
A Pseudocode481

Algorithm 1: Dec_UCB
Input: G, T, Ci,k(t)

1 Initialization Each agent samples each arm exactly once. Initialize zi,k(0) = x̄i,k(0) = Xi,k(0),
mi,k(0) = ni,k(0) = 1, and Ci,k(0) = 0

2 for t = 0, . . . , T do
3 Ai = ∅
4 if ni,k(t) ≤ mi,k(t)−M then
5 Agent i puts k into a set Ai # exploration consistency requirements
6 end
7 if Ai = ∅ then
8 for k = 1, . . . ,M do
9 Qi,k(t+ 1) = zi,k(t) + Ci,k(t) # belief update

10 end
11 ai(t+ 1) = arg maxkQi,k(t+ 1) # optimal arm in belief
12 else
13 ai(t+ 1) is randomly chosen from Ai
14 end
15 Agent i sends mi,k(t) and zi,k(t) to each agent j satisfying i ∈ Nj # information transmission
16 Agent i receives mj,k(t), zj,k(t) from each neighbor j ∈ Ni
17 ni,k(t+ 1) = ni,k(t), ∀k ∈ [M ] # information updating
18 ni,ai(t+1)(t+ 1) = ni,ai(t+1)(t) + 1
19 mi,k(t+ 1) = max{ni,k(t+ 1),mj,k(t), j ∈ Ni}
20 zi,k(t+ 1) =

∑N
j=1 wijzj,k(t) + x̄i,k(t+ 1)− x̄i,k(t)

21 end

B Analysis and Proofs482

In this appendix, we provide the analysis of Dec_UCB and proofs of Theorems 1 and 2.483

We begin with some basic properties of sub-Gaussian random variables in B.1, and provide analysis484

on the exploration “consistency” of Dec_UCB in B.2, which theoretically validates Remark 2. Based485

on the properties in B.1 and results in B.2, we prove Theorems 1 and 2 in B.3 and B.4, respectively.486

B.1 Sub-Gaussian Random Variables487

A random variable X with E[X] = µ is called σ2 sub-Gaussian if there is a positive σ such that488

E(eλ(X−µ)) ≤ eσ
2λ2

2 , ∀λ ∈ IR.

Such σ2 is called a variance proxy, and the smallest variance proxy is called the optimal variance489

proxy. Sub-Gaussian random variables have the following three properties.490

Lemma 1. Let X be any σ2 sub-Gaussian random variable E[X] = µ. Then, for any a ≥ 0,491

P(X − µ ≥ a) ≤ e−
a2

2σ2 , P(µ−X ≥ a) ≤ e−
a2

2σ2 .

Proof: The proof can be found in Section 5.3 in [1].492

Lemma 2. Let X1, . . . , Xn be n independent random variables such that Xi is σ2
i sub-Gaussian493

random variable. Then, X1 + · · ·+Xn is (σ2
1 + · · ·+ σ2

n) sub-Gaussian.494

Proof: The proof can be found in Section 5.3 in [1].495

Lemma 3. If a random variable X has a finite mean and a ≤ X ≤ b almost surely, then X is496
1
4 (b− a)2 sub-Gaussian.497

Proof: The lemma is a direct consequence of Hoeffding’s Lemma in [2].498
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B.2 Exploration Consistency of Dec_UCB499

In this subsection, we will show that after a finite number of pulls, for each agent i and each arm500

k, there holds ni,k(t) ≤ 2 minj∈[N ] nj,k(t); see Lemma 6. An immediate consequence of this501

property is that maxj∈[N ] nj,k(t) ≤ 2 minj∈[N ] nj,k(t); in other words, the global maximal number502

of pulls of each arm is no larger than twice the corresponding global minimum. This ensures that the503

explorations of each arm among all the agents are consistent in the sense that no agent is behind too504

much in arm exploration.505

To proceed, we will make use of the concept of distance in a graph. For a strongly connected graph,506

the distance from vertex i to another vertex j is the length of the shortest directed path from i to j.507

The definition subsumes the special case of undirected graphs. For an undirected, connected graph,508

the distance between two different vertices is the length of the shortest path connecting them. We use509

the notation di,j to denote the distance from vertex i to vertex j in a graph G, regardless of it being510

directed or undirected. It is natural to define di,i = 0 for any vertex i, and easy to see that di,j ≤ d,511

where d is the diameter of G.512

It is worth emphasizing that the following three lemmas hold for both a directed, strongly connected513

neighbor graph G and an unidirected, connected G, using the same proofs.514

For the purpose of analysis, we define ni,k(t) = mi,k(t) = 0 for all i ∈ [N ] and k ∈ [M ] whenever515

t < 0.516

Lemma 4. For any i ∈ [N ] and k ∈ [M ],517

mi,k(t) = max
j∈[N ]

