
List of Appendices

A Limitations of Our Algorithms 17

B Missing Proofs in Section 5 17

B.1 Proof and Remarks of Theorem 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 17

B.2 Proof of Theorem 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

B.3 Proof of Theorem 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

B.4 Hardness of stochastic environments . . . . . . . . . . . . . . . . . . . . . . . . . 19

C Missing Proofs in Section 3 20

C.1 Proof Sketch for Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

C.2 Proof of Lemma C.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

C.3 Proof of Lemma C.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

C.4 Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

C.5 Local Regret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

C.6 Proof of Theorem C.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

C.7 Instantiations of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

D Missing Proofs in Section 4 29

D.1 Proof of Lemma D.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

E Analysis of Example 4.3 32

E.1 Verifying Assumption 4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

E.2 Verifying Assumption 2.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

E.3 Verifying Assumption 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

F Helper Lemmas 38

F.1 Helper Lemmas on Probability Analysis . . . . . . . . . . . . . . . . . . . . . . . 38

F.2 Helper Lemmas on Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . 47

16



A Limitations of Our Algorithms

In this section we discuss the limitations of our algorithms.

Deterministic reward. In the nonlinear bandit setting, we rely on deterministic reward to estimate
the gradient by finite difference. However, similar to zero-order optimization literature, this method
can be extended to stochastic rewards with multiple-point feedback [54]. We also prove that under
standard sub-Gaussian noise, no algorithm can achieve action-dimension-free sample complexity
(see Theorem B.1).

Sub-optimal dependency on ε. As suggested in Section 3.1, the sample complexity of our al-
gorithm is not minimax-optimal regarding the dependence of ε. This is because we solve concrete
instances by loose reductions. In addition, we didn’t try to optimize the dependence on ε. Achieving
optimal sample complexity is left as future work.

How large is sequential Rademacher complexity? Bounding the sequential Rademacher com-
plexity for the loss class can be non-trivial. However, we generally believe that both the direction
gradient term and the projected Hessian term in the loss have similar complexities as the original
neural nets, and therefore our loss function is not much more complex than the reward function
itself. There is some evidence that corroborates this conjecture.

• In the neural net example in Section 3.1, the (1,∞)-norm bound for the sequential
Rademacher complexity of the loss class is the same as the best known bound the neu-
ral net family Rakhlin et al. [62, Proposition 15].

• If a neural net has p parameters, its directional gradient and hessian can both be expressed
by neural nets with O(p) parameters.

• For finite model class, the sequential Rademacher complexity for the loss function classes
are also bounded by log size of the hypothesis.

B Missing Proofs in Section 5

In this section, we prove several negative results.

B.1 Proof and Remarks of Theorem 5.1

Proof. We consider the class I = {Iθ,ε : ‖θ‖2 ≤ 1, ε > 0} of infinite-armed bandit instances,
where in the instance Iθ,ε, the reward of pulling action x ∈ Bd2(1) is deterministic and is equal to

η(Iθ,ε, x) = Ax{〈x, θ〉 − 1 + ε, 0}. (7)

We prove the theorem by proving the minimax regret. The sample complexity then follows from the
canonical sample complexity-regret reduction [39, Section 3.1]. Let A denote any algorithm. Let
RTA,I be the T -step regret of algorithm A under instance I . Then we have

inf
A

sup
I∈I

E[RTA,I ] ≥ Ω(T
d−2
d−1 ).

Fix ε = c · T−1/(d−1). Let Θ be an ε-packing of the sphere {x ∈ Rd : ‖x‖2 = 1}. Then we have
|Θ| ≥ Ω(ε−(d−1)). So we choose c > 0 to be a numeric constant such that T ≤ |Θ|/2. Let µ be the
distribution over Θ such that µ(θ) = Pr[∃t ≤ T s.t. η(Iθ,ε,at) 6= 0 when rτ ≡ 0 for τ = 1, . . . , T ].
Note that for any action at ∈ Bd2(1), there is at most one θ ∈ Θ such that η(Iθ,ε,at) 6= 0, because
Θ is a packing. Since T ≤ |Θ|/2, there exists θ∗ ∈ Θ such that µ(θ∗) ≤ 1/2. Therefore, with
probability 1/2, the algorithm A would obtain reward rt = η(Iθ∗,ε,at) = 0 for every time step
t = 1, . . . , T . Note that under instance Iθ∗,ε, the optimal action is to choose at ≡ θ∗, which would
give reward r∗t ≡ ε. Therefore, with probability 1/2, we have E[RTA,Iθ,ε ] ≥ εT/2 ≥ Ω(T

d−2
d−1 ).

We also note that Theorem 5.1 does require ReLU activation, because if the ReLU function is re-
placed by a strictly monotone link function with bounded derivatives (up to third order), it is the
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setting of deterministic generalized linear bandit problem, which does allow a global regret that
depends polynomially on dimension [23, 14, 52]. In this case, our Theorem C.3 can also give
polynomial global regret result: because all local maxima of the reward function is global maxi-
mum [34, 43] and it also satisfies the strict-saddle property [26], all approximate local maxima are
global. This shows that our framework does separate the intractable cases from the tractable by the
notions of local and global regrets.

With two-layer neural networks, we can relax the use of ReLU activation—Theorem 5.2 holds with
two-layer neural networks and leaky-ReLU activations [75] because O(1) leaky-ReLU can imple-
ment a ReLU activation. We conjecture that with more layers, the impossibility result also holds for
a broader sets of activations.

B.2 Proof of Theorem 5.2

Proof. We adopt the notations from Appendix B.1. We use dimE(F , ε) to denote the ε-eluder
dimension of the function class F . Let Θ be an ε-packing of the sphere {x ∈ Rd : ‖x‖2 = 1}.
We write Θ = {θ1, . . . , θn}. Then we have n ≥ Ω(ε−(d−1)). Next we establish that dimE(F , ε) ≥
Ω(ε−(d−1)). For each i ∈ [n], we define the function fi(a) = η(Iθi,ε,a) ∈ F . Then for i ≤ n− 1,
we have fi(θj) = fi+1(θj) for j ≤ i − 1, while ε = fi(θi) 6= fi+1(θi) = 0. Therefore, θi is
ε
2 -independent of its predecessors. As a result, we have dimE(F , ε) ≥ n− 1.

B.3 Proof of Theorem 5.3

First of all, we review the UCB algorithm in deterministic environments.

We formalize UCB algorithm under deterministic environments as follows. At every time step
t, the algorithm maintains a upper confidence bound Ct : A → R. The function Ct satisfies
η(θ?, a) ≤ Ct(a). And then the action for time step t is at ← arg maxCt(a). Let Θt be the set of
parameters that is consistent with η(θ?, a1), · · · , η(θ?, at−1). That is, Θt = {θ ∈ Θ : η(θ, aτ ) =
η(θ?, aτ ),∀τ < t}. In a deterministic environment, the tightest upper confidence bound is Ct(a) =
supθ∈Θt η(θ, a).

We first provide a proof sketch to the theorem. We consider the following reward function.

η((θ?1 , θ
?
2 , α), a) =

1

64
〈a, θ?1〉+ αmax

(
〈θ?2 , a〉 −

31

32
, 0

)
.

Note that the reward function η can be clearly realized by a two-layer neural network with width 2d.
When α = 0 we have η((θ?1 , θ

?
2 , α), a) = 1

64 〈θ
?
1 , a〉 , which represents a linear reward. Informally,

optimism based algorithm will try to make the second term large (because optimistically the algo-
rithm hopes α = 1), which leads to an action at that is suboptimal for ground-truth reward (in which
case α = 0). In round t, the optimism algorithm observes 〈θ?2 , at〉 = 0, and can only eliminate an
exponentially small fraction of θ?2 from the hypothesis. Therefore the optimism algorithm needs
exponential number of steps to determine α = 0 and stops exploration. Formally, the prove is given
below.

Proof. Consider a bandit problem where A = Sd−1 and

η((θ?1 , θ
?
2 , α), a) =

1

64
〈a, θ?1〉+ αmax

(
〈θ?2 , a〉 −

31

32
, 0

)
.

The hypothesis space is Θ = {θ1, θ2, α : ‖θ1‖2 ≤ 1, ‖θ2‖2 ≤ 1, α ∈ [0, 1]}. Then the reward
function η can be clearly realized by a two-layer neural network with width d. Note that when
α = 0 we have η((θ?1 , θ

?
2 , α), a) = 1

64 〈θ
?
1 , a〉 , which represents a linear reward. In the following

we use θ? = (θ?1 , θ
?
2 , 0) as a shorthand.

The UCB algorithm is described as follows. At every time step t, the algorithm maintains a upper
confidence bound Ct : A → R. The function Ct satisfies η(θ?, a) ≤ Ct(a). And then the action for
time step t is at ← argmaxCt(a).

Let P = {p1, p2, · · · , pn} be an 1
2 -packing of the sphere Sd−1, where n = Ω(2d). Let B(pi,

1
4 )

be the ball with radius 1/4 centered at pi, and Bi = B(pi,
1
4 ) ∪ Sd−1. We prove the theorem by

18



showing that the UCB algorithm will explore every packing in P . That is, for any i ∈ [n], there
exists t such that at ∈ Bi. Since we have supaj∈Bj 〈pi, aj〉 ≤ 31/32 for all j 6= i, this over-
exploration strategy leads to a sample complexity (for finding a (31/2048)-suboptimal action) at
least Ω(2d) when θ? = (pi, pi, 0).

Let Θt be the set of parameters that is consistent with η(θ?, a1), · · · , η(θ?, at−1). That is, Θt =
{θ ∈ Θ : η(θ, aτ ) = η(θ?, aτ ),∀τ < t}. Since our environment is deterministic, a tightest upper
confidence bound is Ct(a) = supθ∈Θt η(θ, a). Let At = {a1, · · · , at}. It can be verified that for
any θ2 ∈ Sd−1, η((θ?1 , θ2, 1), ·) is consistent with η(θ?, ·) on At−1 if B(θ2,

1
4 ) ∪ At−1 = ∅. As a

result, for any θ2 such that B(θ2,
1
4 ) ∪At−1 = ∅ we have

Ct(θ2) ≥ 1

32
>

1

128
+ sup

a
η(θ?, a). (8)

Next we prove that for any i ∈ [n], there exists t such that at ∈ B(pi,
1
4 ). Note that η(θ, ·) is 65

64

Lipschitz for every θ ∈ Θ. As a result, Ct(aτ + ξ) ≤ Ct(aτ ) + 65
64 ‖ξ‖2 = η(θ?, aτ ) + 65

64 ‖ξ‖2 for
all τ < t. Consequently,

Ct(aτ + ξ) ≤ sup
a
η(θ?, a) +

1

128
=

3

128
(9)

for any τ < t and ξ such that ‖ξ‖2 ≤
1

130 . In other words, Eq. (9) upper bounds the upper confidence
bound for actions that is taken by the algorithm, and Eq. (8) lower bounds the upper confidence
bound for actions that is not taken.

Now, for the sake of contradiction, assume that actions in B(θ2,
1
4 ) is never taken by the algorithm.

By Eq. (9) we have Ct(θ2) ≥ 1
32 for all t. Let Ht = ∪t−1

τ=1B(aτ ,
1

130 ). By Eq. (9) we have Ct(a) ≤
3

128 for all a ∈ Ht. Because at ← argmaxa Ct(a) and maxa∈Ht Ct(a) < Ct(θ2), we conclude that
at 6∈ Ht. Therefore, {at} is a (1/130)-packing. However, the (1/130)-packing of Sd−1 has a size
bounded by 130d, which leads to contradiction.

For any θ2 there exists t ≤ 130d such that at ∈ B(θ2,
1
4 ).

B.4 Hardness of stochastic environments

As a motivation to consider deterministic rewards, the next theorem proves that a poly(log|Θ|)
sample complexity is impossible for finding local optimal action even under mild stochastic envi-
ronment.
Theorem B.1. There exists an bandit problem with stochastic reward and hypothesis class with size
log|Θ|= Õ(1), such that any algorithm requires Ω(d) sample to find a (0.1, 1)-approximate second
order stationary point with probability at least 3/4.

