀t,
∣∣∣f̂t (x∗

t ;θt)− µ̃t−1 ([x
∗
t ]t ;θt)

∣∣∣ ⩽ β̃
1/2
t σ̃t−1 ([x

∗
t ]t ;θt) +

1

t2∣∣∣f̂t (x∗
t ;θt)− µ̃t−1 (x

∗
t ;θt)

∣∣∣ ⩽ β̃
1/2
t σ̃t−1 (x

∗
t ;θt)

 ⩾ 1− δ,

Here, ˜̃M = supθ∈Θ;t

{
{|
∑m

l=1 ĝl;t(θ)al,q|}
Q

q=1
, {|ĝl;t(θ)|}ml=1

}
and [x]t denotes a point in Xt that

is the closest to x.

The difference lies on that, in the previous proof, there is only one NN-AGP model f(x;θ) in all the
iterations. However, when the approximation of the neural network is taken into consideration, the
kernel function (therefore, the NN-AGP) changes in every iteration. Although the NN-AGP model
changes every time, the union bound can be employed as well. In addition, the GP’s uq’s and vl’s
remain the same to be discretized. In this way, we reach Lemma 12.

Next, we discuss the difference between σ̃2
t (xt;θt) and σ2

t (xt;θt) . Specifically,

σ̃2
t (xt;θt)− σ2

t (xt;θt) =
˜̃Kt ((xt;θt) , (xt;θt))− ˜̃K⊤

(xt;θt);t

[
˜̃K(Dt);t + σ2

ϵ It

]−1 ˜̃K(xt;θt);t

− K̃ ((xt;θt) , (xt;θt)) + K̃⊤
(xt;θt)

[
K̃Dt

+ σ2
ϵ It

]−1

K̃(xt;θt)

⩽ ˜̃Kt ((xt;θt) , (xt;θt))− K̃ ((xt;θt) , (xt;θt))

+ K̃⊤
(xt;θt)

[
K̃Dt

+ σ2
ϵ It

]−1

K̃(xt;θt).
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In terms of the last term K̃⊤
(xt;θt)

[
K̃Dt

+ σ2
ϵ It

]−1

K̃(xt;θt), we have that

K̃⊤
(xt;θt)

[
K̃Dt

+ σ2
ϵ It

]−1

K̃(xt;θt) ⩽
C
√
t

σϵ
σt (xt;θt) .

Here, C =
((∑Q

q=1

∑m
l=1 a

2
l,q

)
+ 1
)
supθ∈Θ ∥g(θ)∥22 denotes the upper bound of

K̃ ((xt;θt) , (xt;θt)). The proof of this inequality can be referred to Theorem 2 in [31]. On

the other, in terms of ˜̃Kt ((xt;θt) , (xt;θt))− K̃ ((xt;θt) , (xt;θt)), the difference comes from the
bias using neural networks ĝt to approximate the mapping g. That is,

˜̃Kt ((xt;θt) , (xt;θt))− K̃ ((xt;θt) , (xt;θt))

⩽
Q∑

q=1

(ĝt (θt)− g (θt))
⊤
Aq (ĝt (θt)− g (θt)) + ∥ĝt (θt)− g (θt)∥2

⩽

((
Q∑

q=1

m∑
l=1

a2l,q

)
+ 1

)
∥ĝt (θt)− g (θt)∥2

⩽

((
Q∑

q=1

m∑
l=1

a2l,q

)
+ 1

)
me2t .

In this way, by letting
((∑Q

q=1

∑m
l=1 a

2
l,q

)
+ 1
)
me2t

.
= e′t, we have

σ̃2
t (xt; θt) ⩽

C
√
t

σϵ
σt (xt; θt) + σ2

t (xt; θt) + e′t.

Lastly, we present the proof of Theorem 4.

Proof. First, we notice that

RT ⩽ R̃T + 2

T∑
t=1

ẽt,

since
∣∣∣f (x;θ)− f̂t (x;θ)

∣∣∣ ⩽ ẽt. Here R̃T =
∑T

t=1 r̃t denotes the “virtual” cumulative regrets

based on the NN-AGP with neural network ĝt (θ). That is, RT and R̃T are in the same order of T ,
since

∑∞
t=1 ẽt <∞.

Next, we focus on the “virtual” regret r̃t. Specifically, based on Lemma 12, with probability at least
1− δ

r̃t = f̂t (x
∗
t ;θt)− f̂t (xt;θt)

⩽ µ̃t−1 ([x
∗
t ]t ;θt) +

(
β̃
1/2
t +

ẽt
√
t

σϵ

)
σ̃t−1 ([x

∗
t ]t ;θt) +

1

t2
− f̂t (xt;θt)

⩽ µ̃t−1 (x
∗
t ;θt) +

(
β̃
1/2
t +

ẽt
√
t

σϵ

)
σ̃t−1 (x

∗
t ;θt) +

1

t2
− f̂t (xt;θt)

⩽ 2

(
β̃
1/2
t +

ẽt
√
t

σϵ

)
σ̃t−1 (x

∗
t ;θt) +

1

t2
.