{nj,k(t− dj,i)} . (9)

Proof: We will prove the lemma by induction on t. For the basis step, suppose that t = 0. In this case,518

mi,k(1) = max{ni,k(0), mj,k(0), j ∈ Ni} = 1. Note that maxj∈[N ]{nj,k(t− dj,i)} = ni,k(0) =519

1. Thus, (9) holds when t = 0.520

For the inductive step, assume (9) holds at time t, and now consider time t+ 1. Note that521

mi,k(t+ 1) = max{ni,k(t+ 1), mj,k(t), j ∈ Ni}
= max{ni,k(t+ 1), nh,k(t− dj,h), h ∈ [N ], j ∈ Ni}.

It is easy to see that dh,i ≤ dj,i + dh,j = 1 + dh,j . Since ni,k(t) is a non-decreasing function of t by522

its definition,523

mi,k(t+ 1) ≤ max
h∈[N ]

{ni,k(t+ 1), nh,k(t− dh,i + 1)} = max
j∈[N ]

{nj,k(t− dj,i + 1)}. (10)

Fix any vertex j ∈ [N ] and let p = (j, vdj,i , . . . , v2, i) be a shortest path from j to i in G. From (2),524

mi,k(t+ 1) ≥ mv2,k(t) ≥ · · · ≥ mvdj,i ,k
(t− dj,i + 2)

≥ mj,k(t− dj,i + 1) ≥ nj,k(t− dj,i + 1). (11)

Since j is arbitrarily chosen from [N ], we have mi,k(t + 1) ≥ maxj∈[N ]{nj,k(t − dj,i + 1)}.525

Combining with (10), we have526

mi,k(t+ 1) = max
j∈[N ]

{nj,k(t− dj,i + 1)}.

Thus, (9) also holds at t+ 1, which completes the induction.527

Lemma 5. For any i ∈ [N ] and k ∈ [M ],528

ni,k(t) > mi,k(t)−M(M + 2d).

Proof: We will prove the lemma by contradiction. Suppose that, to the contrary, ∃ i, k1 such that
ni,k1(t) ≤ mi,k1(t)−M(M + 2d). Let t′ denote the first time at which the equality holds, i.e.,

ni,k1(t′) = mi,k1(t′)−M(M + 2d).

Here t′ must exist, since when t = 0, we have ni,k(0) > mi,k(0) − M(M + 2d), since both529

ni,k(t) and mi,k(t) increase by 0 and 1 at each time instance, if there exists some t such that530
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ni,k1(t) < mi,k1(t) −M(M + 2d), there must exist a t′ between 0 and t, such that ni,k1(t′) =531

mi,k1(t′)−M(M + 2d). According to Lemma 4, ∃ j ∈ [N ] such that532

mi,k1(t′) = nj,k1(t′ − dj,i). (12)

Then,533

nj,k1(t′ − dj,i)− ni,k1(t′) = M(M + 2d). (13)

Since according to Lemma 4, mi,k1(t) ≥ nj,k1(t− dj,i) always holds, so for t < t′, we have534

nj,k1(t− di,j)− ni,k1(t) ≤ mi,k1(t)− ni,k1(t) < M(M + 2d). (14)

Since ni,k(t) is non-decreasing for all i ∈ [N ], k ∈ [M ], (13) and (14) imply that nj,k1(t′ − di,j) >535

nj,k1(t′ − di,j − 1). This further implies that at time t′ − di,j , agent j pulls arm k1.536

Since each agent must pull an arm at each time, we have
∑
k ni,k(t) = t, ∀i ∈ [N ]. Then,537 ∑

k∈[M ]\k1

ni,k(t′)−
∑

k∈[M ]\k1

nj,k(t′ − dj,i) = M(M + 2d) + dj,i.

Applying the Pigeonhole principle, ∃ k2 ∈ [M ] such that538

ni,k2(t′)− nj,k2(t′ − dj,i) ≥
M(M + 2d)

M − 1
> M + 2d.

According to the definition of ni,k(t), it is non-decreasing and ni,k(t+ 1) ≤ ni,k(t) + 1, we obtain539

ni,k2(t′) = ni,k2(t′ − dj,i − di,j + dj,i + di,j) ≤ ni,k2(t′ − dj,i − di,j) + dj,i + di,j .

Thus,540

ni,k2(t′ − dj,i − di,j)− nj,k2(t′ − dj,i) > ni,k2(t′)− nj,k2(t′ − dj,i)− dj,i − di,j
> M + 2d− dj,i − di,j > M.

Using (11), we have mj,k2(t′ − dj,i) ≥ ni,k2(t′ − dj,i − di,j). Thus,541

mj,k2(t′ − dj,i)− nj,k2(t′ − dj,i) > M.