A similar theorem is proved in Lattimore, Szepesvári [46, Section 23.3] (in a somewhat different
context) with minor differences in the constructed hard instances.

Proof. We consider a linear bandit problem with hypothesis class Θ = {e1, · · · , ed}. The action
space is Sd−1. The stochastic reward function is given by η(θ, a) = 〈θ, a〉+ ξ where ξ = N (0, 1) is
the noise. Define the set Ai = {a ∈ Sd−1 : |〈a, ei〉| ≥ 0.9}. By basic algebra we get, Ai ∩ Aj = ∅
for all i 6= j.

The manifold gradient of η(θ, ·) on Sd−1 is

grad η(θ, a) =
(
I − aa>

)
θ.

By triangular inequality we get ‖grad η(θ, a)‖2 ≥ ‖θ‖2−|〈a, θ〉|.Consequently, ‖grad η(θi, a)‖2 ≥
0.1 for a 6∈ Ai. In other words,

(
Sd−1 \Ai

)
does not contain any (0.1, 1)-approximate second order

stationary point for η(θi, ·).
For a fixed algorithm, let a1, · · · , aT be the sequence of actions chosen by the algorithm, and xt =
〈θ?, at〉 + ξt. Next we prove that with T . d steps, there exists i ∈ [d] such that Pri [aT ∈ Ai] ≤
1/2, where Pri denotes the probability space generated by θ? = θi. Let Pr0 be the probability space
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generated by θ? = 0. Let Ei,T be the event that the algorithm outputs an action a ∈ Ai at time step
T . By Pinsker inequality we get,

Ei[Ei,T ] ≤ E0[Ei,T ] +

√
1

2
DKL(Pri,Pr0). (10)

Using the chain rule of KL-divergence and the fact that DKL(N (0, 1),N (a, 1)) = a2

2 , we get

Ei[Ei,T ] ≤ E0[Ei,T ] +

√√√√1

4
E0

[
T∑
t=1

〈at, θi〉2
]
. (11)

Consequently,

d∑
i=1

Ei[Ei,T ] ≤
d∑
i=1

E0[Ei,T ] +

d∑
i=1

√√√√1

4
E0

[
T∑
t=1

〈at, θi〉2
]

(12)

≤ 1 +

√√√√d

4
E0

[
d∑
i=1

T∑
t=1

〈at, θi〉2
]
≤ 1 +

√
dT

4
, (13)

which means that

min
i∈[d]

Ei[Ei,T ] ≤ 1

d
+

√
T

4d
. (14)

Therefore when T ≤ d, there exists i ∈ [d] such that Ei[Ei,T ] ≤ 3
4 .

C Missing Proofs in Section 3

In this section, we show missing proofs in Section 3. We also define the notion of local regret, and
prove a sublinear (local) regret result.

C.1 Proof Sketch for Theorem 3.1

Proof of Theorem 3.1 consists of the following parts:

i. Because of the design of the loss function (Eq. 5), the online learner guarantees that θt can
estimate the reward, its gradient and hessian accurately, that is, for θt ∼ pt, η(θ?, at) ≈ η(θt, at),
∇aη(θ?, at−1) ≈ ∇aη(θt, at−1), and ∇2

aη(θ?, at−1) ≈ ∇2
aη(θt, at−1).

ii. Because of (i), maximizing the virtual reward Eθtη(θt, a) w.r.t a leads to improving the real
reward function η(θ?, a) iteratively (in terms of finding second-order local improvement direction.)

Concretely, define the errors in rewards and its derivatives: ∆t,1 = |η(θt, at)− η(θ?, at)|,
∆t,2 = |η(θt, at−1)− η(θ?, at−1)|, ∆t,3 = ‖∇aη(θt, at−1)−∇aη(θ?, at−1)‖2, and ∆t,4 =∥∥∇2

aη(θt, at−1)−∇2
aη(θ?, at−1)

∥∥
sp
. Let ∆2

t =
∑4
i=1 ∆2

t,i be the total error which measures how
closeness between θt and θ?.

Assuming that ∆t,j’s are small, to show (ii), we essentially view at = argmaxa∈A Eθtη(θt, a) as
an approximate update on the real reward η(θ?, ·) and show it has local improvements if at−1 is not
a critical point of the real reward:

η(θ?, at) '∆t
Eθt [η(θt, at)] (15)

≥ sup
a

Eθt
[
η(θt, at−1) + 〈a− at−1,∇aη(θt, at−1)〉 − ζh

2
‖a− at−1‖22

]
(16)

'∆t sup
a

Eθt
[
η(θ?, at−1) + 〈a− at−1,∇aη(θ?, at−1)〉 − ζh

2
‖a− at−1‖22

]
(17)

≥ η(θ?, at−1) +
1

2ζh
‖∇aη(θ?, at−1)‖22 . (18)

Here in equations (15) and (17), we use the symbol '∆t
to present informal inequalities that are

true up to some additive errors that depend on ∆t. This is because equation (15) holds up to
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errors related to ∆t,1 = |η(θt, at)− η(θ?, at)|, and equation (17) holds up to errors related to
∆t,2 = |η(θt, at−1)− η(θ?, at−1)| and ∆t,3 = ‖∇aη(θt, at−1)−∇aη(θ?, at−1)‖2. Eq. (16)
is a second-order Taylor expansion around the previous iteration at−1 and utilizes the definition
at = argmaxa∈A Eθtη(θt, a). Eq. (18) is a standard step to show the first-order improvement of
gradient descent (the so-called “descent lemma”). We also remark that at is the maximizer of the
expected reward Eθtη(θt, a) instead of η(θt, a) because the adversary in online learning cannot see
θt when choosing adversarial point at.

The following lemma formalizes the proof sketch above, and also extends it to considering second-
order improvement. The proof can be found in Appendix C.2.

Lemma C.1. In the setting of Theorem C.3, when at−1 is not an (ε, 6
√
ζ3rdε)-approximate sec-

ond order stationary point, we have η(θ?, at) ≥ η(θ?, at−1) + min
(
ζ−1
h ε2/4, ζ

−1/2
3rd ε3/2

)
−

C1Eθt∼pt [∆t].

Next, we show part (i) by linking the error ∆t to the loss function ` (Eq. (5)) used by the
online learner. The errors ∆t,1,∆t,2 are already part of the loss function. Let ∆̃t,3 =

〈∇aη(θt, at−1)−∇aη(θ?, at−1), ut〉 and ∆̃t,4 =
〈
∇2
aη(θt, at−1)−∇2

aη(θ?, at−1)ut, vt
〉

be the
remaining two terms (without the clipping) in the loss (Eq. (5)). Note that ∆̃t,3 is supposed to bound
∆t,3 because Eut [∆̃2

t,3] = ∆2
t,3. Similarly, Eut,vt [∆̃2

t,4] = ‖∇2
aη(θt, at−1) − ∇2

aη(θ?, at−1)‖2F≥
∆2
t,4. We clip ∆̃t,3 and ∆̃t,4 to make them uniformly bounded and improve the concentration with

respect to the randomness of u and v (the clipping is conservative and is often not active). Let
∆̃2
t = ∆2

t,1 + ∆2
t,2 + min

(
κ2

1, ∆̃
2
t,3

)
+ min

(
κ2

2, ∆̃
2
t,4

)
be the error received by the online learner

at time t. The argument above can be rigorously formalized into a lemma that upper bound ∆t by
∆̃t, which will be bounded by the sequential Rademacher complexity.

Lemma C.2. In the setting of Theorem C.3, we have Eu1:T ,v1:T ,θ1:T [
∑T
t=1 ∆̃2

t ] ≥
1
2Eθ1:T [

∑T
t=1 ∆2

t ].

We defer the proof to Appendix C.3. With Lemma C.1 and Lemma C.2, we can prove Theorem 3.1
by keeping track of the performance η(θ?, at). The full proof can be found in Appendix C.4.

C.2 Proof of Lemma C.1

Proof. We prove the lemma by showing that algorithm 1 improves reward η(θ?, at) in the following
two cases:

1. ‖∇aη(θ?, at−1)‖2 ≥ ε, or

2. ‖∇aη(θ?, at−1)‖2 ≤ ε and λmax

(
∇2
aη(θ?, at−1)

)
≥ 6
√
ζ3rdε.

Case 1: For simplicity, let gt = ∇aη(θ?, at−1). In this case we assume ‖gt‖2 ≥ ε.Define function

η̄t(θ, a) = η(θ, at−1) + 〈a− at−1,∇aη(θ, at−1)〉 − ζh ‖a− at−1‖22 (19)

to be the local first order approximation of function η(θ, a). By the Lipschitz assumption (namely,
Assumption 2.1), we have η(θ, a) ≥ η̄t(θ, a) for all θ ∈ Θ, a ∈ A. By the definition of ∆t,2 and
∆t,3, we get

η̄t(θt, a) ≥ η̄t(θ?, a)−∆t,2 − ‖a− at−1‖2 ∆t,3. (20)

In this case we have

η(θ?, at) ≥ Eθt∼pt [η(θt, at)−∆t,1]

≥ sup
a

Eθt∼pt [η(θt, a)−∆t,1] (By the optimality of at)

≥ sup
a

Eθt∼pt [η̄t(θt, a)−∆t,1]

≥ sup
a

Eθt∼pt [η̄t(θ?, a)−∆t,1 −∆t,2 − ‖a− at−1‖2 ∆t,3] (By Eq. (20))
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≥ Eθt∼pt
[
η(θ?, at−1) +

1

4ζh
‖gt‖22 −∆t,1 −∆t,2 −

‖gt‖2
2ζh

∆t,3

]
(Take a = at−1 + gt

2ζh
)

≥ η(θ?, at−1) +
ε2

4ζh
− Eθt∼pt

[(
2 +

ζg
ζh

)
∆t

]
(By Cauchy-Schwarz)

Case 2: Let Ht = ∇2
aη(θ?, at−1). Define vt ∈ argmaxv:‖v‖2=1 v

>Htv. In this case we have
‖gt‖2 ≤ ε and

v>t Htvt ≥ 6
√
ζ3rdε ‖vt‖22 . (21)

Define function

η̂t(θ, a) = η(θ, at−1) + 〈a− at−1,∇aη(θ, at−1)〉

+
1

2

〈
∇2
aη(θt, at−1)(a− at−1), a− at−1

〉
− ζ3rd

2
‖a− at−1‖32 (22)

to be the local second order approximation of function η(θ, a). By the Lipschitz assumption (namely,
Assumption 2.1), we have η(θ, a) ≥ η̂t(θ, a) for all θ ∈ Θ, a ∈ A.

By Eq. (21), we can exploit the positive curvature by taking a′ = at−1 + 4
√

ε
ζ3rd

vt. Concretely, by

basic algebra we get:

η̂t(θ
?, a′) ≥ η(θ?, at−1)− ε ‖a′ − at−1‖2 + 3

√
ζ3rdε ‖a′ − at−1‖

2
2 −

ζ3rd

2
‖a′ − at−1‖

3
2

≥ η(θ?, at−1) + 12

√
ε3

ζ3rd
. (23)

Combining with the definition of ∆t,2, ∆t,3 and ∆t,4, for any a ∈ A we get

η̂t(θt, a) ≥ η̂t(θ?, a)−∆t,2 − ‖a− at−1‖2 ∆t,3 −
1

2
‖a− at−1‖22 ∆t,4. (24)

As a result, we have

η(θ?, at) ≥ Eθt∼pt [η(θt, at)−∆t,1]

≥ Eθt∼pt [η(θt, a
′)−∆t,1] (By the optimality of at)

≥ Eθt∼pt
[
η̂t(θ

?, a′)−∆t,1 −∆t,2 − ‖a− at−1‖2 ∆t,3 −
1

2
‖a− at−1‖22 ∆t,4

]
(By Eq. (24))

≥ η(θ?, at−1) + 12

√
ε3

ζ3rd
− Eθt∼pt

[
∆t,1 + ∆t,2 + 4

√
ε

ζ3rd
∆t,3 +

8ε

ζ3rd
∆t,4

]
(By Eq. (23))

≥ η(θ?, at−1) + 12

√
ε3

ζ3rd
− Eθt∼pt [2∆t]. (When 16ε ≤ ζ3rd)

Combining the two cases together, we get the desired result.