Note that
T∑

t=1

σ̃t−1 (xt;θt) ⩽

√√√√T

T∑
t=1

σ̃2
t−1 (xt;θt)

⩽

√√√√T

(
2CγT

log
(
1 + Cσ−2

ϵ

) + C
3
2T

σϵ

√
2γT

log
(
1 + Cσ−2

ϵ

) + T∑
t=1

e′t

)

= O
(√

TγT

)
+O

(
T (γT )

1
4

)
,
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where
∑∞

t=1 e
′
t < ∞. In addition, since et = O( 1

t1+∆ ) and ∆ > 0, ẽt
√
t is bounded by some

constant, say B. Thus,

R̃T =

T∑
t=1

r̃t

⩽ 2
(
β̃
1/2
T + B

) T∑
t=1

σ̃t−1 (xt;θt)

= O
(√

TγT β̃T

)
+O

(
T (γT )

1
4

(
β̃T

) 1
2

)
.

8.4 Proof of consistency

In this section, we discuss the consistency of training the NN-AGP model from the data. The
consistency requires specific conditions on the sampling strategies of xt and θt, which might be
difficult to verify during the contextual GP bandits. However, we still present it as a sanity check
here for two reasons. First, we note that the NN-AGP model can also be employed in supervised
learning tasks when the function to be approximated involves both user-selected inputs x and observed
contextual variables θ. Examples of these tasks can be found in [60]. In these task, the NN-AGP
model still adopts the advantage of explicit kernel expression with respect to user-selected inputs x
and approximation accuracy with respect to observed contextual variables θ. Meanwhile, the required
conditions for consistency can be satisfied in these tasks. Second, existing theoretical results on GP
bandits (as well as Theorem 1 in our work) largely assume that the surrogate model is well-specified
and does not require updating from the observations. That is, the discussion on the consistency of
training NN-AGP from the data does not conflict with existing theoretical results on GP bandits.

To begin with, we first set up the notation used in the proof. Recall that the training objective of
NN-AGP is to maximize the likelihood function, which is in the form of

Lt

(
W,Φ, σ2

ϵ

)
= − ln

[
(2π)t/2

]
− 1

2
ln
[∣∣∣K̃Dt

+ σ2
ϵ It

∣∣∣]− 1

2
y⊤
t

[
K̃Dt

+ σ2
ϵ It

]−1

yt.

It is equivalent to considering the optimization problem(
Ŵt, Φ̂t,

ˆσ2
ϵ;t

)
= arg min

(W,Φ,σ2
ϵ )
ℓt
(
W,Φ, σ2

ϵ

)
,

where ℓt
(
W,Φ, σ2

ϵ

)
= 1

t

(
ln
[∣∣∣K̃Dt

+ σ2
ϵ It

∣∣∣]+ y⊤
t

[
K̃Dt

+ σ2
ϵ It

]−1

yt

)
. For ease of notation,

we let Kt = K̃Dt
+ σ2

ϵ It and K∗
t denotes the covariance matrix with the ground-truth parameter

plug-in. In addition, for the parameters involved in the MGP Φ, we separate them as ΦK to denote
the parameters in the kernel function and the weight parameters a = {al}ml=1. We generally denote
Φ̃ =

(
ΦK ,W, a, σ2

ϵ

)
. In the proof, the ground truth parameters or the quantities that are with ground

truth parameters will be indicated by a superscript “∗”. We will also sometimes hide the subscript “t”
that indicates the iteration for ease of notation.
Assumption 1. We assume that

1. The set of parameters to be optimized Φ̃ ∈ SΦ̃ is a compact set. Especially, σ2
ϵ ∈ [σ2

a, σ
2
b ]

and σ2
a > 0. The ground-truth parameters are contained in the set of parameters to be

optimized. That is, Φ̃∗ ∈ SΦ̃.

2. The kernel function of u(x) is a stationary kernel function. That is, k(x,x′) = k(∥x− x′∥).
In addition, it is also satisfied that

max
s=0,1,2,3

max
j1,...,js

sup
Φ̃∈SΦ̃

∣∣∣∣∣ ∂s

∂Φ̃j1 , . . . , ∂Φ̃js

k (∥x− x′∥)

∣∣∣∣∣ ⩽ Csup

1 + ∥x− x′∥d+Cinf

for some positive fixed constants Cinf and Csup.
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3. The sampling strategy satisfies that , there exists a fixed constant ∆

inf
τ,τ ′∈N
τ ̸=τ ′

∥xτ − xτ ′∥ ⩾ ∆

for the decision variable; gl(θt) = O(1/t) and ∂
∂Wj

gl(θ) = O(1/t) for the contextual
variable with any W involved with the neural network g(θ).

4. The ground-truth parameters are well-separated from other potential values of parameters.
That is, for ∀ϵ > 0

lim inf
t→∞

inf
Φ̃∈S

Φ̃

∥Φ̃−Φ̃∗∥⩾ϵ

1

t

t∑
τ,τ ′=1

(
K̃ ((xτ ,θτ ) , (xτ ′ ,θτ ′))−K̃∗ ((xτ ,θτ ) , (xτ ′ ,θτ ′))+δττ ′

(
σ2
ϵ − σ2

ϵ
∗
))2

> 0.

Theorem 6 (Consistency of Learning NN-AGP). Under Assumption 1, the training of the NN-AGP
through (5) is consistent. That is,

lim
t→∞

(
Ŵt, Φ̂t,

ˆσ2
ϵ;t

)
P−→
(
W∗,Φ∗, σ2

ϵ
∗
)
.

Here,
(
W∗,Φ∗, σ2

ϵ
∗) denotes the ground-truth values of the parameters in the NN-AGP model and

the noise, and “ P−→” denotes the convergence in probability.

Proof. Note that, the ground-truth parameters minimize the mean value of the loss function
ℓt
(
W,Φ, σ2

ϵ

)
. That is,(

W∗,Φ∗, σ2
ϵ
∗
)
= arg min

(W,Φ,σ2
ϵ )
E
{
ℓt
(
W,Φ, σ2

ϵ

)}
.