From the above analysis, agent j must pull arm k1 at time t′− dj,i. According to the decision making542

step of the algorithm, there holds543

mj,k1(t′ − dj,i)− nj,k1(t′ − dj,i) ≥M > 0. (15)

Note that from (11),544

mi,k1(t′) ≥ mj,k1(t′ − dj,i). (16)

Combining (12) – (16) together, we have545

nj,k1(t′ − dj,i) = mi,k1(t′) ≥ mj,k1(t′ − dj,i) > nj,k1(t′ − dj,i),
which is a contradiction. Therefore, the statement of the lemma is true.546

Lemma 6. For any i ∈ [N ] and k ∈ [M ], if ni,k(t) ≥ 2(M2 + 2Md+ d), then547

ni,k(t) ≤ 2 min
j∈[N ]

nj,k(t).

Proof: From (11), mj,k(t) ≥ ni,k(t− di,j), ∀i ∈ [N ]. Combining with nj,k(t+ 1) ≤ nj,k(t) + 1,548

we have549

mj,k(t) ≥ ni,k(t)− di,j ≥ ni,k(t)− d.
From Lemma 5, we have550

nj,k(t) ≥ ni,k(t)− (M2 + 2Md+ d), ∀ j, i ∈ [N ].

Since j is arbitrarily chosen, when ni,k(t) ≥ 2(M2 + 2Md+ d),551

min
j∈[N ]

nj,k(t) ≥ ni,k(t)− (M2 + 2Md+ d) ≥ ni,k(t)− 1

2
ni,k(t) =

1

2
ni,k(t),

which completes the proof.552
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B.3 Strongly Connected Graphs553

To prove the performance of Dec_UCB on strongly connected graphs as stated in Theorem 1, we need554

to provide a tight bound of the variance proxy of zi,k(t) in this case.555

Lemma 7. For any i ∈ [N ], k ∈ [M ] and time t ≥ 0, with W being defined in (5), zi,k(t) is a556

sub-Gaussian random variable, and when557

ni,k(t) ≥ max
{
L, 2(M2 + 2Md+ d)

}
,

the optimal variance proxy of zi,k(t) is no larger than 1
3ni,k(t) .558

Proof. According to Lemma 3, zi,k(t) is a sub-Gaussian random variable as it is bounded. From (1)559

and (3), we know that zi,k(t) is a linear combination of Xj,k(τ), for all j ∈ [N ], τ ∈ {1, 2, . . . , t}.560

According to Lemma 3 and Lemma 2, in order to find the variance proxy of zi,k(t), we need to561

estimate the coordinates of such Xj,k(τ) first.562

Note that from (4),563

zk(t) = Wzk(t− 1) + x̄k(t)− x̄k(t− 1)

= W tzk(0) +

t−1∑
τ=0

W τ (x̄k(t− τ)− x̄k(t− τ − 1))

=

t−1∑
τ=0

(W t−τ −W t−τ−1)x̄k(τ) + x̄k(t).

Thus,564

zi,k(t) =
∑
j

{ t−1∑
τ=0

[W t−τ −W t−τ−1]ij x̄j,k(τ) + [W 0]ij x̄j,k(t)

}
.

Denote τi,1, τi,2, . . . , τi,ni,k(t) as the ascending sequence of all time instances before time t at which565

agent i pulls arm k. From the initialization step of the algorithm, it is clear that τi,1 = 0. According566

to (1), if τi,m ≤ τ < τi,m+1, we have x̄i,k(τ) = x̄i,k(τi,m), ∀i ∈ [N ]. Then,567

zi,k(t) =
∑
j

{ nj,k(t)−1∑
h=1

[
W t−τj,h −W t−τj,h+1

]
ij
x̄j,k(τj,h) +

[
W

t−τj,nj,k(t)

]
ij
x̄j,k(τj,nj,k(t))

}
,

(17)
Let c(τ)

i,k,j(t) be the coefficient of Xj,k(τ) in zi,k(t), it is not hard to see from the above equation that568

when τ 6= τj,1, τj,2, . . . , τj,nj,k(t), we have c(τ)
i,k,j(t) = 0. Also, when τ = τj,1, τj,2, . . . , τj,nj,k(t),569

then Xj,k(τ) · 1(aj(τ) = k) = Xj,k(τ) are i.i.d. random variables. Thus, from Lemma 2 and570

Lemma 3,571

σ2
i,k ,

1

4

N∑
j=1

nj,k(t)∑
h=1

∣∣∣c(τj,h)
i,k,j (t)