C.3 Proof of Lemma C.2

Proof. Define Ft to be the σ-field generated by random variable u1:t, v1:t, θ1:t. In the following, we
use Et[·] as a shorthand for E[· | Ft].
Let gt = ∇aη(θt, at−1)−∇aη(θ?, at−1). Note that condition on θt and Ft−1, 〈gt, ut〉 follows the
distribution N (0, ‖gt‖22). By Assumption 2.1, ‖gt‖2 ≤ 2ζg = κ1. As a result,

Et−1

[
min

(
κ2

1, 〈gt, ut〉
2
)
| θt
]
≥ 1

2
Et−1

[
〈gt, ut〉2 | θt

]
=

1

2
‖gt‖22 . (25)

By the tower property of expectation we get

Et−1

[
min

(
κ2

1, ∆̃
2
t,3

)]
≥ 1

2
Et−1

[
∆2
t,3

]
. (26)
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Now we turn to the term ∆̃2
t,4. Let Ht = ∇2

aη(θt, at−1)−∇2
aη(θ?, at−1). Define a random variable

x =
(
u>t Htvt

)2
. Note that ut, vt are independent, we have

Et−1[x | θt] = Et−1

[
‖Htvt‖22 | θt

]
= ‖Ht‖2F ≥ ‖Ht‖2sp . (27)

Since ut, vt are two Gaussian vectors, random variable x has nice concentratebility properties.
Therefore we can prove that the min operator in the definition of ∆̃t does not change the ex-
pectation too much. Formally speaking, by Lemma F.6, condition on Ft−1 and θt, we have
E
[
min

(
κ2

2, x
)]
≥ 1

2 min
(
ζ2
h,E[x]

)
, which leads to

Et−1

[
min(κ2

2, ∆̃
2
t,4)
]
≥ 1

2
Et−1

[
min(ζ2

h, ‖Ht‖2F)
]
≥ 1

2
Et−1

[
min(ζ2

h, ‖Ht‖2sp)
]

=
1

2
Et−1

[
‖Ht‖2sp

]
.

(28)

Combining Eq. (26) and Eq. (28), we get the desired inequality.

C.4 Proof of Theorem 3.1

In this section we show that Alg. 1 finds a (ε, 6
√
ζ3rdε)-approximate local maximum in polynomial

steps. In the following, we treat ζg, ζh, ζ3rd as constants.

Proof of Theorem 3.1. We prove this theorem by contradiction. Suppose Pr
[
at+1 ∈ Aε,6

√
ζ3rdε

]
≤

0.5 for all t ∈ [T ], we prove that T . Õ(C4
1R(Θ) max

(
ζ4
hε
−8, ζ2

3rdε
−6
)
).

Define υ = min

(
1

4ζh
ε2, 1

ζ
1/2
3rd

ε3/2
)

. Recall that C1 = 2 +
ζg
ζh
. By Lemma C.1, when at is not a

(ε, 6
√
ζ3rdε)-approximate local maximum we have

η(θ?, at+1) ≥ η(θ?, at) + υ − C1Et[∆t+1]. (29)

Similar to the proof of Theorem C.3, when at is a (ε, 6
√
ζ3rdε)-approximate local maximum we

have

η(θ?, at+1) ≥ η(θ?, at)− C1Et[∆t+1]. (30)

As a result, when Pr
[
at+1 ∈ Aε,6

√
ζ3rdε

]
≤ 0.5 we get

E[η(θ?, at+1)] ≥ E[η(θ?, at)] +
υ

2
− C1E[∆t+1]. (31)

Take summation of Eq. (31) over t ∈ [T ] leads to

E[η(θ?, aT )− η(θ?, a0)] ≥ υT

2
− C1E

[
T∑
t=1

∆t

]
. (32)

Lemma C.2 leads to

E

[
T∑
t=1

∆t

]
≤

√√√√2TE

[
T∑
t=1

∆̃2
t

]
≤ 2T 3/4(R(Θ)polylog(T ))

1/4
. (33)

Combining with Eq. (32) we have

1 ≥ E[η(θ?, aT )− η(θ?, a0)] ≥ υT

2
− 2C1T

3/4(R(Θ)polylog(T ))
1/4
. (34)

As a result, we can solve an upper bound of T . In particular, we get

T . C4
1R(Θ) max

(
ζ4
hε
−8, ζ2

3rdε
−6
)

polylog(R(Θ), 1/ε, C1, ζh, ζ3rd). (35)

Consequently, when T ≥ Õ(C4
1R(Θ) max

(
ζ4
hε
−8, ζ2

3rdε
−6
)
), there exists t ∈ [T ] such that

Pr
[
at+1 ∈ Aε,6

√
ζ3rdε

]
> 0.5.

Finally, by running running Alg. 1 log(1/δ) times, we can get a high probability guarantee.
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C.5 Local Regret

We also define the “local regret” by comparing with an approximate local maximum. Formally
speaking, let Aεg,εh be the set of all (εg, εh)-approximate local maximum of η(θ?, ·). The (εg, εh)-
local regret of a sequence of actions a1, . . . , aT is defined as

REGεg,εh(T ) =

T∑
t=1

( inf
a∈Aεg,εh

η(θ?, a)− η(θ?, at)). (36)

Our goal is to achieve a (εg, εh)-local regret that is sublinear in T and inverse polynomial in εg and
εh. With a sublinear regret (i.e., REGεg,εh(T ) = o(T )), the average performance 1

T

∑T
t=1 η(θ?, at),

converges to that of an approximate local maximum of η(θ?, ·). Hazan et al. [35] also work on local
regret in the setting of online non-convex games. Their local regret notation is different from ours.

The main theorem for local regret guarantee is stated below.
Theorem C.3. Let RT be the sequential Rademacher complexity of the family of the losses defined
in Eq. (5). Let C1 = 2+ζg/ζh. Under Assumption 2.1, for any ε ≤ min (1, ζ3rd/16) , we can bound
the (ε, 6

√
ζ3rdε)-local regret of Alg. 1 from above by

E
[

REGε,6
√
ζ3rdε

(T )
]
≤
(

1 + C1

√
4TRT

)
max

(
4ζhε

−2,
√
ζ3rdε

−3/2
)
. (37)

Note that when the sequential Rademacher complexity RT is bounded by Õ(R
√
T ) (which is typ-

ical), we have O(
√
TRT ) = Õ(T 3/4) = o(T ) regret. As a result, Alg. 1 achieves a O(poly(1/ε))

sample complexity by the sample complexity-regret reduction [39, Section 3.1]. The proof is de-
ferred to Section C.6.

C.6 Proof of Theorem C.3

Proof. Let δt = infa∈A
(ε),6
√
ζ3rdε

η(θ?, a) − η(θ?, at). By the definition of regret we have

REGε,6
√
ζ3rdε

(T ) =
∑T
t=1 δt. Define υ = min

(
1

4ζh
ε2, 1

ζ
1/2
3rd

ε3/2
)

for simplicity. Recall that

C1 = 2 +
ζg
ζh
. In the following we prove by induction that for any t0,

Et0−1

[
T∑
t=t0

δt

]
≤ Et0−1

[
1

υ

(
δt0 + C1

T∑
t=t0+1

∆t

)]
. (38)

For the base case where t0 = T Eq. (38) trivially holds because υ ≤ 1.

Now suppose Eq. (38) holds for any t > t0 and consider time step t0. When at0 6∈ A(ε),6
√
ζ3rdε

,
applying Lemma C.1 we get η(θ?, at0+1) ≥ η(θ?, at0) + υ − C1Et0 [∆t0+1]. By basic algebra we
get,

δt0+1 ≤ δt0 − υ + C1Et0 [∆t0+1]. (39)

As a result,

Et0−1

[
T∑
t=t0

δt

]
= Et0−1

[
δt0 +

T∑
t=t0+1

δt

]

≤ Et0−1

[
δt0 +

1

υ

(
δt0+1 + C1

T∑
t=t0+2

∆t

)]
(By induction hypothesis)

≤ Et0−1

[
δt0 − 1 +

1

υ

(
δt0 + C1∆t0+1 + C1

T∑
t=t0+2

∆t

)]
(By Eq. (39))

≤ Et0−1

[
1

υ

(
δt0 + C1

T∑
t=t0+1

∆t

)]
.
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On the other hand, when at0 ∈ A(ε),6
√
ζ3rdε

we have

η(θ?, at0+1) ≥ Eθt0+1
[η(θt0+1, at0+1)−∆t0+1,1]

≥Eθt0+1
[η(θt0+1, at0)−∆t0+1,1] (By the optimality of at0+1)

≥Eθt0+1 [η(θ?, at0)−∆t0+1,1 −∆t0+1,2] ≥ η(θ?, at0)− C1Eθt0+1 [∆t0+1].

Consequently, by basic algebra we get δt0+1 ≤ δt0 + C1Et0 [∆t0+1]. Note that since at0 ∈
A(ε),6

√
ζ3rdε

, we have δt0 ≤ 0. As a result,

Et0−1

[
T∑
t=t0

δt

]
≤ Et0−1

[
δt0 +

1

υ

(
δt0+1 + C1

T∑
t=t0+2

∆t

)]
(By induction hypothesis)

≤ Et0−1

[
1

υ

(
δt0+1 + C1

T∑
t=t0+2

∆t

)]
(δt0 ≤ 0)

≤ Et0−1

[
1

υ

(
δt0 + C1∆t0+1 + C1

T∑
t=t0+2

∆t

)]

≤ Et0−1

[
1

υ

(
δt0 + C1

T∑
t=t0+1

∆t

)]
.

Combining the two cases together we prove Eq. (38). It follows that

E
[

REGε,6
√
ζ3rdε

(T )
]

= E

[
T∑
t=0

δt

]
≤ E

[
1

υ

(
δ0 + C1

T∑
t=1

∆t

)]
(40)

≤ 1

υ

1 + C1E


√√√√T

T∑
t=1

∆2
t

 ≤ 1

υ

1 + C1

√√√√TE

[
T∑
t=1

∆2
t

]. (41)

Note that when realizability holds, we have infθ
∑T
t=1 `((xt, yt); θ) = 0. Therefore, by Lemma C.2

and the definition of online learning regret (see Eq. (1)) we have

E
[

REGε,6
√
ζ3rdε

(T )
]
≤ 1

υ

1 + C1

√√√√2TE

[
T∑
t=1

∆̃2
t

] ≤ 1

υ

(
1 + C1

√
4TRT

)
. (42)

C.7 Instantiations of Theorem 3.1

In this section we rigorously prove the instantiations discussed in Section 3.

Linear bandit with finite model class. A full proof of this claim needs a few steps: (i) realizing
that η(θ?, a) is concave in awith no bad local maxima, and therefore our local regret and the standard
regret coincide (up to some conversion of the errors); (ii) invoking Rakhlin et al. [63, Lemma 3] to
show that the sequential Rademacher complexity RT is bounded by O(

√
(2 log|Θ|)/T ), and (iii)

verifying η̃ satisfies the conditions (Assumption 2.1) on the actions that the algorithm will visit.

Recall that the linear bandit reward is given by η(θ, a) = 〈θ, a〉, and the constrained reward is
η̃(θ, a) = η(θ, a)− 1

2 ‖a‖
2
2 .

In order to deal with `2 regularization which violates Assumption 2.1, we bound the set of ac-
tions Alg. 1 takes. Consider the regularized reward η̃(θ, a). Recall that Alg. 1 chooses action
at = argmaxa∈A Eθt∼pt [η̃(θt, a)]. By optimality condition we have at = Eθt∼pt [θt]. Consequently
‖at‖2 ≤ Eθt∼pt [‖θt‖2] ≤ 1.

Because we only apply Lemma C.1 and Lemma C.2 to actions that is taken by the algorithm, The-
orem C.3 holds even if Assumption 2.1 is satisfied locally for ‖a‖2 . 1. Since the gradient and
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Hessian of regularization term is a and Id respectively, we have ‖∇aη̃(θ, a)‖2 . ‖∇aη(θ, a)‖2 + 1

and
∥∥∇2

aη̃(θ, a)
∥∥

sp
.
∥∥∇2

aη(θ, a)
∥∥

sp
+ 1 when ‖a‖2 . 1, which verifies Assumption 2.1.