Therefore, in order to prove the consistency, we require the uniform convergence of the likelihood
function, that is

lim
t→∞

sup
(W,Φ,σ2

ϵ )

∣∣ℓt (W,Φ, σ2
ϵ

)
− E

{
ℓt
(
W,Φ, σ2

ϵ

)}∣∣ P−→ 0. (14)

To begin with, we first establish the point-wise convergence of the loss function.

Var
{
ℓt
(
W,Φ, σ2

ϵ

)}
=

1

t2
Var

{
y⊤
t K

−1
t yt

}
=

2

t2
Tr
{
K−1

t K∗
tK

−1
t K∗

t

}
.

For ∀t, the maximum eigenvalue of the matrix K∗
t is bounded as

λsup {K∗
t } ⩽ λsup

{
K̃∗

Dt

}
+ σ2

ϵ
∗

⩽ max
τ=1,...,t

t∑
τ ′=1

|k∗ (xτ ,xτ ′)|
∣∣∣k̃ (θτ ,θτ ′)

∣∣∣+ σ2
ϵ
∗

⩽ max
τ=1,...,t

t∑
τ ′=1

Csup

1 + ∥xτ − xτ ′∥d+Cinf
K̃ + σ2

ϵ
∗
,

(15)

where K̃ is the upper bound of
∣∣∣k̃ (θτ ,θτ ′)

∣∣∣. The second inequality comes from the Gershgorin circle
theorem [62]. Based on condition 2 and condition 3 in Assumption 1, there exists a constant A1 such
that λsup {K∗

t } ⩽ A1; see aslo [8]. On the other hand, λsup
{
K−1

t

}
= (λinf {Kt})−1 ⩽

(
σ2
a

)−1
=

A2, for ∀t, Φ̃. Thus, we have

Var
{
ℓt
(
W,Φ, σ2

ϵ

)}
⩽

2A2
1A

2
2

t
.
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Thus, we have the point-wise convergence of ℓt
(
W,Φ, σ2

ϵ

)
to its mean value. Next, we show that

the convergence is uniform. To prove the uniform convergence, we consider the gradient of ℓt(Φ̃).
We let K̃Dt = KΦ,t ⊙KW,t, where “⊙” denotes the Hadamard product of two matrices. KΦ,t and
KW,t are the covariance matrix associated with k (x,x′) and k̃ (θ,θ′). In this way,

∂ℓt

(
Φ̃
)

∂Φ̃j

=
1

t
tr

{
K−1

t

∂Kt

∂Φ̃j

}
− 1

t
y⊤
t K

−1
t

∂Kt

∂Φ̃j

K−1
t yt.

In terms of the gradient, we specifically have
∂Kt

∂ΦK;j
=
∂KΦ,t

∂ΦK;j
⊙KW,t + σ2

ϵ It

∂Kt

∂Wj
= KΦ,t ⊙ 2


(

∂
wj

g(θ1)
)⊤

a

...(
∂
wj

g(θt)
)⊤

a

(g(θ1)⊤a, . . . , g(θt)⊤a)+ σ2
ϵ It

∂Kt

∂aj
= KΦ,t ⊙ 2

gj(θ1)
...

gj(θt)

(g(θ1)⊤a, . . . , g(θt)⊤a)+ σ2
ϵ It

∂Kt

∂σ2
ϵ

= It.

We want to show that there exists a constant A3 that bounds the singular value of the gradient of Kt

such that

ρsup

(
∂Kt

∂Φ̃j

)
⩽ A3, ∀t.

Note that, given any two matrices K1 and K2, the singular values satisfy that
ρsup (K1 ⊙K2) ⩽ ρsup (K1) ρsup (K2)

and
ρsup (K1 +K2) ⩽ ρsup (K1) + ρsup (K2) ,

see [79].

Specifically, ρsup
{

∂Kt

∂ΦK;j

}
is bounded by a constant, based on condition 2, as is proved in [8]

with a similar argument of (15). ρsup {KΦ;t} is bounded by a constant with a similar argument as

in (15) as well. In addition,
∑∞

τ=1

[
g(θτ )

⊤a
]2
< ∞,

∑∞
τ=1

[(
∂
wj

g(θτ )
)⊤

a

] [
g(θτ )

⊤a
]
< ∞

and
∑∞

τ=1 gl(θτ )
[
g(θτ )

⊤a
]
< ∞ based on the condition that g(θt) = O(1/t) and ∂

∂Wj
gl(θ) =

O(1/t) in Assumption 1, which further bounds the maximum singular value of matrices KW,t,
(

∂
wj

g(θ1)
)⊤

a

...(
∂
wj

g(θt)
)⊤

a

(g(θ1)⊤a, . . . , g(θt)⊤a) and

gj(θ1)
...

gj(θt)

(g(θ1)⊤a, . . . , g(θt)⊤a). In this

way, we have that ρsup
(

∂Kt

∂Φ̃j

)
⩽ A3, ∀t. Thus,

max
j

sup
Φ̃∈SΦ̃

∣∣∣∣∣∣
∂ℓt

(
Φ̃
)

∂Φ̃j

∣∣∣∣∣∣ ⩽ A2A3 +A2
2A3

y⊤
t yt

t
= Op(1) (16)

since y⊤
t yt

t is a non-negative random variable with bounded expectation. With a similar argument,
we also have

max
j

sup
Φ̃∈SΦ̃

∣∣∣∣∣∣
∂E
{
ℓt

(
Φ̃
)}

∂Φ̃j

∣∣∣∣∣∣ = O(1). (17)

29



Because of (16) and (17), along with the point-wise convergence, we attain the uniform convergence
of the loss function ℓt(Φ̃); see [81] for detailed discussions.