∣∣∣2
is a variance proxy of zi,k(t). And we have572

c
(0)
i,k,j(t) =

[ nj,k(t)−1∑
h=1

W t−τj,h −W t−τj,h+1

h
+
W

t−τj,nj,k(t)

nj,k(t)

]
ij

(18)

which holds for all i ∈ [N ], k ∈ [M ]. The equation also can be written as573

c
(0)
i,k,j(t) =

[
W t −

nj,k(t)∑
h=2

W t−τj,h

(h− 1)h

]
ij

. (19)
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From (6), c(0)
i,k,j(t) satisfies574

|c(0)
i,k,j(t)| ≤[W∞]ij

(
1−

nj,k(t)∑
h=2

1

(h− 1)h

)
+ cρt2 + c

nj,k(t)∑
h=2

ρ
t−τj,h
2

(h− 1)h

=
[W∞]ij
nj,k(t)

+ cρt2 +

nj,k(t)∑
h=2

cρ
t−τj,h
2

(h− 1)h
.

Since 0 < ρ2 < 1, the smaller t − τj,h is, the larger the right side of the inequality would be, so575

ρ
t−τj,h
2 ≤ ρnj,k(t)−h

2 . Since576

nj,k(t)∑
h=2

ρ
nj,k(t)−h
2

(h− 1)h

=

12Ndce
12Ndce+1

nj,k(t)∑
h=2

ρ
nj,k(t)−h
2

(h− 1)h
+

nj,k(t)∑
12Ndce

12Ndce+1
nj,k(t)+1

ρ
nj,k(t)−h
2

(h− 1)h

= ρ
nj,k(t)−2
2 + (1− ρ2)

12Ndce
12Ndce+1

nj,k(t)∑
h=2

ρ
nj,k(t)−h−1
2

h
+

nj,k(t)∑
12Ndce

12Ndce+1
nj,k(t)+1

ρ
nj,k(t)−h
2

(h− 1)h

≤ ρnj,k(t)−2
2 + (1− ρ2)

12Ndce
12Ndce+1

nj,k(t)∑
h=2

ρ
nj,k(t)−h−1
2 +

nj,k(t)∑
12Ndce

12Ndce+1
nj,k(t)+1

1

(h− 1)h

≤ ρnj,k(t)−2
2 + ρ

nj,k(t)

12Ndce+1
−1

2 +
1

12Ndcenj,k(t)
,

we obtain that577

|c(0)
i,k,j(t)| ≤

[W∞]ij
nj,k(t)

+ c

(
ρt2 + ρ

nj,k(t)−2
2 + ρ

nj,k(t)

12Ndce+1
−1

2 +
1

12Ndcenj,k(t)

)
≤ [W∞]ij

nj,k(t)
+ 3cρ

nj,k(t)

12Ndce+1
−1

2 +
c

12Ndcenj,k(t)
.

Recall that L is the smallest value such that when t ≥ L, we have 3ρ
t/12Ndce
2 ≤ ρ2

24Ndcet . Since578

c ≤ dce, when nj,k(t) ≥ L, we have579

|c(0)
i,k,j(t)| ≤

[W∞]ij
nj,k(t)

+
1

8Nnj,k(t)
.

Note that the expression in [·] of (18) is a summation of nj,k(t) terms. From the derivation of (18)580

and the definition of c(τ)
i,k,j(t), it is straightforward to verify that for each l ∈ {2, . . . , nj,k(t)},581

c
(τj,l)
i,k,j =

[ nj,k(t)−1∑
h=l

W t−τj,h −W t−τj,h+1

h
+
W

t−τj,nj,k(t)

nj,k(t)

]
ij

,

in which [·] is the summation of the last nj,k(t)− l+ 1 terms in [·] of (18). Then, following the same582

steps as above, we can conclude that for all l ∈ {2, . . . , nj,k(t)}, there holds583 ∣∣∣ci,k,j(t)(τj,l)
∣∣∣ ≤ [W∞]ij

nj,k(t)
+

1

8Nnj,k(t)
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when nj,k(t) ≥ L. Using Lemma 6, when nj,k(t) ≥ max{L, 2(M2 + 2Md+ d)}, we have584

σ2
i,k(t) =

1

4

N∑
j=1

nj,k(t)∑
h=1

∣∣∣c(τj,h)
i,k,j

∣∣∣2
≤

N∑
j=1

[W∞]2ij + 1
4N · [W∞]ij + 1

64N2

4nj,k(t)

≤ 1

2ni,k(t)

( N∑
j=1

[W∞]2ij +
1

4N

N∑
j=1

[W∞]ij +
1

64N

)
. (20)