In the following we prove that any (ε, 1)-approximate local maximum for η̃(θ?, a) is an ε-suboptimal
action for η(θ?, a). Note that∇aη̃(θ, a) = θ−a. Therefore, for any a ∈ A(ε,1) we have ‖θ? − a‖2 ≤
ε. Applying Lemma F.11 we have

(1− 〈θ?, a〉)2 ≤ ‖θ? − a‖22 ≤ ε
2. (43)

Combining with the fact that ‖at‖2 ≤ 1 for any t ∈ [T ], we prove the claim.

Linear bandit with sparse or structured model vectors. In this case, the reduction is exactly the
same as that in linear bandit. In the following we prove that the sparse linear hypothesis has a small
covering number. Note that the log|Θ| sample complexity bound fits perfectly with the covering
number technique. That is, we can discretize the hypothesis Θ by finding a 1/poly(d, 1/ε)-covering
of the loss function L = {`(·, θ) : θ ∈ Θ}. And then the sample complexity of our algorithm
depends polynomially on the log-covering number. Since the log-covering number of the set of
s-sparse vectors is bounded by O(s log(dT )), we get the desired result.

For completeness, in the following we prove that the Eluder dimension for sparse linear model is
Ω(d).

Lemma C.4. Let e1, · · · , ed be the basis vectors and fi(a) = 〈ei, a〉 . Specifically, define f0(a) = 0.
Define the function class F = {fi : 0 ≤ i ≤ d}. The Eluder dimension of F is at least d.

Proof. In order to prove the lower bound for Eluder dimension, we only need to find a sequence
a1, · · · , ad such that ai is independent with its predecessors. In the sequel we consider the action
sequence a1 = e1, a2 = e2, · · · , ad = ed.

Now we prove that for any i ∈ [d], ai is independent with aj where j < i. Indeed, consider functions
fi and f0. By definition we have fi(aj) = f0(aj),∀j < i. However, fi(ai) = 1 6= 0 = f0(ai).

Deterministic logistic bandits. For deterministic logistic bandits, the reward function is given by
η(θ, a) = (1 + e−〈θ,a〉)−1. The model class is Θ ⊆ Sd−1 and the action space is A = Sd−1.
Similarly, we run Alg. 1 on an unbounded action space with regularized loss η̃(θ, a) = η(θ, a) −
c
2 ‖a‖

2
2 where c = e(e + 1)−2 is a constant. The optimal action in this case is a? = θ?. Note that

the loss function is not concave, but it satisfies that all local maxima are global. As a result, we
claim that our algorithm finds an ε-suboptimal in Õ(log|Θ|ε−8) steps. Compared with algorithms
that specially designed for logistic bandits [22, 15, 23, 52], our regret bound obtained by reduction
is not optimal.

In the following we prove that any (ε, 1)-approximate local maximum for η̃(θ?, a) is an O(ε)-
suboptimal action for η(θ?, a). First of all, we bound the set of actions Alg. 1 can choose. By
basic algebra we get

∇aη̃(θ, a) =
exp(−θ>a)

(1 + exp(−θ>a))2
θ − ca. (44)

As a result, we have a? = θ?. Recall that at = argmaxa∈A Eθt∼pt [η̃(θt, a)]. By optimality condi-
tion we get

ca = Eθt
[

exp(−θ>t a)

(1 + exp(−θ>t a))2
θt

]
. (45)

Multiply a> to both hand side we get

c ‖a‖22 = Eθt
[

exp(−θ>t a)

(1 + exp(−θ>t a))2
θ>t a

]
. (46)

Define f(x) = x exp(−x)
c(1+exp(−x))2 . Eq. (46) implies

‖a‖22 = Eθt [f(θ>t a)] ≤ sup
x∈[−‖a‖2,‖a‖2]

f(x). (47)
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Solving Eq. (47) we get ‖a‖2 ≤ 1.

Now translate an (ε, 1)-approximate local maximum for η̃(θ?, a) to an O(ε)-approximate optimal
action for η(θ?, a). Note that η̃(θ?, ·) is (1/20)-strongly concave. As a result, for any ε ∈ A(ε,1) we
get

η̃(θ?, a?)− η̃(θ?, a) . ‖∇aη̃(θ?, a)‖22 . ε2. (48)

Define r(x) , (1+exp(−x)) for shorthand. By Taylor expansion, for any x ∈ R there exists ξ ∈ R
such that r(x) = r(1) + (x− 1)r′(x) + (x− 1)2r′′(ξ). As a result,

η̃(θ?, a?)− η̃(θ?, a) = r(1)− c

2
− r(〈θ?, a〉) +

c

2
‖a‖22

= (1− 〈θ?, a〉)r′(1)− (1− 〈θ?, a〉)2r′′(ξ)− c

2
+
c

2
‖a‖22

=
c

2
− c 〈θ?, a〉+

c

2
‖a‖22 − (1− 〈θ?, a〉)2r′′(ξ) (Recall that r′(1) = c.)

=
c

2
‖θ? − a‖22 − (1− 〈θ?, a〉)2r′′(ξ)

≥
( c

2
− r′′(ξ)

)
(1− 〈θ?, a〉)2 (By Lemma F.11)

≥ (1− 〈θ?, a〉)2/50 & (r(1)− r(〈θ?, a〉))2 (The reward function is Lipschitz.)

& (η(θ?, a?)− η(θ?, a))2.

Consequently, η(θ?, a) ≥ η(θ?, a?)−O(ε).

Two-layer neural network. Recall that a two-layer neural network is defined by
η((W1,W2), a) = W2σ(W1a) ,where σ is the activation function. For a matrix W1 ∈ Rm×d, the
(1,∞)-norm is defined by maxi∈[m]

∑d
j=1 |[W1]i,j |.We make the following assumptions regarding

the activation function.
Assumption C.5. For any x, y ∈ R, the activation function σ(·) satisfies

sup
x
|σ(x)| ≤ 1, sup

x
|σ′(x)| ≤ 1, sup

x
|σ′′(x)| ≤ 1, (49)

|σ′′(x)− σ′′(y)| ≤ |x− y|. (50)

The following theorem summarized our result in this setting.
Theorem C.6. Let Θ = {(W1,W2) : ‖W2‖1 ≤ 1, ‖W1‖1,∞ ≤ 1} be the parameter hypothesis.
Under the setting of Theorem 3.1 with Assumption C.5, Alg. 1 finds an (ε, 6

√
ζ3rdε)-approximate

local maximum in Õ
(
ε−8polylog(d)

)
steps. In addition, if the neural network is input concave,

Alg. 1 finds an ε-suboptimal action in Õ
(
ε−4polylog(d)

)
steps.

Proof. We prove the theorem by first bounding the sequential Rademacher complexity of the loss
function, and then applying Theorem C.3. Let θ = (W1,W2). Recall that u�v denotes the element-
wise product. By basic algebra we get,

〈∇aη(θ, a), u〉 = W2(σ′(W1a)�W1u), (51)

u>∇2
aη(θ, a)v = W2(σ′′(W1a)�W1u�W1v). (52)

First of all, we verify that the regularized reward η̃(θ, a) , η(θ, a)− 1
2 ‖a‖

2
2 satisfies Assumption 2.1.

Indeed we have

‖∇aη(θ, a)‖2 = sup
u∈Sd−1

〈∇aη(θ, a), u〉 ≤ 1,∥∥∇2
aη(θ, a)

∥∥
sp

= sup
u,v∈Sd−1

u>∇2
aη(θ, a)v ≤ 1,∥∥∇2

aη(θ, a1)−∇2
aη(θ, a2)

∥∥
sp

= sup
u,v∈Sd−1

W2((σ′′(W1a1)− σ′′(W1a2))�W1u�W1v)

≤ ‖a1 − a2‖2 .
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Observe that |η(θ, a)| ≤ ‖a‖∞, we have η̃(θ, a) < 0 when ‖a‖2 > 2. As a result, action at taken by
Alg. 1 satisfies ‖at‖2 ≤ 2 for all t. Since the gradient and Hessian of regularization term is a and Id
respectively, we have ‖∇aη̃(θ, a)‖2 . ‖∇aη(θ, a)‖2 +1 and

∥∥∇2
aη̃(θ, a)

∥∥
sp

.
∥∥∇2

aη(θ, a)
∥∥

sp
+1.

It follows that Assumption 2.1 holds with constant Lipschitzness for actions a such that ‖a‖ . 1.

In the following we bound the sequential Rademacher complexity of the loss function. By Rakhlin
et al. [62, Proposition 15], we can bound the sequential Rademacher complexity of ∆2

t,1 and ∆2
t,2

by Õ
(√
T log d

)
. Next we turn to higher order terms.

First of all, because the (1,∞) norm ofW1 is bounded, we have ‖W1u‖∞ ≤ ‖u‖∞ . It follows from
the upper bound of σ′(x) that ‖σ′(W1a)�W1u‖∞ ≤ ‖u‖∞ . Therefore we get

〈∇aη(θ, a), u〉 ≤ ‖W2‖1 ‖σ
′(W1a)�W1u‖∞ ≤ ‖u‖∞ . (53)

Similarly, we get
u>∇2

aη(θ, a)v ≤ ‖u‖∞ ‖v‖∞ . (54)

Let B = (1 + ‖u‖∞)(1 + ‖v‖∞) for shorthand. We consider the error term ∆̃2
t,3 =

(〈∇aη(θ, a), u〉 − [yt]3)
2
. Let G1 be the function class {(〈∇aη(θ, a), u〉 − [yt]3)

2
: θ ∈ Θ}, and

G2 = {〈∇aη(θ, a), u〉 : θ ∈ Θ}. Applying Rakhlin et al. [62, Lemma 4] we get

RT (G1) . B log3/2(T 2)RT (G2).

Define G3 = {σ′(w>1 a) · w>1 u : w1 ∈ Rd, ‖w1‖1 ≤ 1}. In the following we show that RT (G2) .
RT (G3). For any sequence u1, · · · , uT and A-valued tree a, we have

RT (G2) = Eε

 sup
W2:‖W2‖1≤1
g1,···,gw∈G3

T∑
t=1

εt

 w∑
j=1

[W2]jgj(at(ε))


 (55)

≤ Eε

 sup
W2:‖W2‖1≤1
g1,···,gw∈G3

‖W2‖1 sup
j∈[w]

∣∣∣∣∣
T∑
t=1

εtgj(at(ε))

∣∣∣∣∣
 (56)

≤ Eε

[
sup
g∈G3

∣∣∣∣∣
T∑
t=1

εt(gj(at(ε)))

∣∣∣∣∣
]
. (57)

Since we have 0 ∈ G3 by taking w1 = 0, by symmetricity we have

Eε

[
sup
g∈G3

∣∣∣∣∣
T∑
t=1

εt(gj(at(ε)))

∣∣∣∣∣
]
≤ 2Eε

[
sup
g∈G3

T∑
t=1

εt(gj(at(ε)))

]
= 2RT (G3). (58)

Now we bound RT (G3) by applying the composition lemma of sequential Rademacher complex-
ity (namely Rakhlin et al. [62, Lemma 4]). First of all we define a relaxed function hypothesis
G4 = {σ′((w′1)>a) · w>1 u : w1, w

′
1 ∈ Rd, ‖w1‖1 ≤ 1, ‖w′1‖1 ≤ 1}. Since G3 ⊂ G4 we have

RT (G3) ≤ RT (G4). Note that we have
∣∣σ′(w>1 a)

∣∣ ≤ 1 and w>1 u ≤ ‖u‖∞ . Let φ(x, y) = xy,
which is (3c)-Lipschitz for |x|, |y| ≤ c. Define G5 = {σ′(w>1 a) : w1 ∈ Rd, ‖w1‖1 ≤ 1}
and G6 = {w>1 u : w1 ∈ Rd, ‖w1‖1 ≤ 1}. Rakhlin et al. [62, Lemma 4] gives RT (G4) .
B log3/2(T 2)(RT (G5) + RT (G6)). Note that G5 is a generalized linear hypothesis and G6 is lin-
ear, we have RT (G5) . B log3/2(T 2)

√
T log(d) and RT (G6) . B

√
T log(d).