To guarantee consistency of the learning procedure, we also require that the ground-truth parameters
can be specified when minimizing the loss function. It can be verified that, there exists a constant A4

E
{
ℓt

(
Φ̃
)}

− E
{
ℓt

(
Φ̃∗
)}

⩾A4
1

t

t∑
τ,τ ′=1

(
K̃ ((xτ ,θτ ) , (xτ ′ ,θτ ′))− K̃∗ ((xτ ,θτ ) , (xτ ′ ,θτ ′)) + δττ ′

(
σ2
ϵ − σ2

ϵ
∗
))2

where the detailed proof can be found in [7]. In this way, based on condition 4 in Assumption 1, for
∀ϵ > 0,

lim inf
t→∞

inf
Φ̃∈SΦ̃

∥Φ̃−Φ̃∗∥⩾ϵ

E
{
ℓt

(
Φ̃
)}

− E
{
ℓt

(
Φ̃∗
)}

⩾ A5,

for some constant A5. Thus, along with the uniform consistency of the loss function (14), we attain
the consistency of the training procedure (5), which follows a regular argument on consistency of
M -estimation; see [101].

9 Experimental details & additional experiments

9.1 Experimental details

In this section, we describe the experiment settings in the main context in detail. In terms of the
training of NN-AGP through (5) and maximizing the likelihood function of a joint GP, we apply the
alternating direction method of multipliers (ADMM) with a learning rate 10−4; see [20]. All the
experiments are based on running PyTorch and Python 3.8 on Nvidia GeForce RTX 3090 (GPU)
with 24GB of RAM. An implementation is provided at https://github.com/Oceanjinghai/
NN-AGP-UCB.

9.1.1 Synthetic reward

In terms of the joint GP model, we consider both additive kernels and multiplicative kernels, of which
each separate kernel is the radial basis function (RBF) kernel. In terms of the NN-AGP model, we
select m = 2, 3, 5. Besides, we select the ICM model with the RBF kernel as the MGP component
(Q = 1) and an FCN with 2 hidden layers with 64 and 32 nodes. The parameters of the MGP (al,q’s )
are updated through learning the NN-AGP model in (5).

In addition, both NeuralUCB [121] and NN-UCB [65] are designed for contextual bandits with K
arms. To adapt them into the problem we consider in Section 2, we take z = (θ,x) as a joint input to
the neural networks representing the arm. We discretize the joint space Θ×X with 10 points in each
dimension with equal distances. The best arm is selected with some of the dimension fixed by θt.
In terms of NN’s used in both algorithms, we select an FCN with 3 hidden layers of 64, 32, and 32
nodes.

9.1.2 Queuing problem with time sequence contextual variables

We consider a discrete-time queuing problem, where decision-making in each time period is required.
In each epoch, a contextual variable θt is first revealed to the agent. In some application scenarios,
the contextual variable might includes traffic conditions and weather conditions that affect the
arrival process of the queuing system. The number of customers who will come to the queue,
denoted as Nt is drawn from a Poisson distribution Poisson(ut). Here ut = exp

(∑t
τ=1 a

⊤θτ

)
,

and a ∼ N (1/4, 14Id′) is the weight generated and fixed in advance. In this way, the number of
customers who will come to the queue in this round depends on the entire sequence of contextual
variables.
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On the other hand, the decision variable is composed of two parts p1;t and p2;t, denoting the service
price and the service rate respectively. The service price indicates the reward that completes serving a
customer. On the other hand, a customer comes to queue, sees the service price, and then determines
to join the queue with the probability of p(p1;t), where p( · ) is a decreasing function with respect
to p1;t. In addition, in each iteration, the number of service completion N ′(t) is a Poisson random
variable with the mean of the service rate p2;t, that is N ′(t) ∼ Poisson(p2;t). The higher the service
rate, the higher the service cost will be. After each iteration, the customers who decide to join the
queue and do not receive the service will leave as well, resulting in a penalty. In this way, the observed
reward in each iteration is

yt = p1;t max {N(t), N ′(t)} − c1p2;t − c2 max {N(t)−N ′(t), 0} ,
where on the right-hand side the first term is the reward of completing service, the second term is
the service cost and the last term denotes the penalty of not satisfying customers. Such decision
problems in a queuing system are also considered in [29]. For the NN-AGP model, we select the
long short-term memory (LSTM) [58] neural network to approximate the mapping gt(θ1, . . . ,θt).
The training of LSTM (as well as MGP) is accomplished by maximizing the likelihood function.
Since we do not have the ground-truth value of the expected maximum reward, we instead record the
cumulative rewards to compare the performance of different methods.

Specifically, in terms of the experiment results contained in the main text, we set c1 = 0.5 and
c2 = 0.3. In terms of the NN-AGP model, we select m = 2, 3, 5. Besides, we select the ICM
model with the RBF kernel as the MGP component and an LSTM with 1) sequence length = 10;
2) hidden size = 64; 3) projection size = m; 4) batch size = 1. We utilize the implementation from
https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html. Besides, we select the ICM model
with the RBF kernel as the MGP component (Q = 1). For CGP-UCB, we utilize the RBF kernel
for the scenario when we only utilize the current contextual variable. We also apply the Wasserstein
subsequence kernel [13] that is specifically designed for time series, of which the implementation
can be found at https://github.com/BorgwardtLab/WTK.