Since W is stochastic, so is W∞. Then,585

N∑
j=1

[W∞]ij = 1, (21)

and W∞ · 1 = 1. Let a> be the “normalized” dominant left eigenvector of W , i.e., a> · 1 = 1 and586

a> ·W = a>. Then, a> ·W∞ = a> and moreover W∞ = 1 · a> [3]. Since W is an irreducible587

nonnegative matrix, by the Perron-Frobenius Theorem, each entry of a is positive. With these facts,588

we have589

N∑
j=1

[W∞]2ij = a>a = a>Wa = tr(a>Wa) = tr(W · aa>) (tr(AB) = tr(BA))

≤
N∑
i=1

∑N
j=1 aiaj

|Ni|
(a is positive)

=

N∑
i=1

ai
|Ni|

(the sum of all entries of a equals 1)

≤
N∑
i=1

ai
2

(|Ni| ≥ 2)

=
1

2
, (22)

where tr(·) denotes the trace of a square matrix. Substituting (21) and (22) in (20), we have590

σ2
i,k(t) ≤ 1

2ni,k(t)
·
(

1

2
+

1

4N
+

1

64N

)
<

1

3ni,k(t)
,

which completes the proof.591

We are now in a position to prove Theorem 1.592

Proof of Theorem 1: According to Lemma 1 and Lemma 7, when593

ni,k(t) ≥ max
{
L, 2(M2 + 2Md+ d)

}
,

we have594

P

(
zi,k(t)− µk ≥

√
4 log t

3ni,k(t)

)
≤ exp

(
− 2 log t

3ni,k(t)σ2
i,k(t)

)
≤ 1

t2
.

Similarly,595

P

(
µk − zi,k(t) ≥

√
4 log t

3ni,k(t)

)
≤ 1

t2
.
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Now let us go back to the algorithm and set

Ci,k(t) =

√
4 log t

3ni,k(t)
.

The Decision Making step of Dec_UCB ensures that agent i chooses an arm k 6= 1, instead of the596

optimal arm 1, at time t only if one of the following four cases occurs:597

Case 1: ni,k(t) ≤ mi,k(t)−M ;598

Case 2: zi,k(t)− µk ≥ Ci,k(t);599

Case 3: µ1 − zi,1(t) ≥ Ci,1(t);600

Case 4: µ1 − µk < 2Ci,k(t).601

We are then prepared to find a bound for E(ni,k(T )). First, it is easy to verify that when602

ni,k(t) ≥ 16

3∆2
k

log T,

Case 4 does not hold. To proceed, we define t′ as the first time instance, if any, that satisfies603

ni,k(t′) = max

{
16

3∆2
k

log T, L, 2(M2 + 2Md+ d)

}
.

In the case when there does not exist such a t′ ≤ T , it immediately follows that604

ni,k(T ) < ni,k(t′) = max

{
16

3∆2
k

log T, L, 2(M2 + 2Md+ d)

}
.

Next consider the case when t′ exists and t′ ≤ T . Then,605 ∑
t>t′

[
P
(
zi,k(t)− µk ≥ Ci,k(t)

)
+ P

(
µ1 − zi,1(t) ≥ Ci,1(t)

)]
≤
∑
t>t′

2

t2
=
π2

3
,

which implies that after t′, the expected number of pulls of agent i on arm k due to Case 2 and606

Case 3 is no more than π2

3 . Since the difference between ni,k(t) and mi,k(t) is at most M2 + 2Md607

by Lemma 5 and ni,k(t) keeps increasing until the difference is less than M according to the608

Decision Making step of Dec_UCB, the expected number of pulls due to Case 1 must be no larger609

than π2

3 +M2 + (2d− 1)M . Thus,610

E(ni,k(T )) ≤ E (ni,k(T ) | T ≥ t′)

= ni,k(t′) +
2π2

3
+M2 + (2d− 1)M

= max

{
16

3∆2
k

log T, L, 2(M2 + 2Md+ d)

}
+

2π2

3
+M2 + (2d− 1)M.

Now we can get an upper bound of agent i’s regret as follows:611

Ri(T ) = Tµ1 −
T∑
t=1

E(Xai(t))

=
∑

k:∆k>0

E(ni,k(T )) ·∆k

≤
∑

k:∆k>0

(
max

{
16

3∆2
k

log T, L, 2(M2 + 2Md+ d)

}
+

2π2

3
+M2 + (2d− 1)M

)
∆k.