In summary, we get RT (G1) = O
(

poly(B)polylog(d, T )
√
T
)
. Since the input ut ∼ N (0, Id×d),

we have B . log(dT ) with probability 1/T. As a result, the distribution dependent Rademacher
complexity of ∆̃2

t,3 in this case is bounded by O
(

polylog(d, T )
√
T
)

.

Similarly, we can bound the sequential Rademacher complexity of the Hessian term ∆̃2
t,4 by

O
(

polylog(d, T )
√
T
)

by applying composition lemma with Lipschitz function φ(x, y, z) = xyz

28



with bounded |x|, |y|, |z|. By Rakhlin et al. [62, Lemma 4], composing with the min operator only
introduces poly(log(T )) terms in the sequential Rademacher complexity. As a result, the sequential
Rademacher complexity of the loss function can be bounded by

RT = O
(

polylog(d, T )
√
T
)
.

Applying Theorem 3.1, the sample complexity of Alg. 1 is bounded by Õ
(
ε−8polylog(d)

)
.

When the neural network is input concave (see [5]), the regularized reward η̃(θ, a) is Ω(1)-strongly
concave. As a result, for any a ∈ Aε,1 we have η̃(θ?, a) ≥ η̃(θ?, a?) − O(ε2). Hence, Alg. 1 finds
an ε-suboptimal action for regularized loss in Õ

(
ε−4polylog(d)

)
steps.

D Missing Proofs in Section 4

First of all, we present our algorithm in Alg. 2.

Algorithm 2 Virtual Ascent with Online Model Learner (ViOlin for RL)

1: LetH0 = ∅; choose a0 ∈ A arbitrarily.
2: for t = 1, 2, · · · do
3: RunR onHt−1 with loss function ` (defined in Eq. (6)) and obtain pt = A(Ht−1).
4: ψt ← argmaxψ Eθt∼pt [η(θt, ψ)];
5: Sample one trajectory τt from policy πψt , and one trajectory τ ′t from policy πψt−1

.
6: UpdateHt ← Ht−1 ∪ {(τ, τ ′)}

The approximate local maximum is defined in the same as in the bandit setting, except that the gradi-
ent and Hessian matrix are taken w.r.t to the policy parameter space ψ. We also assume realizability
(θ? ∈ Θ) and the Lipschitz assumptions as in Assumption 2.1 (with action a replaced by policy
parameter ψ).

In the following we present the proof sketch for Theorem 4.4. Compare to the bandit case, we only
need to prove an analog of Lemma C.2, which means that we need to upper-bound the error term ∆t

by the difference of dynamics, as discussed before. Formally speaking, let τt = (s1, a1, · · · , sH , aH)
be a trajectory sampled from policy πψt under the ground-truth dynamics Tθ? . By telescope lemma
(Lemma F.16) we get

V ψθ (s1)− V ψθ?(s1) = Eτ∼ρψ
θ?

[
H∑
h=1

(
V ψθ (Tθ(sh, ah))− V ψθ (Tθ?(sh, ah))

)]
. (59)

Lipschitz assumption (Assumption 4.1) yields,∣∣∣V ψθ (Tθ(sh, ah))− V ψθ (Tθ?(sh, ah))
∣∣∣ ≤ L0 ‖Tθ(sh, ah)− Tθ?(sh, ah))‖2 . (60)

Combining Eq. (59) and Eq. (60) and apply Cauchy-Schwartz inequality gives an upper bound for
[∆t]

2
1 and [∆t]

2
2. As for the gradient term, we will take gradient w.r.t. ψ to both sides of Eq. (59).

The gradient inside expectation can be dealt with easily. And the gradient w.r.t. the distribution ρψθ?
can be computed by policy gradient lemma (Lemma F.17). As a result we get

∇ψV ψθ (s1)−∇ψV ψθ?(s1)

= Eτ∼ρψ
θ?

[(
H∑
h=1

∇ψ log πψ(ah | sh)

)(
H∑
h=1

(
V ψθ (Tθ(sh, ah))− V ψθ (Tθ?(sh, ah))

))]

+ Eτ∼ρψ
θ?

[
H∑
h=1

(
∇ψV ψθ (Tθ(sh, ah))−∇ψV ψθ (Tθ?(sh, ah))

)]
. (61)

The first term can be bounded by vector-form Cauchy-Schwartz and Assumption 4.2, and the second
term is bounded by Assumption 4.1. Similarly, this approach can be extended to second order term.
As a result, we have the following lemma.
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Lemma D.1. Under the setting of Theorem 4.4, we have

c1Eτ1:t,τ ′1:t,θ1:t
[
∆̄2
t

]
≥ Eθ1:t

[
∆2
t

]
. (62)

Proof of Lemma D.1 is shown in Appendix D.1. Proof of Theorem 4.4 is exactly the same as that of
Theorem 3.1 except for replacing Lemma C.2 with Lemma D.1.

D.1 Proof of Lemma D.1

Proof. The lemma is proven by combining standard telescoping lemma and policy gradient lemma.
Specifically, let ρπT be the distribution of trajectories generated by policy π and dynamics T . By
telescoping lemma (Lemma F.16) we have,

V ψtθt (s1)− V ψtθ? (s1) = E
τ∼ρψt

θ?

[
H∑
h=1

(
V ψtθt (Tθt(sh, ah))− V ψtθt (Tθ?(sh, ah))

)]
. (63)

By the Lipschitz assumption (Assumption 4.1),∣∣∣V ψtθt (Tθt(sh, ah))− V ψtθt (Tθ?(sh, ah))
∣∣∣ ≤ L0 ‖Tθt(sh, ah)− Tθ?(sh, ah))‖2 . (64)

Consequently

∆2
t,1 =

(
V ψtθt (s0)− V ψtθ? (s0)

)2

≤ HL2
0Eτ∼ρψt

θ?

[
H∑
h=1

‖Tθt(sh, ah)− Tθ?(sh, ah))‖22

]
. (65)

Similarly we get,

∆2
t,2 =

(
V
ψt−1

θt
(s0)− V ψt−1

θ? (s0)
)2

≤ HL2
0Eτ∼ρψt−1

θ?

[
H∑
h=1

‖Tθt(sh, ah)− Tθ?(sh, ah))‖22

]
.

(66)

Now we turn to higher order terms. First of all, by Hölder inequality and Assumption 4.2, we can
prove the following:

•
∥∥∥∥Eτ∼ρψ

θ?

[(∑H
h=1∇ψ log πψ(ah | sh)

)(∑H
h=1∇ψ log πψ(ah | sh)

)>]∥∥∥∥
sp

≤

H2χg,∀ψ ∈ Ψ;

•
∥∥∥∥Eτ∼ρψ

θ?

[(∑H
h=1∇ψ log πψ(ah | sh)

)⊗4
]∥∥∥∥

sp

≤ H4χf ,∀ψ ∈ Ψ;

•
∥∥∥∥Eτ∼ρψ

θ?

[(∑H
h=1∇2

ψ log πψ(ah | sh)
)(∑H

h=1∇2
ψ log πψ(a | s)

)>]∥∥∥∥
sp

≤ H2χh,∀ψ ∈

Ψ.

Indeed, consider the first statement. Define gh = ∇ψ log πψ(ah | sh) for shorthand. Then we have∥∥∥∥∥∥Eτ∼ρψθ?
( H∑

h=1

gh

)(
H∑
h=1

gh

)>∥∥∥∥∥∥
sp

= sup
u∈Sd−1

u>Eτ∼ρψ
θ?

( H∑
h=1

gh

)(
H∑
h=1

gh

)>u (67)

= sup
u∈Sd−1

Eτ∼ρψ
θ?

〈u,( H∑
h=1

gh

)〉2
 ≤ sup

u∈Sd−1

Eτ∼ρψ
θ?

[
H

H∑
h=1

〈u, gh〉2
]

(68)

≤ Eτ∼ρψ
θ?

[
H

H∑
h=1

sup
u∈Sd−1

〈u, gh〉2
]

= Eτ∼ρψ
θ?

[
H

H∑
h=1

∥∥gg>∥∥
sp

]
≤ H2χg. (69)

Similarly we can get the second and third statement.
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For any fixed ψ and θ we have

V ψθ (s1)− V ψθ?(s1) = Eτ∼ρψ
θ?

[
H∑
h=1

(
V ψθ (Tθ(sh, ah))− V ψθ (Tθ?(sh, ah))

)]
. (70)

Applying policy gradient lemma (namely, Lemma F.17) to RHS of Eq. (70) we get,

∇ψV ψθ (s1)−∇ψV ψθ?(s1)

= Eτ∼ρψ
θ?

[(
H∑
h=1

∇ψ log πψ(ah | sh)

)(
H∑
h=1

(
V ψθ (Tθ(sh, ah))− V ψθ (Tθ?(sh, ah))

))]

+ Eτ∼ρψ
θ?

[
H∑
h=1

(
∇ψV ψθ (Tθ(sh, ah))−∇ψV ψθ (Tθ?(sh, ah))

)]
. (71)

Define the following shorthand:

Gψθ (s, a) = V ψθ (Tθ(s, a))− V ψθ (Tθ?(s, a)), (72)

f =
H∑
h=1

∇ψ log πψ(ah | sh). (73)

In the following we also omit the subscription in Eτ∼ρψ
θ?

when the context is clear. It followed by
Eq. (71) that∥∥∥∇ψV ψθ (s1)−∇ψV ψθ?(s1)

∥∥∥2

2

≤ 2

∥∥∥∥∥E
[
f

(
H∑
h=1

Gψθ (sh, ah)

)]∥∥∥∥∥
2

2

+ 2

∥∥∥∥∥E
[
H∑
h=1

∇ψGψθ (sh, ah)

]∥∥∥∥∥
2

2

≤ 2
∥∥E[ff>]∥∥

sp
E

( H∑
h=1

Gψθ (sh, ah)

)2
+ 2

∥∥∥∥∥E
[
H∑
h=1

∇ψGψθ (sh, ah)

]∥∥∥∥∥
2

2

(By Lemma F.7)

≤ 2H
∥∥E[ff>]∥∥

sp
E

[
H∑
h=1

Gψθ (sh, ah)2

]
+ 2HE

[
H∑
h=1

∥∥∥∇ψGψθ (sh, ah)
∥∥∥2

2

]
.

Now, plugin ψ = ψt−1, θ = θt and apply Assumption 4.1 we get

∆2
t,3 =

∥∥∥∇ψV ψt−1

θt
(s1)−∇ψV ψt−1

θ? (s1)
∥∥∥2

2

≤ (2HL2
1 + 2H3χgL

2
0)E

τ∼ρ
ψt−1
θ?

[
H∑
h=1

‖Tθt(sh, ah)− Tθ?(sh, ah)‖22

]
.

For any fixed ψ, θ, define the following shorthand:

g =

H∑
h=1

(
V ψθ (Tθ(sh, ah))− V ψθ (Tθ?(sh, ah))

)
. (74)

Apply policy gradient lemma again to RHS of Eq. (71) we get

∇2
ψV

ψ
θ (s1)−∇2

ψV
ψ
θ?(s1)

= E
[
(∇ψg)f>

]
+ E

[
f(∇ψg)

>
]

+ E
[
∇2
ψg
]

+ E

[
g

(
H∑
h=1

∇2
ψ log πψ(ah | sh)

)]
+ E

[
g
(
ff>

)]
.