9.1.3 Pricing with a diffusion network

We consider a pricing problem with a diffusion network, which is explored in [77]. Specifically, we
represent the network at time t as a graph θt = (Vt, Et), where Vt := {1, 2 . . . , |Vt|} is the set of all
users (nodes) and Et := {1, 2 . . . , |Et|} is the set of all directed edges. A directed edge (i, j) ∈ Et,
where i, j ∈ V , implies that user i is influenced by user j, and we call j an in-neighbor of i. We
use Ni;t to denote the set of all in-neighbors for agent i at time t and ni;t := |Ni;t| to denote her
in-degree (i.e., the number of in-neighbors).

In each iteration, the user i ∈ V will decide whether to adopt the service based on her realized utility
in period t : Yi(t) := I {ui(t) ≥ 0} ∈ {0, 1}, where ui(t) is the utility of user i to adopt the service
in period t, and is defined as

ui(t) = vi − αxt + β ·
∑

j∈Ni;t
Yj(t− 1)

ni;t
+ ϵi(t).

Here xt is the service price (decision variable); vi denotes the user (node) preference while α and
β are intrinsic network parameters; and ϵt is the i.i.d. Gaussian noise. In each iteration, the graph
structure θt = (Vt, Et) is presented to the agent to determine a price xt. In this experiment, we
consider maximizing the total profit brought by users’ service adoption in the network, and therefore
the reward function is

f(xt; θ) = xt × E

[∑
i

Yi(t; θ)

]
,

where xt denotes the price of the service. An increase in prices is likely to have a negative impact on
the adoption rate of service.

For the NN-AGP model, we select the graph convolutional neural network (GCN) [92] to approximate
the mapping g(θ). The training of GCN (as well as MGP) is accomplished by maximizing the
likelihood function. Since we do not have the ground-truth value of the expected maximum reward,
we instead record the cumulative rewards to compare the performance of different methods.

In terms of the experiment results in the main text, we let X = [0, 30] and θt represents an undirected
graph with 5 and 10 nodes where each edge exists with probability 1/2. Besides, we set α = β = 1
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50-th round 100-th round 300-th round
NN-AGP-UCB
(m=2) 0.07/0.25 0.10/0.81 0.27/1.31

NN-AGP-UCB
(m=5) 0.11/0.29 0.14/0.89 0.35/1.42

CGP-UCB
(additive kernel) 0.01/0.26 0.02/0.77 0.04/1.24

NN-UCB 0.14/2.28 0.35/4.13 0.40/6.51
NeuralUCB 0.11/1.64 0.23/3.62 0.37/5.45

Table 1: The mean of training time/ execution time of bandit algorithms associated with the first set
of experiments in Section 4.1.

and vi = 3 for each node. In terms of the NN-AGP model, we select m = 3. Besides, we select the
ICM model with the RBF kernel as the MGP component and a GCN with convolution size = 3. We
utilize the implementation from https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html.
Besides, we select the ICM model with the RBF kernel as the MGP component (Q = 1). For
CGP-UCB, we utilize the RBF kernel for the vectorized contextual variable. We also apply the
Gaussian RBF kernel between vertex histogram [59] that is specifically designed for graphs. The
experimental results indicate that our NN-AGP-UCB has a greater advantage than CGP-UCB when
the contextual variable exhibits more complexity (with more nodes).

9.2 Additional experiments

9.2.1 Computational time

In this section, we record the computational time of the algorithms. We record 1) the training time
that constructs the surrogate model based on the historical data and 2) the execution time that selects
the decision variable after the contextual variable is revealed. We record the time (seconds) for exactly
one round in the 50-th, 100-th, and 300-th rounds. We take the first set of experiments in Section 4.1
as an example and present the results in Table 1.

We notice that CGP-UCB is the most efficient in training time since it employs a pre-specified GP
model which does not update during iterations. The training procedure of CGP-UCB only requires
matrix operations, which can be implemented efficiently. On the other hand, all the algorithms that
involve NN require learning NN from data and longer training time than CGP-UCB. In terms of the
execution time, NN-AGP-UCB requires similar time as CGP-UCB, since the selection of the decision
variable of NN-AGP-UCB is based on GP as well. We also note that both NN-UCB and NeuralUCB
are initially designed for finite selections of decision variables. Thus, the computational cost of the
execution time is largely due to searching for the optimal decision variable from the discretized
feasible set. In addition, we consider sparse NN-AGP to alleviate the computational burden for future
work; see also a discussion in Section 10.1.

9.2.2 Sensitivity on reward function structure

As suggested by [68], commonly selected composite kernel functions of the joint Gaussian process
in CGP-UCB are additive kernels and multiplicative kernels. In this section, we show through
experiments that the performance of CGP-UCB is sensitive on whether the form of the composite
kernel is consistent with the structure of the reward function, while our NN-AGP-UCB achieves
acceptable performance through the experiments.

Specifically, we consider two synthetic reward functions in the form of

R3(x,θ) = sin (∥x∥2) |cos (∥θ∥2)| ;
R4(x,θ) = sin (∥x∥2) + cos (∥θ∥2) .