This completes the proof.612
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B.4 Undirected and Connected Graphs613

In this subsection, we prove the performance of Dec_UCB on undirected and connected graphs as614

stated in Theorem 2. The procedure is the same as that in B.3. We first provide a tight bound of the615

variance proxy of zi,k(t).616

Lemma 8. For any i ∈ [N ], k ∈ [M ], and time t, with W being defined in (8), zi,k(t) is a617

sub-Gaussian random variable, and when618

ni,k(t) ≥ max
{
L, 2(M2 + 2Md+ d)

}
,

the optimal variance proxy of zi,k(t) is no larger than 3
4|Ni|ni,k(t) .619

Proof. The arguments in the proof of Lemma 7 until (20) still hold here, that is, when nj,k(t) ≥620

max{L, 2(M2 + 2Md+ d)}, we still have621

σ2
i,k(t) ≤ 1

2ni,k(t)

( N∑
j=1

[W∞]2ij +
1

4N

N∑
j=1

[W∞]ij +
1

64N

)
,

where now W is a doubly stochastic matrix defined by (8). Since W is irreducible and doubly622

stochastic, its dominant left and right eigenvectors of eigenvalue 1 are 1> and 1, respectively, and623

thus W∞ = 1
N 11> [3]. Thus,624

σ2
i,k(t) ≤ 1

2ni,k(t)

(
1

N
+

1

4N
+

1

64N

)
≤ 3

4Nni,k(t)
≤ 3

4|Ni|ni,k(t)
,

which proves the lemma.625

Proof of Theorem 2: According to Lemma 1 and Lemma 8, when626

ni,k(t) ≥ max
{
L, 2(M2 + 2Md+ d)

}
,

we have627

P

(
zi,k(t)− µk ≥

√
3 log t

|Ni|ni,k(t)

)
≤ exp

(
− 3 log t

2|Ni|ni,k(t)σ2
i,k(t)

)
≤ 1

t2
.

Similarly,628

P

(
µk − zi,k(t) ≥

√
3 log t

|Ni|ni,k(t)

)
≤ 1

t2
.

Again, the Decision Making step of Dec_UCB guarantees that agent i chooses an arm k 6= 1 instead629

of the optimal arm 1 at time t only if one of the four cases listed in the proof of Theorem 1 occurs.630

First, it is easy to verify that when631

ni,k(t) ≥ 12

|Ni|∆2
k

log T,

Case 4 does not hold. Then, let t′ be the first time instance, if any, that satisfies632

ni,k(t′) = max

{
12

|Ni|∆2
k

log T, L, 2(M2 + 2Md+ d)

}
.

In the case when there does not exist such a t′ ≤ T , it immediately follows that633

ni,k(T ) < ni,k(t′) = max

{
12

|Ni|∆2
k

log T, L, 2(M2 + 2Md+ d)

}
.

In the other case when t′ exists and t′ ≤ T , using the same arguments as in the proof of Theorem 1,634

the expected number of pulls due to Case 1 is no larger than π2

3 +M2 + (2d− 1)M. Then,635

E(ni,k(T )) ≤ E (ni,k(T ) | T ≥ t′)

= ni,k(t′) +
2π2

3
+M2 + (2d− 1)M

= max

{
12

|Ni|∆2
k

log T, L, 2(M2 + 2Md+ d)

}
+

2π2

3
+M2 + (2d− 1)M.
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We thus get the following upper bound of agent i’s regret:636

Ri(T ) = Tµ1 −
T∑
t=1

E(Xai(t))

=
∑

k:∆k>0

E(ni,k(T )) ·∆k

≤
∑

k:∆k>0

(
max

{
12

|Ni|∆2
k

log T, L, 2(M2 + 2Md+ d)

}
+

2π2

3
+M2 + (2d− 1)M

)
∆k,

which completes the proof.637

C Additional Simulations638

In this appendix, we provide a set of additional simulations to complement those in Section 4. We639

compare the homogeneous and heterogeneous settings, and include simulations for special cases of640

interest.641

C.1 Homogeneous vs. Heterogeneous Settings642

Recall that a homogeneous setting requires that all agents observe the same reward distribution for643

any given arm, while in a heterogeneous setting, agents may observe different reward distributions644

for a given arm, as long as the mean reward for the arm is consistent across all agents. Below we645

present side by side homogeneous and heterogeneous simulations for otherwise identical settings,646

first for a case where only one class of reward distribution is present, and next in a case where three647

different classes of reward distributions are present.648

C.1.1 One Distribution649

In this subsection we consider side by side homogeneous and heterogeneous simulations for strongly650

connected, undirected connected, and weakly connected graphs with 6 agents able to choose from651

a set of 6 arms for T = 1000 time steps, and average the results over 100 trials. Arm means are652

chosen uniformly at random from [0.05, 0.95]. Reward distributions follow a Beta distribution with a653

standard deviation of either 0.01, 0.05, or 0.1. In the homogeneous case, each arm is assigned a Beta654

distribution with a certain standard deviation uniformly at random. In the heterogeneous case, each655

agent/arm pair is assigned a Beta distribution with a certain standard deviation uniformly at random.656