As a result of Lemma F.8 and Lemma F.9 that,∥∥∥∇2
ψV

ψ
θ (s1)−∇2

ψV
ψ
θ?(s1)

∥∥∥2

sp
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= 4
∥∥∥E[(∇ψg)f>

]
+ E

[
f(∇ψg)

>
]∥∥∥2

sp
+ 4

∥∥E[∇2
ψg
]∥∥2

sp
+ 4

∥∥E[g(ff>)]∥∥2

sp

+ 4

∥∥∥∥∥E
[
g

(
H∑
h=1

∇2
ψ log πψ(ah | sh)

)]∥∥∥∥∥
2

sp

≤ 8 sup
u,v∈Sd−1

E[〈∇ψg, u〉 〈f, v〉]2 + 4E
[∥∥∇2

ψg
∥∥2

sp

]
+ 4E

[
g2
] ∥∥E[f⊗4

]∥∥
sp

+ 4E
[
g2
] ∥∥∥∥∥∥E

( H∑
h=1

∇2
ψ log πψ(ah | sh)

)(
H∑
h=1

∇2
ψ log πψ(ah | sh)

)>∥∥∥∥∥∥
sp

. (75)

Note that by Hölder’s inequality,

sup
u,v∈Sd−1

E[〈∇ψg, u〉 〈f, v〉]2 ≤ sup
u,v∈Sd−1

E
[
〈∇ψg, u〉2

]
E
[
〈f, v〉2

]
≤ E

[
‖∇ψg‖22

] ∥∥E[ff>]∥∥
sp
.

By Assumption 4.1 we get,

E[g2] = E

( H∑
h=1

(
V ψθ (Tθ(sh, ah))− V ψθ (Tθ?(sh, ah))

))2
 (76)

≤ HE

[
H∑
h=1

(
V ψθ (Tθ(sh, ah))− V ψθ (Tθ?(sh, ah))

)2
]

(77)

≤ HL2
0E

[
H∑
h=1

‖Tθ(sh, ah)− Tθ?(sh, ah)‖22

]
. (78)

Similarly, we have

E[‖∇ψg‖22] ≤ HL2
1E

[
H∑
h=1

‖Tθ(sh, ah)− Tθ?(sh, ah)‖22

]
, (79)

E[
∥∥∇2

ψg
∥∥2

sp
] ≤ HL2

2E

[
H∑
h=1

‖Tθ(sh, ah)− Tθ?(sh, ah)‖22

]
. (80)

Combining with Eq. (75) we get,

∆2
t,4 =

∥∥∥∇2
ψV

ψt
θt

(s1)−∇ψV ψtθ? (s1)
∥∥∥2

sp

≤
(
8H3L2

1χg + 4HL2
2 + 4L2

0(H3χh +H5χf )
)
E
τ∼ρ

ψt−1
θ?

[
H∑
h=1

‖Tθt(sh, ah)− Tθ?(sh, ah)‖22

]
.

By noting that ∆2
t =

∑4
i=1 ∆2

i,t, we get the desired upper bound.

E Analysis of Example 4.3

Recall that our RL instance is given as follows:

T (s, a) = Nθ(s+ a), (81)

πψ(s) = N (ψs, σ2I). (82)

And the assumptions are listed below.

• Lipschitzness of reward function: |r(s1, a1)− r(s2, a2)| ≤ Lr(‖s1 − s2‖2 +‖a1 − a2‖2).

• Bounded Parameter: we assume ‖ψ‖op ≤ O(1).

In the sequel we verify the assumptions of Theorem 4.4.
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E.1 Verifying Assumption 4.2.

Verifying item 1. Recall that ψ ∈ Rd×d. By algebraic manipulation, for all s, a we get,

∇ψ log πψ(a | s) =
1

σ2
vec((a− ψs)⊗ s) (83)

where vec(x) denotes the vectorization of tensor x. Define random variable u = a − ψs. By the
definition of policy πψ(s) we have u ∼ N (0, σ2I). As a result,

‖Ea∼πψ(·|s)[(∇ψ log πψ(a | s))(∇ψ log πψ(a | s))>]‖sp (84)

=
1

σ4
sup

v∈Sd×d−1

Eu∼N (0,σ2I)

[
〈v, vec(u⊗ s)〉2

]
. (85)

Note that 〈v, vec(u⊗ s)〉 =
∑

1≤i,j≤d[u]i[s]j [v]i,j . Because u is isotropic, [u]i are
independent random variables where [u]i ∼ N (0, σ2). Therefore 〈v, vec(u⊗ s)〉 ∼

N
(

0, σ2
∑d
i=1

(∑d
j=1 sjvi,j

)2
)
. Combining with Eq. (85) we get,

Eu∼N (0,σ2I)

[
〈v, vec(u⊗ s)〉2

]
= σ2

d∑
i=1

 d∑
j=1

sjvi,j

2

(86)

≤ σ2
d∑
i=1

 d∑
j=1

s2
j

 d∑
j=1

v2
i,j

 ≤ ‖s‖22 ‖v‖22 . (87)

Consequently we have

‖Ea∼πψ(·|s)[(∇ψ log πψ(a | s))(∇ψ log πψ(a | s))>]‖sp≤
1

σ2
, χg. (88)

Verifying item 2. Similarly, using the equation where Ex∼N (0,σ2)[x
4] = 3σ4 we have

‖Ea∼πψ(·|s)[(∇ψ log πψ(a | s))⊗4]‖sp=
1

σ8
sup

v∈Sd×d−1

Eu∼N (0,σ2I)

[
〈v, vec(u⊗ s)〉4

]
. (89)

≤ 3

σ8

σ2
d∑
i=1

 d∑
j=1

sjvi,j

2


2

≤ 3

σ4
‖s‖42 ‖v‖

4
2 ≤

3

σ4
, χf . (90)

Verifying item 3. Since∇2
ψ log πψ(a | s) is PSD, we have

‖Ea∼πψ(·|s)[(∇2
ψ log πψ(a | s))(∇2

ψ log πψ(a | s))>]‖sp (91)

= sup
v

E
[
v>(∇2

ψ log πψ(a | s))(∇2
ψ log πψ(a | s))>v

]
(92)

= sup
v

E
[∥∥(∇2

ψ log πψ(a | s))>v
∥∥2

2

]
= sup

v
E
[(
v>(∇2

ψ log πψ(a | s))v
)4]

. (93)

By algebraic manipulation, for all s, a ∈ Rd and v ∈ Rd×d we have

v>(∇2
ψ log πψ(a | s))v = −

d∑
i=1

 d∑
j=1

vi,jsj

2

. (94)

Consequently, (
v>(∇2

ψ log πψ(a | s))v
)4 ≤ ‖s‖42 ‖v‖42 ≤ 1 , χh. (95)
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E.2 Verifying Assumption 2.1.

Verifying item 1. We verify Assumption 2.1 by applying policy gradient lemma. Recall that

η(θ, ψ) = Eτ∼ρψθ

[
H∑
h=1

r(sh, ah)

]
. (96)

By policy gradient lemma (Lemma F.17) we have

∇ψη(θ, ψ) = Eτ∼ρψθ

[(
H∑
h=1

∇ψ log πψ(ah | sh)

)(
H∑
h=1

r(sh, ah)

)]
. (97)

By Eq. (83), condition on sh we get

∇ψ log πψ(ah | sh) =
1

σ2
vec(u⊗ sh) (98)

where u = ah−ψsh ∼ N (0, σ2I). Define the shorthand g =
∑H
h=1 r(sh, ah). Note that by Hölder

inequality,

‖E[∇ψ log πψ(ah | sh)g]‖22 = sup
v∈Rd×d,‖v‖2=1

E[〈∇ψ log πψ(ah | sh), v〉 g]
2 (99)

≤ sup
v∈Rd×d,‖v‖2=1

E
[
〈∇ψ log πψ(ah | sh), v〉2

]
E
[
g2
]
. (100)

Since v ∈ Rd×d, if we view v as a d × d matrix then 〈∇ψ log πψ(ah | sh), v〉 = 1
σ2 〈vsh, u〉 .

Because u is an isotropic Gaussian random vector, 〈vsh, u〉 ∼ N (0, σ2 ‖vsh‖22). Consequently,

E
[
〈∇ψ log πψ(ah | sh), v〉2

]
=

1

σ2
‖vsh‖22 ≤

1

σ2
‖v‖2F ‖sh‖

2
2 ≤

1

σ2
. (101)

It follows that ‖E[∇ψ log πψ(ah | sh)g]‖22 ≤
H2

σ2 . By triangular inequality and Eq. (97) we get

‖∇ψη(θ, ψ)‖2 ≤ H
2/σ. (102)

Verifying item 2. Define the shorthand f =
∑H
h=1∇ψ log πψ(ah | sh). Use policy gradient

lemma on Eq. (97) again we get, for any v, w ∈ Rd×d,

v>∇2
ψη(θ, ψ)w = Eτ∼ρψθ

[
〈f, v〉 〈f, w〉 g +

(
H∑
h=1

v>∇2
ψ log πψ(ah | sh)w

)
g

]
. (103)

For the first term inside the expectation, we bound it by using Hölder inequality twice. Specifically,
for any h, h′ ∈ [H] we have

E[〈∇ψ log πψ(ah | sh), v〉 〈∇ψ log πψ(ah′ | sh′), w〉 g] (104)

≤E
[
〈∇ψ log πψ(ah | sh), v〉4

]1/4
E
[
〈∇ψ log πψ(ah′ | sh′), w〉4

]1/4
E
[
g2
]1/2

. (105)

Similarly, 〈∇ψ log πψ(ah | sh), v〉 ∼ 1
σ2N (0, σ2 ‖vsh‖22) and 〈∇ψ log πψ(ah′ | sh′), w〉 ∼

1
σ2N (0, σ2 ‖wsh′‖22). As a result,

E[〈∇ψ log πψ(ah | sh), v〉 〈∇ψ log πψ(ah′ | sh′), w〉 g] (106)

≤3
1

σ2
‖v‖2 ‖sh‖2 ‖w‖2 ‖sh′‖2H ≤

3H

σ2
. (107)

Therefore the first term of Eq. (103) can be bounded by 3H3

σ2 . Now we bound the second term of
Eq. (103).By algebraic manipulation we have

v>∇2
ψ log πψ(ah | sh)w = − 1

σ2
〈wsh, vsh〉 . (108)

Consequently,

E

[(
H∑
h=1

v>∇2
ψ log πψ(ah | sh)w

)
g

]
≤ H2

σ2
‖w‖2 ‖v‖2 ≤

H2

σ2
. (109)

In summary, we have
∥∥∥∇2

ψη(θ, ψ)
∥∥∥

op
≤ 4H3

σ2 .
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Verifying item 3. Now we turn to the last item in Assumption 2.1. First of all, following Eq. (108),
we have ∇3

ψ log πψ(ah | sh) = 0. As a result, applying policy gradient lemma to Eq. (103) again
we get〈

∇3
ψη(θ, ψ), v ⊗ w ⊗ x

〉
=Eτ∼ρψθ [〈f, v〉 〈f, w〉 〈f, w〉 g] (110)

+ Eτ∼ρψθ

[
〈f, x〉

(
H∑
h=1

v>∇2
ψ log πψ(ah | sh)w

)
g

]
(111)

+ Eτ∼ρψθ

[
〈f, v〉

(
H∑
h=1

x>∇2
ψ log πψ(ah | sh)w

)
g

]
(112)

+ Eτ∼ρψθ

[
〈f, w〉

(
H∑
h=1

v>∇2
ψ log πψ(ah | sh)x

)
g

]
. (113)

Following the same argument, by Hölder inequality, for any h1, h2, h3 ∈ [H] we have
E[〈∇ψ log πψ(ah | sh), v〉 〈∇ψ log πψ(ah′ | sh′), w〉 〈∇ψ log πψ(ah′ | sh′), x〉 g]

≤E
[
〈∇ψ log πψ(ah | sh), v〉6

]1/6
E
[
〈∇ψ log πψ(ah′ | sh′), w〉6

]1/6
E
[
〈∇ψ log πψ(ah′ | sh′), x〉6

]1/6
H

≤
√

15H

σ3
.

On the other hand,

E

[
〈f, x〉

(
H∑
h=1

v>∇2
ψ log πψ(ah | sh)w

)
g

]

≤E
[
〈f, x〉2

]1/2
E

(( H∑
h=1

v>∇2
ψ log πψ(ah | sh)w

)
g

)2
1/2

≤H
3

σ3
.