That is, R3(R4) is a multiplicative(additive) function with contextual/decision variables. We consider
d = 2 and d′ = 3. We let X = [−

√
2,
√
2]2 and Θ = [−1, 1]3. In terms of the joint GP model, we

consider both additive kernels and multiplicative kernels, of which each separate kernel is the radial
basis function (RBF) kernel. In terms of the NN-AGP model, we select m = 3. Besides, we select
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the ICM model with the RBF kernel as the MGP component and an FCN with 2 hidden layers of 64
and 32 nodes.

The experiment results (mean performance of 15 times experiments) are contained in Figure 7 and
Figure 8, which provide the insights as follows. First, for both reward functions, the NN-AGP-UCB
approach does not outperform the classical CGP-UCB approach in initial iterations, since the neural
networks require sufficient data to learn. Second, as the size of the data increases, NN-CGP-UCB
outperforms CGP-UCB in both experiments, owing to the strong approximation power of FCN.
Last, the performance of the CGP-UCB is sensitive to the form of the composite kernels and the
structure of reward functions. That is, for reward R3(x,θ) with a multiplicative structure, CGP-UCB
with the multiplicative kernel outperforms CGP-UCB with the additive kernel, while for reward
R4(x,θ) with an additive structure, CGP-UCB with the additive kernel outperforms CGP-UCB
with the multiplicative kernel. On the other hand, the performance of the NN-AGP-UCB remains
acceptable and outperforms baseline approaches no matter the structure of the reward function.

Figure 7: Average regrets of NN-AGP-UCB and CGP-UCB with multiplicative reward function
R3(x;θ).

9.2.3 Advantage with higher-dimensional contextual variables

In the previous section, we present the experimental results when d = 1 and d′ = 3. Here, in terms
of the additive reward function R4, we increase the dimension of the contextual variable d′ and
present the results (mean performance of 15 times experiments) in Figure 8, Figure 9 and Figure 10.
Experimental results indicate that the superiority of our NN-AGP-UCB becomes more significant as
the dimension of the contextual variable increases, considering the larger gaps (the scale of vertical
axis in each figure is different) between the average regrets.

Moreover, we also contain the results of NN-AGP-UCB+ in Figure 7, Figure 8, Figure 9 and
Figure 10. The experimental results indicate that NN-AGP-UCB+ does not generally outperform
NN-AGP-UCB, since NN-AGP-UCB+ is overly-conservative. On the other hand, NN-AGP-UCB+
still outperforms the baseline CGP-UCB with both multiplicative/additive kernels.

In addition, we also conduct additional experiments with higher-dimensional contextual variables,
while the reward function exhibits a sparse structure. We consider that the observed contextual
variable θ are randomly selected with equal probability from Θ = [−1/2, 1/2]50. That is d′ = 50.
Meanwhile, we select the reward function

R̃3(x,θ) = 2 sin (∥x∥2) |cos (∥θeff∥2)|

as a sparse version of the reward function R3(x,θ). Here, x ∈ [−
√
2,
√
2]2 and θeff denotes the first

20 dimensions of θ. That is, the remaining 30 dimensions of θ will not affect the reward function
while the user does not know. The experimental results are contained in Figure 11. The results on
average regret indicate the superiority of our approach in high-dimensional scenarios, even when
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Figure 8: Average regrets of NN-AGP-UCB and CGP-UCB with additive reward function R4(x;θ)
when d′ = 3.

Figure 9: Average regrets of NN-AGP-UCB and CGP-UCB with additive reward function R4(x;θ)
when d′ = 6.

the dimension of the NN-AGP model m ≪ d′. That is to say, by utilizing the neural network, the
NN-AGP model effectively extracts the information from the contextual variable and propagates it to
the MGP component.

9.2.4 Regression tasks with complex functions

As is discussed in the main context, the NN-AGP model inherits the strong approximation power
from neural networks, which leads to the better performance on contextual GP bandit problems. To
support this intuition, we conduct experiments to compare the prediction performance of NN-AGP
and a joint GP. That is, we select in advance all the points to be samples and attain the observations.
We then use these observations to train both NN-AGP and a joint GP. For both models, the prediction
value of the unknown function is the posterior mean. Here, we select the Ackley function [2] as a
representative to be approximated

f (x;θ = (a, b, c)) = −a exp

−b

√√√√1

d

d∑
i=1

x2
(i)

− exp

(
1

d

d∑
i=1

cos
(
cx(i)

))
+ a+ exp(1).
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Figure 10: Average regrets of NN-AGP-UCB and CGP-UCB with additive reward function R4(x;θ)
when d′ = 9.

Figure 11: Average regrets of NN-AGP and baseline approaches with the high-dimensional reward
function R̃3(x;θ).

A plot of the Ackley function is contained in Figure 12. We let X = [−32.768, 32.768]
2. In terms

of the contextual variable, we set a ∈ [15, 25], b ∈ [0.15, 0.25] and c ∈ [1.5π, 2.5π]. In terms of the
joint GP model, we consider both additive kernels and multiplicative kernels, of which each separate
kernel is the radial basis function (RBF) kernel. In terms of the NN-AGP model, we select m = 3.
Besides, we select the ICM model with the RBF kernel as the MGP component (Q = 1) and an FCN
with 2 hidden layers with 64 and 32 nodes.

We present the experimental results in Figure 13. The experiments are performed 15 times and
the experimental results indicate that our NN-AGP model achieves a better performance on the
approximation accuracy, which is quantified by rooted mean square error (RMSE) as well as the
corresponding standard deviation.