See Figures 5, 6, and 7.657

C.1.2 Three Distributions658

In this subsection we consider side by side homogeneous and heterogeneous simulations for strongly659

connected, undirected connected, and weakly connected graphs with 15 agents able to choose from660

a set of 10 arms for T = 1000 time steps, and average the results over 100 trials. Arm means661

are chosen uniformly at random from [0.05, 0.95]. Reward distributions follow either a truncated662

normal distribution with standard deviation 0.2, a Bernoulli distribution, or a uniform distribution663

with the greatest width possible in [0,1] given a particular mean. In the homogeneous case, each arm664

is assigned a distribution uniformly at random. In the heterogeneous case, each arm/agent pair is665

assigned a distribution uniformly at random. See Figures 8, 9, and 10.666

C.1.3 Discussion667

Our simulations on homogeneous and heterogeneous settings reveal no significant differences between668

the two in terms of regret performance. To complement Section 4 with some variety we opted to669

use new graph sizes, new quantities of arms, and new distributions, namely, Beta distributions with670

standard deviations other than 0.05, a truncated normal distribution with a standard deviation four671

times greater than that of Section 4, and a uniform distribution. Momentarily digressing from the672

homogeneous vs. heterogeneous comparison, we notice that these different settings still agree with673

our results in Section 3.2. If any difference between the homogeneous and heterogeneous settings674
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(a) Results for the homogeneous strongly con-
nected setting. Each arm follows a Beta distri-
bution with standard deviation chosen randomly
from 0.01, 0.05, 0.1
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(b) Results for the heterogeneous strongly con-
nected setting. Each agent/arm pair follows a Beta
distribution with standard deviation chosen ran-
domly from 0.01, 0.05, 0.1.

Figure 5: Homogeneous vs. heterogeneous regret plots for every agent running Dec_UCB and the
best agent running UCB1. Results for each plot are averaged over 100 different randomly generated
(Erdős–Rényi) strongly connected graphs.
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(a) Results for the homogeneous undirected con-
nected setting. Each arm follows a Beta distribu-
tion with standard deviation chosen randomly from
0.01, 0.05, 0.1

0 200 400 600 800 1000
Time

0

20

40

60

80

100

120

Ex
pe

ct
ed

 C
um

ul
at
iv
e 
Re

gr
et

Agent 0
Agent 1
Agent 2
Agent 3
Agent 4
Agent 5
UCB1

(b) Results for the heterogeneous undirected con-
nected setting. Each agent/arm pair follows a Beta
distribution with standard deviation chosen ran-
domly from 0.01, 0.05, 0.1.

Figure 6: Homogeneous vs. heterogeneous regret plots for every agent running Dec_UCB and the
best agent running UCB1. Results for each plot are averaged over 100 different randomly generated
(Erdős–Rényi) undirected connected graphs.

must be pointed out, we could observe from the figures in C.1.1 and C.1.2 that the homogeneous675

regrets appear to be somewhat smaller than the heterogeneous regrets. However, the difference is676

quite small, and without any theoretical backing we abstain from making any claims about differences677

in the two settings.678
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(a) Results for the homogeneous weakly connected
setting. Each arm follows a Beta distribution with
standard deviation chosen randomly from 0.01,
0.05, 0.1
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(b) Results for the heterogeneous weakly con-
nected setting. Each agent/arm pair follows a Beta
distribution with standard deviation chosen ran-
domly from 0.01, 0.05, 0.1.

Figure 7: Homogeneous vs. heterogeneous regret plots for every agent running Dec_UCB and the
best agent running UCB1. Results for each plot are averaged over 100 different randomly generated
(Erdős–Rényi) weakly connected graphs.
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(a) Results for the homogeneous strongly con-
nected setting. Each arm follows either a Bernoulli,
uniform, or truncated normal (σ = 0.2) distribu-
tion chosen at random.
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(b) Results for the heterogeneous strongly con-
nected setting. Each agent/arm pair follows either a
Bernoulli, uniform, or truncated normal (σ = 0.2)
distribution chosen at random.

Figure 8: Homogeneous vs. heterogeneous regret plots for both the worst performing agent of
Dec_UCB and best performing agent of UCB1 in otherwise identical settings. Results for each plot
are averaged over 100 different randomly generated (Erdős–Rényi) strongly connected graphs.