By symmetricity, Eq. (110) can be upper bounded by〈
∇3
ψη(θ, ψ), v ⊗ w ⊗ x

〉
≤ 7H4

σ3
. (114)

E.3 Verifying Assumption 4.1.

Verifying item 1. We verify Assumption 4.1 by coupling argument. First of all, consider the
Lipschitzness of value function. By Bellman equation we have

V ψθ (s) =Ea∼πψ(s)

[
r(s, a) + V ψθ (T (s, a))

]
(115)

=Eu∼N (0,σ2I)

[
r(s, ψs+ u) + V ψθ (Nθ(s+ ψs+ u))

]
. (116)

Define B = 1 + ‖ψ‖op for shorthand. For two states s1, s2 ∈ S , by the Lipschitz assumption on
reward function we have

|r(s1, ψs1 + u)− r(s2, ψs2 + u)| ≤ LrB ‖s1 − s2‖2 . (117)
Then consider the second term in Eq. (116). Since we have |V πθ | ≤ H and

TV
(
N (s1 + ψs1, σ

2I),N (s2 + ψs2, σ
2I)
)
≤ 1

2σ
‖s1 + ψs1 − s2 − ψs2‖2 ≤

B ‖s1 − s2‖2
2σ

,

it follows that∣∣∣Eu∼N (0,σ2I)

[
V ψθ (Nθ(s1 + ψs1 + u))

]
− Eu∼N (0,σ2I)

[
V ψθ (Nθ(s2 + ψs2 + u))

]∣∣∣ ≤ HB

2σ
‖s1 − s2‖2 .

As a result, item 1 of Assumption 4.1 holds as follows∣∣∣V ψθ (s1)− V ψθ (s2)
∣∣∣ ≤ (HB

2σ
+ LrB

)
‖s1 − s2‖2 . (118)
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Verifying item 2. Now we turn to verifying the Lipschitzness of gradient term. Recall that by
policy gradient lemma we have for every v ∈ Rd×d,〈

∇ψV ψθ (s), v
〉

(119)

= Ea∼πψ(s)

[〈
∇ψV ψθ (Nθ(s+ a)), v

〉]
(120)

+ Ea∼πψ(s)

[
〈∇ψ log πψ(a | s), v〉

(
r(s, a) + V ψθ (Nθ(s+ a))

)]
(121)

= Eu∼N (0,σ2I)

[〈
∇ψV ψθ (Nθ(s+ ψs+ u)), v

〉]
(122)

+ Eu∼N (0,σ2I)

[
〈∇ψ log πψ(ψs+ u | s), v〉

(
r(s, ψs+ u) + V ψθ (Nθ(s+ ψs+ u))

)]
. (123)

Because for any two vectors g1, g2 ∈ Rd×d ‖g1 − g2‖2 = supv∈Sd×d−1 〈g1 − g2, v〉, Lipschitzness
of Eq. (119) for every v ∈ Rd×d, ‖v‖2 = 1 implies Lipschitzness of∇ψV ψθ (s).

By the boundness of
∥∥∥∇ψV ψθ (s)

∥∥∥
2

(specifically, item 1 of Assumption 2.1), we have∣∣∣Eu∼N (0,σ2I)

[〈
∇ψV ψθ (Nθ(s1 + ψs1 + u)), v

〉]
− Eu∼N (0,σ2I)

[〈
∇ψV ψθ (Nθ(s2 + ψs2 + u)), v

〉]∣∣∣
≤ H2

σ
TV
(
N (s1 + ψs1, σ

2I),N (s2 + ψs2, σ
2I)
)
≤ H2

σ

B

2σ
‖s1 − s2‖2 .

For the reward term in Eq. (123), recalling v ∈ Rd×d we have
Ea∼πψ(s)[〈∇ψ log πψ(ψs+ u | s), v〉 r(s, ψs+ u)] = Eu∼N (0,σ2I)[〈vs, u〉 r(s, ψs+ u)].

Note that
Eu∼N (0,σ2I)[〈vs1, u〉 r(s1, ψs1 + u)]− Eu∼N (0,σ2I)[〈vs2, u〉 r(s2, ψs2 + u)] (124)

= Eu∼N (0,σ2I)[〈vs1, u〉 (r(s1, ψs1 + u)− r(s2, ψs2 + u))] (125)

+ Eu∼N (0,σ2I)[(〈vs1, u〉 − 〈vs2, u〉)r(s2, ψs2 + u)]. (126)
Note that u is isotropic. Applying Lemma F.10 we have

Eu∼N (0,σ2I)[(〈vs1, u〉 − 〈vs2, u〉)r(s2, ψs2 + u)] ≤ σ ‖vs1 − vs2‖2 ≤ σ ‖s1 − s2‖2 . (127)
We can also bound the term in Eq. (125) by

Eu∼N (0,σ2I)[〈vs1, u〉 (r(s1, ψs1 + u)− r(s2, ψs2 + u))] (128)

≤ Eu∼N (0,σ2I)

[
〈vs1, u〉2

]1/2
Eu∼N (0,σ2I)

[
(r(s1, ψs1 + u)− r(s2, ψs2 + u))

2
]1/2

(129)

≤ σEu∼N (0,σ2I)

[
L2
rB

2 ‖s1 − s2‖22
]1/2

≤ σLrB ‖s1 − s2‖2 . (130)

Now we deal with the last term in Eq. (123). Let f(s, u) = V ψθ (Nθ(s + ψs + u)) for shorthand.
Similarly we have

Eu∼N (0,σ2I)

[
〈∇ψ log πψ(ψs+ u | s), v〉V ψθ (Nθ(s+ ψs+ u))

]
= Eu∼N (0,σ2I)[〈vs, u〉 f(s, u)].

(131)
By the same telescope sum we get,

Eu∼N (0,σ2I)[〈vs1, u〉 f(s1, u)]− Eu∼N (0,σ2I)[〈vs2, u〉 f(s2, u)] (132)

= Eu∼N (0,σ2I)[〈vs1, u〉 (f(s2, u)− f(s2, u))] (133)

+ Eu∼N (0,σ2I)[(〈vs1, u〉 − 〈vs2, u〉)f(s2, u)]. (134)
Applying Lemma F.10 we have

Eu∼N (0,σ2I)[(〈vs1, u〉 − 〈vs2, u〉)f(s2, u)] ≤ σH ‖vs1 − vs2‖2 ≤ σH ‖s1 − s2‖2 . (135)
Applying Lemma F.12 we have

Eu∼N (0,σ2I)[〈vs1, u〉 (f(s2, u)− f(s2, u))] ≤ 6BH ‖s1 − s2‖2

(
1 +

1

σ

)
. (136)

In summary, we have∥∥∥∇ψV ψθ (s1)−∇ψV ψθ (s2)
∥∥∥

2
≤ poly(H,B, σ, 1/σ, Lr) ‖s1 − s2‖2 . (137)
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Verifying item 3. Lastly, we verify the Lipschitzness of Hessian term. Applying policy gradient
lemma to Eq. (119) again we have

w>∇2
ψV

ψ
θ (s)v (138)

= Ea∼πψ(s)

[
w>∇2

ψV
ψ
θ (Nθ(s+ a))v

]
(139)

+ Ea∼πψ(s)

[〈
∇ψV ψθ (Nθ(s+ a)), v

〉
〈∇ψ log πψ(a | s), w〉

]
(140)

+ Ea∼πψ(s)

[
〈∇ψ log πψ(a | s), v〉

〈
∇ψV ψθ (Nθ(s+ a)), w

〉]
(141)

+ Ea∼πψ(s)

[
〈∇ψ log πψ(a | s), v〉 〈∇ψ log πψ(a | s), w〉

(
r(s, a) + V ψθ (Nθ(s+ a))

)]
. (142)

Recall that a ∼ ψs + N (0, σ2I). In the sequel, we bound the Lipschitzness of above four terms
separately.

By the upper bound of
∥∥∥∇2

ψV
ψ
θ (Nθ(s+ a))

∥∥∥
op

(specifically, item 2 of Assumption 2.1) we have∣∣∣Eu∼N (0,σ2I)

[
w>∇2

ψV
ψ
θ (Nθ(s1 + ψs1 + u))v

]
− Eu∼N (0,σ2I)

[
w>∇2

ψV
ψ
θ (Nθ(s1 + ψs1 + u))v

]∣∣∣
≤ 4H3

σ2
TV
(
N (s1 + ψs1, σ

2I),N (s2 + ψs2, σ
2I)
)
≤ 3H3

σ2

B

2σ
‖s1 − s2‖2 .

For the terms in Eq. (140), let f(s, u) =
〈
∇ψV ψθ (Nθ(s+ ψs+ a)), v

〉
. Repeat the same argument

when verifying item 2 again, we have

Eu∼N (0,σ2I)[〈ws1, u〉 (f(s2, u)− f(s2, u))] ≤ 6B
H2

σ
‖s1 − s2‖2

(
1 +

1

σ

)
. (143)

Similarly, term in Eq. (141) also has the same Lipschitz constant.

Finally, we bound the term in Eq. (142). For the reward term in Eq. (142), recalling v, w ∈ Rd×d
we have

Ea∼πψ(s)[〈∇ψ log πψ(a | s), v〉 〈∇ψ log πψ(a | s), w〉 r(s, a)] = Eu∼N (0,σ2I)[〈vs, u〉 〈ws, u〉 r(s, ψs+ u)].

Note that

Eu∼N (0,σ2I)[〈vs1, u〉 〈ws1, u〉 r(s1, ψs1 + u)]− Eu∼N (0,σ2I)[〈vs2, u〉 〈ws2, u〉 r(s2, ψs2 + u)]
(144)

= Eu∼N (0,σ2I)[〈vs1, u〉 〈ws1, u〉 (r(s1, ψs1 + u)− r(s2, ψs2 + u))] (145)

+ Eu∼N (0,σ2I)[(〈vs1, u〉 〈ws1, u〉 − 〈vs2, u〉 〈ws2, u〉)r(s2, ψs2 + u)]. (146)

Note that u is isotropic. Applying Lemma F.15 we have

Eu∼N (0,σ2I)[(〈vs1, u〉 〈ws1, u〉 − 〈vs2, u〉 〈ws2, u〉)r(s2, ψs2 + u)]

≤
√

3σ2(‖vs1 − vs2‖2 + ‖ws1 − ws2‖2) ≤ 2
√

3σ2 ‖s1 − s2‖2 ,

We can also bound the term in Eq. (145) by

Eu∼N (0,σ2I)[〈vs1, u〉 〈ws1, u〉 (r(s1, ψs1 + u)− r(s2, ψs2 + u))]

≤ Eu∼N (0,σ2I)

[
〈vs1, u〉4

]1/4
Eu∼N (0,σ2I)

[
〈ws1, u〉4

]1/4
Eu∼N (0,σ2I)

[
(r(s1, ψs1 + u)− r(s2, ψs2 + u))

2
]1/2

≤
√

3σ2Eu∼N (0,σ2I)

[
L2
rB

2 ‖s1 − s2‖22
]1/2

≤
√

3σ2LrB ‖s1 − s2‖2 .

Now we deal with the last term in Eq. (142). Let f(s, u) = V ψθ (Nθ(s + ψs + u)) for shorthand.
Similarly we have

Ea∼πψ(s)

[
〈∇ψ log πψ(a | s), v〉 〈∇ψ log πψ(a | s), w〉V ψθ (Nθ(s+ a))

]
(147)
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= Eu∼N (0,σ2I)[〈vs, u〉 〈ws, u〉 f(s, u)]. (148)

By the same telescope sum we get,

Eu∼N (0,σ2I)[〈vs1, u〉 〈ws1, u〉 f(s1, u)]− Eu∼N (0,σ2I)[〈vs2, u〉 〈ws2, u〉 f(s2, u)] (149)

= Eu∼N (0,σ2I)[〈vs1, u〉 〈ws1, u〉 (f(s1, u)− f(s2, u))] (150)

+ Eu∼N (0,σ2I)[(〈vs1, u〉 〈ws1, u〉 − 〈vs2, u〉 〈ws2, u〉)f(s2, u)]. (151)

Applying Lemma F.15 we have

Eu∼N (0,σ2I)[(〈vs1, u〉 〈ws1, u〉 − 〈vs2, u〉 〈ws2, u〉)f(s2, u)] (152)

≤
√

3σ2H(‖vs1 − vs2‖2 + ‖ws1 − ws2‖2) ≤ 2
√

3σ2H ‖s1 − s2‖2 . (153)

Applying Lemma F.13 we have

Eu∼N (0,σ2I)[〈vs1, u〉 〈ws1, u〉 (f(s2, u)− f(s2, u))] ≤ poly(H,σ, 1/σ)B ‖s1 − s2‖2 . (154)

In summary, we have∥∥∥∇2
ψV

ψ
θ (s1)−∇2

ψV
ψ
θ (s2)

∥∥∥
op
≤ poly(H,B, σ, 1/σ, Lr) ‖s1 − s2‖2 . (155)

F Helper Lemmas

In this section, we list helper lemmas that are used in previous sections.