Since the NN-AGP model achieves a better performance in approximating the highly-nonstructural
function, we would expect that NN-AGP-UCB would also achieve a better performance in contextual
GP bandits when the reward function is highly-nonstructural as well.
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Figure 12: An Ackley function f(x, y) = −20 exp
(
−0.2

√
0.5 (x2 + y2)

)
− exp(0.5(cos(2πx) +

cos(2πy))) + e+ 20.

9.2.5 Air-quality monitoring sites

In this set of experiments, we consider sequentially selecting the site that will record the worst
air-quality, among multiple air-quality monitoring sites. That is, each x denotes an air-quality
monitoring site and |X | denotes the number of sites. We use the data collected by Beijing Municipal
Environmental Monitoring Center2; see also [120]. The data set includes hourly air pollutants data
from 12 nationally-controlled air-quality monitoring sites (|X | = 12). The time period is from March
1st, 2013 to February 28th, 2017. The recorded quantities in each iteration include

• PM2.5: PM2.5 concentration (ug/m3)

• PM10: PM10 concentration (ug/m3)

• SO2: SO2 concentration (ug/m3)

• NO2: NO2 concentration (ug/m3)

• CO: CO concentration (ug/mm3)

• O3: O3 concentration (ug/m3)

• TEMP: temperature (degree Celsius)

• PRES: pressure (hPa)

• DEWP: dew point temperature (degree Celsius)

2The data can be found at https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data.

36



Figure 13: RMSE’s of NN-AGP and joint GP with Ackley function.

• RAIN: precipitation (mm)
• wd: wind direction
• WSPM: wind speed (m/s).

In our experiment, we regard PM 2.5 as the unknown reward and the remaining quantities as the
observed contextual variables in each round, that is d′ = 11. That is, we would like to select the site
that records the largest PM 2.5. In terms of the decision variable, we simulate an x(i) ∼ Unif(0, 1)
for i = 1, 2, . . . , |X |, and use this generated random number to represent the site in all rounds. That
is, X =

{
x(1),x(2), . . . ,x(|X |)}. Since PM 2.5 in all the sites is contained in the data set, the regret

in each round is then the maximum PM 2.5 minus the PM 2.5 recorded in the selected site.

The setting of the approaches (NN-AGP-UCB, CGP-UCB, NN-UCB and NeuralUCB) is consistent
with that in Section 9.1.1. The experiment results are presented in Figure 14. The experiments
are performed 15 times. Although we use a same data set, the uncertainty comes from randomly
selecting the decision variables for initialization. The experimental results indicate that our approach
is applicable to real-world applications when the selection of the decision variable is finite, and
outperforms existing approaches. We also note that, all the compared approaches exhibit fluctuation
at the same time since the air-quality is influenced by human factors in certain period.

Figure 14: Average regrets of NN-AGP-UCB and baseline approaches with the real-data collected
from air-quality monitoring sites.
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10 Limitations & future work

In this section, we describe the limitations of NN-AGP, and propose potential future work to address
these limitations.

10.1 Sparse NN-AGP

As is widely known, the Gaussian process model suffers from a computational complexity of O
(
t3
)

(t denotes the sample size of data) and the NN-AGP model encounters the same challenge as well,
because of the GP expression with respect to the decision variable. In this way, we briefly introduce
the sparse NN-AGP model, which alleviates the computational burdens of the NN-AGP. A more
detailed discussion on this direction will be contained in future work.

In terms of the MGP in the NN-AGP, we specifically consider the scenario whenQ = 1 and there is no
vl’s. Denote p = (p (x1) ,p (x2) , . . . ,p (xN ))

⊤. In addition, u = (p (z1) ,p (z2) , . . . ,p (zM ))
⊤

are inducing points of the MGP on pseudo-inputs Z = {zm}Mm=1. In this way,(
p
u

)
∼ MN

((
0
0

)
,

(
Kpp K⊤

up

Kup Kuu

)
,A

)
.

That is, the matrix
(

p
u

)
is sampled from a matrix-variate normal distribution; see [55]. Here

K( · , · ) is the covariance matrix generated by the kernel function k (x,x′). Meanwhile, A = aa⊤,
where a = (a1, a2, . . . , am).
Remark 1. A matrix-valued random element X ∼ MN (M,U,V) is equivalent with that

vec {X} ∼ N (vec {M} ,V ⊗U) ,

where vec{ · } is the “vectorize” operator. Both U and V serve as the covariance matrix, where U
captures the covariance among rows (samples) while V captures that among columns (dimensions).
Meanwhile, for the p.d.f. of X, we denote is as p(X) = MN (X | M,U,V). This notation is also
used for the multivariate Gaussian case.

Define ψu (x) = K−1
uuku(x), where ku(x) denotes the covariance vector between p(x) and u.

Meanwhile, let
Φ = (ψu (x1) , ψu (x2) , . . . , ψu (xN )) .

We then have
p (p | u) = MN

(
p | Ψ⊤u,Kpp −Ψ⊤KuuΨ,A

)
.

Supppose that a variational prior is imposed on the inducing points as

qv (u) = MN
(
u | B,LL⊤,A

)
.

The selection of B and L is postponed. Based on the conditional distribution p(p | u), we have the
joint variational distribution qv(p,u) = p (p | u) qv(u). By marginalizing, we have

qv (p) = MN
(
p | Ψ⊤B,Kpp −Ψ⊤

(
Kuu − LL⊤

)
Ψ,A

)
(18)

With the variational distribution of qv (p), the inference of the MGP at any new point x∗ with a given
θ is

f̂(x∗;θ) ∼ N
(
g(θ)⊤ψu (x∗)

⊤
B, g(θ)⊤

(
k (x∗,x∗)− ψu (x∗)

⊤
(
Kuu − LL⊤

)
ψu (x∗)

)
Ag(θ)

)
.