C.2 Selected Graphs679

C.2.1 Corollary 2: Undirected vs. Strongly Connected680

We first demonstrate the validity of Corollary 2. This is accomplished by first comparing the681

performance of Dec_UCB on an undirected, connected graph where all agents have at least two682

neighbors with the performance of Dec_UCB on a directed, strongly connected graph, keeping all683

other parameters the same. Six agents and six arms were used, with set means of [0.10, 0.25, 0.45,684

11



0 200 400 600 800 1000
Time

0

25

50

75

100

125

150

175

200
Ex

pe
ct
ed

 C
um

ul
at
iv
e 
Re

gr
et

Worst Decentralized Regret
Best UCB1 Regret

(a) Results for the homogeneous undirected con-
nected setting. Each arm follows either a Bernoulli,
uniform, or truncated normal (σ = 0.2) distribu-
tion chosen at random.
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(b) Results for the heterogeneous undirected con-
nected setting. Each agent/arm pair follows either a
Bernoulli, uniform, or truncated normal (σ = 0.2)
distribution chosen at random.

Figure 9: Homogeneous vs. heterogeneous regret plots for both the worst performing agent of
Dec_UCB and best performing agent of UCB1 in otherwise identical settings. Results for each plot
are averaged over 100 different randomly generated (Erdős–Rényi) undirected connected graphs.
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(a) Results for the homogeneous weakly connected
setting. Each arm follows either a Bernoulli, uni-
form, or truncated normal (σ = 0.2) distribution
chosen at random.
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(b) Results for the heterogeneous weakly con-
nected setting. Each agent/arm pair follows either a
Bernoulli, uniform, or truncated normal (σ = 0.2)
distribution chosen at random.

Figure 10: Homogeneous vs. heterogeneous regret plots for both the worst performing agent of
Dec_UCB and best performing agent of UCB1 in otherwise identical settings. Results for each plot
averaged over 100 different randomly generated (Erdős–Rényi) weakly connected graphs.

0.65, 0.75, 0.90] for the arms. The reward means µk were the same for all agents on a given arm, with685

each µk randomly chosen from a uniform distribution on [0.05, 0.95]. Possible reward distributions686

again included the Beta, Bernoulli, and truncated normal distributions, following the three distribution687

heterogeneous setting. Experiments were ran for T = 1000 time steps for a total of 100 experiments.688

The used graphs and their performances are shown in Figures 11 and 12 respectively. As shown,689

every agent in the undirected graph performs better than the agents in the strongly connected graph,690

with the performance of an undirected agent being directly related to its number of neighbors.691
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Next we compare the performance of Dec_UCB on an undirected, connected graph where all agents692

are not guaranteed to have at least two neighbors with the performance of Dec_UCB on the same693

directed, strongly connected graph. This undirected graph is shown in Figure 13. As illustrated, the694

undirected agents with only one neighbor (Agents 0 and 5) perform approximately equivalent to the695

strongly connected agents. The undirected agents with two neighbors perform better than the strongly696

connected agents.
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Figure 11: The used undirected graph, ensuring that all agents have at least two neighbors. Reward
distributions used vary between agents for a given arm.
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Figure 12: The used strongly connected graph for comparison. Reward distributions used vary
between agents for a given arm.

0 200 400 600 800 1000
Time

0

20

40

60

80

100

120

140

Ex
pe

ct
ed

 C
um

ul
at
iv
e 
Re

gr
et

Agent 0
Agent 1
Agent 2
Agent 3
Agent 4
Agent 5
UCB1

0

1

2

3

4

5

Figure 13: The used undirected graph, allowing for some agents to have only one neighbor. Reward
distributions used vary between agents for a given arm.

C.2.2 (Weakly Connected) Directed Path Graph698

We next illustrate results for a special weakly connected graph, directed path, for Dec_UCB, compared699

with UCB1. Six agents and six arms were used, with results averaged over 100 experiments,700
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generating new random means µk each time. The reward means µk were the same for all agents on701

a given arm, with each µk randomly chosen from a uniform distribution on [0.05, 0.95]. Possible702

reward distributions again included the Beta, Bernoulli, and truncated normal distributions, following703

the three distribution heterogeneous setting. Each experiment was ran for T = 1000 time steps. The704

results are illustrated in Figure 14. These results further suggest that Dec_UCB can perform better705

than UCB1 for this special type of weakly connected graphs, though we are unable to definitively706

confirm or deny this until theoretical backing is developed or a counterexample is discovered.707

It is worth emphasizing that in such a directed path, the “root” agent (e.g., agent 0 in Figure 14) does708

not have any incoming neighbor and thus receives no external information. The root agent therefore709

solves the bandit problem as in the conventional single-agent case. Since the upper confidence bound710

function of Dec_UCB is smaller than that of UCB1, it is likely that there exists counterexamples,711

with certain “worst-case” reward distributions, in which such a “root” agent cannot solve the bandit712

problem using Dec_UCB.
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Figure 14: A plot of the regret for both Dec_UCB and UCB1 of the weakly connected directed path
graph, averaged over 100 experiments. Reward distributions used vary between agents for a given
arm.
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