In this way, the inference at a new point (θ,x∗) requires the computational complexity of O
(
tM2

)
instead of O

(
t3
)
. Next, we describe the procedure of deciding the parameters of the variational

prior qv(u), that is (B,L), and the location of inducing points Z. The selection is through the
variational inference approach, which minizes the kullback-leibler(KL)-divergence between qv (p,u)
and p (p,u | y) . Specifically

KL [qv(p,u)∥p(p,u | y)] = Eqv(p,u)

[
log

qv(p,u)

p(p,u | y)

]
= log p(y) + Eqv(p,u)

[
log

qv(p,u)

p(p,u,y)

]
= log p(y)− ELBO(v,Z),
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where the evidence lower bound (ELBO) is defined as

ELBO(v,Z) ≜ Eqv(p,u)

[
log

p(p,u,y)

qv(p,u)

]
.

Since log p(y) is fixed and not affected by the variational distribution, minimizing the KL-divergence
is then equivalent with maximizing ELBO, which is further decomposed as

ELBO(v,Z) = Eqv(p)[log p(y | p)]−KL [qv(u)∥p(u)] .
Note that

log p(y | p) = log p(y | p) = −N
2
log
(
2πσ2

ϵ

)
− 1

2σ2
ϵ

(y − f)
⊤
(y − f) ,

where f =
(
g(θ1)

⊤p (x1) , g(θ2)
⊤p (x2) , . . . , g(θN )⊤p (xN )

)⊤
is not a linear function with

respect to p. Thus, we employ the Markov chain Monte Carlo method to evaluate Eqv(p)[log p(y | p)].
In addition, the KL-divergence adopts a closed-form expression as

KL [qv(u)∥p(u)] =
1

2

vec {B}⊤ vec
{
K−1

uuBA−1
}
+m tr

{
K−1

uuLL
⊤
}
−m ln

∣∣∣LL⊤
∣∣∣

|Kuu|
−Mm

 .

In this way, the stochastic gradient descent method can be employed to maximize ELBO. We note that
the locations of the inducing points u can also be optimized as well. For more detailed discussions
on the sparse Gaussian process, we refer to [99, 57]. In addition, we compare sparse NN-AGP with
sparse joint GP with contextual/decision variables. In terms of NN-AGP, the sparsity is built on a
GP where the input dimension is d. In comparison, for the joint GP, the sparsity is built on a GP
where the input dimension is d+ d′. Intuitively, sparse NN-AGP requires fewer inducing points to
achieve a prescribed accuracy, which alleviates the computational complexity. We admit that further
discussions are required in future work.

10.2 Transfer learning with NN-AGP

It is widely accepted that incorporating NN into bandit problems generally requires sufficient data to
approximate the unknown reward function. Thus, the cold-start issue is brought to, in principle, all
bandit algorithms that uses NN. Compared with the algorithms that fully rely on NN (e.g., NeuralUCB
and NN-UCB), our NN-AGP-UCB actually suffers less from the cold-start issue, which is supported
by numerical results in Section 4.1. The reason is that, in existing NN-based bandit algorithms, NN
is responsible for approximating the entire reward function. In comparison, for the NN-AGP model,
NN is focused to only be used for approximating the mapping from the contextual variable to the
reward function and the approximation regarding the decision variable is supported by GP. It has been
widely accepted that GP generally requires less data than NN in practical applications, and therefore
NN-AGP helps to ease the cold-start issue.

Moreover, to further address the cold-start issue brought to NN-AGP, the transfer learning technology
[106] can be incorporated into the bandit algorithm. We conduct numerical experiments and present
the results in Figure 15. Specifically, we consider an unknown reward function fT and we also
have access to functions fs, s = 1, 2, . . . , 5 that have a similar structure with fT . We first sample
each fs for 50 or 100 rounds and learn an NN-AGP model with these samples. The NN component
in NN-AGP helps to transfer the knowledge from fs to fT . That is, during the initial rounds of
NN-AGP-UCB with fT , we first fix the input layer of the pretrained NN and update the remaining
layers with the new data, which is a widely-used transfer learning method named freezing.

Experimental results indicate that transfer learning from similar tasks helps to address the cold-start
issue, and NN-AGP-UCB with/without transfer learning will converge to the similar regrets as the
round increases. We also not that, to the best of our knowledge, there has not been sufficient work on
transfer learning with NN-based bandit algorithms. These NN-based bandit algorithms largely rely on
the neural tangent kernel (NTK) to address the exploration-exploitation trade-off when selecting the
decision variable. However, it remains an open question on how to transfer the knowledge between
different domains with NTK. In comparison, the exploration-exploitation trade-off in NN-AGP-UCB
is supported by GP, and existing transfer learning technologies with NN can be easily adapted into
our algorithm. Other methodologies for addressing cold-start in learning NN in an online setting can
also be employed; see [105, 108].
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Figure 15: Average regrets of fT (x;θ) = exp {cos (∥x∥2) + sin (∥θ∥2)} with X =

[−1, 1]
2 and Θ = [−1, 1]

3. In each similar task, samples are generated by fs (x;θ) =
exp {cos (∥x∥2) + ks sin (∥θ∥2)}, where ks is randomly selected from {1, 2, . . . , 10} with equal
probability for s = 1, 2, . . . , 5.
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