F.1 Helper Lemmas on Probability Analysis

The following lemma provides a concentration inequality on the norm of linear transformation of a
Gaussian vector, which is used to prove Lemma F.3.

Lemma F.1 (Theorem 1 of Hsu et al. [36]). For v ∼ N (0, I) be a n dimensional Gaussian vector,
and A ∈ Rn×n. Let Σ = A>A, then

∀t > 0,Pr
[
‖Av‖22 ≥ Tr(Σ) + 2

√
Tr(Σ2)t+ 2 ‖Σ‖op t

]
≤ exp(−t). (156)

Corollary F.2. Under the same settings of Lemma F.1,

∀t > 1,Pr
[
‖Av‖22 ≥ ‖A‖

2
F + 4 ‖A‖2F t

]
≤ exp(−t). (157)

Proof. Let λi be the i-th eigenvalue of Σ. By the definition of Σ we have λi ≥ 0. Then we have

Tr(Σ) =

n∑
i=1

λi = ‖A‖2F ,

Tr(Σ2) =

n∑
i=1

λ2
i ≤

(
n∑
i=1

λi

)2

= ‖A‖4F ,

‖Σ‖op = Axi∈[n]λi ≤
n∑
i=1

λi = ‖A‖2F .

Plug in Eq. (156), we get the desired equation.

Next lemma proves a concentration inequality on which Lemma C.2 relies.

Lemma F.3. Given a symmetric matrix H , let u, v ∼ N (0, I) be two independent random vectors,
we have

∀t ≥ 1,Pr
[
(u>Hv)2 ≥ t ‖H‖2F

]
≤ 3 exp(−

√
t/4). (158)
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Proof. Condition on v, u>Hv is a Gaussian random variable with mean zero and variance ‖Hv‖22 .
Therefore we have,

∀v,Pr
[(
u>Hv

)2 ≥ √t ‖Hv‖22] ≤ exp(−
√
t/2). (159)

By Corollary F.2 and basic algebra we get,

Pr
[
‖Hv‖22 ≥

√
t ‖H‖2F

]
≤ 2 exp(−

√
t/4). (160)

Consequently,

E
[
I
[
(u>Hv)2 ≥ t ‖H‖2F

]]
≤ E

[
I
[
(u>Hv)2 ≥

√
t ‖Hv‖22 or ‖Hv‖22 ≥

√
t ‖H‖2F

]]
≤ E

[
I
[
(u>Hv)2 ≥

√
t ‖Hv‖22

]
| v
]

+ E
[
I
[
‖Hv‖22 ≥

√
t ‖H‖2F

]]
≤ 3 exp(−

√
t/4). (Combining Eq. (159) and Eq. (160))

The next two lemmas are dedicated to prove anti-concentration inequalities that is used in
Lemma C.2.
Lemma F.4 (Lemma 1 of Laurent, Massart [47]). Let (y1, · · · , yn) be i.i.d. N (0, 1) Gaussian
variables. Let a = (a1, · · · , an) be non-negative coefficient. Let

‖a‖22 =

n∑
i=1

a2
i .

Then for any positive t,

Pr

(
n∑
i=1

aiy
2
i ≤

n∑
i=1

ai − 2 ‖a‖2
√
t

)
≤ exp(−t). (161)

Lemma F.5. Given a symmetric matrix H ∈ Rn×n, let u, v ∼ N (0, I) be two independent random
vectors. Then

Pr

[
(u>Hv)2 ≥ 1

8
‖H‖2F

]
≥ 1

64
. (162)

Proof. Since u, v are independent, by the isotropy of Guassian vectors we can assume that H =
diag(λ1, · · · , λn). Note that condition on v, u>Hv is a Gaussian random variable with mean zero
and variance ‖Hv‖22 . As a result,

∀v,Pr

[(
u>Hv

)2 ≥ 1

4
‖Hv‖22 | v

]
≥ 1

2
. (163)

On the other hand, ‖Hv‖22 =
∑n
i=1 λ

2
i v

2
i . Invoking Lemma F.4 we have

Pr

[
‖Hv‖22 ≥

1

2
‖H‖2F

]

≥ Pr

‖Hv‖22 ≥ ‖H‖2F − 1

2

√√√√ n∑
i=1

λ4
i


= Pr

 n∑
i=1

λ2
i v

2
i ≥

n∑
i=1

λ2
i −

1

2

√√√√ n∑
i=1

λ4
i

 (By definition)

≥ 1− exp(−1/16) ≥ 1

32
. (164)
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Combining Eq. (163) and Eq. (164) we get,

Pr

[
(u>Hv)2 ≥ 1

8
‖H‖2F

]
≥ Pr

[
(u>Hv)2 ≥ 1

4
‖Hv‖22 , ‖Hv‖

2
F ≥

1

2
‖H‖2F

]
≥ 1

64
.

The following lemma justifies the cap in the loss function.
Lemma F.6. Given a symmetric matrix H , let u, v ∼ N (0, I) be two independent random vectors.
Let κ2, c1 ∈ R+ be two numbers satisfying κ2 ≥ 640

√
2c1, then

min
(
c21, ‖H‖

2
F

)
≤ 2E

[
min

(
κ2

2,
(
u>Hv

)2)]
. (165)

Proof. Let x =
(
u>Hv

)2
for simplicity. Consider the following two cases:

Case 1: ‖H‖F ≤ κ2/40. In this case we exploit the tail bound of random variable x. Specifically,

E
[(
u>Hv

)2]− E
[
min

(
κ2

2,
(
u>Hv

)2)]
=

∫ ∞
κ2
2

Pr [x ≥ t]dt

≤ 3

∫ ∞
κ2
2

exp

(
−1

4

√
t

‖H‖2F

)
dt (By Lemma F.3)

= 24 exp

(
− κ2

4 ‖H‖F

)
‖H‖F (κ2 + 4 ‖H‖F)

≤ 48 exp

(
− κ2

4 ‖H‖F

)
‖H‖F κ2 (4 ‖H‖F ≤ κ2 in this case)

≤ 48 ·
4 ‖H‖F
384κ2

‖H‖F κ2 (exp(−x) ≤ 1
384x when x ≥ 10)

≤
‖H‖2F

2
.

As a result,

E
[
min

(
κ2

2,
(
u>Hv

)2)] ≥ E
[(
u>Hv

)2]− ‖H‖2F
2

=
‖H‖2F

2
. (166)

Case 2: ‖H‖F > κ2/40. In this case, we exploit the anti-concentration result of random variable
x. Note that by the choice of κ2, we have

‖H‖F > κ2/40 =⇒ 1

8
‖H‖2F ≥ 64c21.

As a result,

E
[
min

(
κ2

2,
(
u>Hv

)2)]
≥ 64c21 Pr

[
min

(
κ2

2,
(
u>Hv

)2) ≥ 64c21

]
≥ 64c21 Pr

[(
u>Hv

)2 ≥ 64c21

]
(By definition of κ2)

≥ 64c21 Pr

[(
u>Hv

)2 ≥ 1

8
‖H‖2F

]
≥ c21. (By Lemma F.5)

Therefore, in both cases we get

E
[
min

(
κ2

2,
(
u>Hv

)2)] ≥ 1

2
min

(
c21, ‖H‖

2
F

)
, (167)

which proofs Eq. (165).
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Following lemmas are analogs to Cauchy-Schwartz inequality (in vector/matrix forms), which are
used to prove Lemma D.1 for reinforcement learning case.
Lemma F.7. For a random vector x ∈ Rd and random variable r, we have

‖E[rx]‖22 ≤
∥∥E[xx>]∥∥

op
E
[
r2
]
. (168)

Proof. Note that for any vector g ∈ Rd, ‖g‖22 = supu∈Sd−1 〈u, g〉2 . As a result,

‖E[rx]‖22 = sup
u∈Sd−1

〈u,E[rx]〉2 = sup
u∈Sd−1

E[r 〈u, x〉]2

≤ sup
u∈Sd−1

E
[
〈u, x〉2

]
E
[
r2
]

(Hölder Ineqaulity)

=
∥∥E[xx>]∥∥

op
E
[
r2
]
.

Lemma F.8. For a symmetric random matrix H ∈ Rd×d and random variable r, we have

‖E[rH]‖2sp ≤
∥∥E[HH>]∥∥

sp
E
[
r2
]
. (169)

Proof. Note that for any matrixG ∈ Rd, ‖H‖2sp = supu,v∈Sd−1

(
u>Gv

)2
. As a result,

‖E[rH]‖22 = sup
u,v∈Sd−1

(
u>E[rH]v

)2
= sup
u,v∈Sd−1

E
[
r
(
u>Hv

)]2
≤ sup

u,v∈Sd−1

E
[(
u>Hv

)2]E[r2
]

(Hölder Ineqaulity)

= sup
u,v∈Sd−1

E
[
u>Hvv>H>u

]
E
[
r2
]

≤ sup
u∈Sd−1

E
[
u>HH>u

]
E
[
r2
]

=
∥∥E[HH>]∥∥

sp
E
[
r2
]
.

Lemma F.9. For a random matrix x ∈ Rd and a positive random variable r, we have∥∥E[rxx>]∥∥2

sp
≤
∥∥E[x⊗4]

∥∥
sp
E
[
r2
]
. (170)

Proof. Since r is non-negative, we have E
[
rxx>

]
� 0. As a result,∥∥E[rxx>]∥∥

sp
= sup
u∈Sd−1

u>E
[
rxx>

]
u.

It follows that ∥∥E[rxx>]∥∥2

sp
= sup
u∈Sd−1

(
u>E

[
rxx>

]
u
)2

= sup
u∈Sd−1

E
[
r 〈u, x〉2

]2
≤ sup

u∈Sd−1

E
[
〈u, x〉4

]
E
[
r2
]

(Hölder Inequality)

= sup
u∈Sd−1

〈
u⊗4,E[x⊗4]

〉
E
[
r2
]

=
∥∥E[x⊗4

]∥∥
sp
E
[
r2
]
.

Following lemmas exploit the isotropism of Gaussian vectors, and are used to verify the Lipschitz-
ness assumption of Example 4.3. In fact, we heavily rely on the fact that, for a fixed vector g ∈ Rd,
〈g, u〉 ∼ N (0, ‖g‖22) when u ∼ N (0, I),
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Lemma F.10. For two vectors p, q ∈ Rd and a bounded function f : Rd → [−B,B], we have

Eu∼N (0,σ2I)[(〈p, u〉 − 〈q, u〉)f(u)] ≤ σB ‖p− q‖2 . (171)

Proof. By Hölder inequality we have

Eu∼N (0,σ2I)[(〈p, u〉 − 〈q, u〉)f(u)] (172)

≤ Eu∼N (0,σ2I)

[
(〈p, u〉 − 〈q, u〉)2

]1/2
Eu∼N (0,σ2I)

(
f(u)2

)1/2
. (173)

Note that u is isotropic. As a result 〈p− q, u〉 ∼ N (0, σ2 ‖p− q‖22). It follows that

Eu∼N (0,σ2I)

[
(〈p, u〉 − 〈q, u〉)2

]1/2
Eu∼N (0,σ2I)

(
f(u)2

)1/2
(174)

≤ σ ‖p− q‖2B. (175)

Lemma F.11. For two vectors x, y ∈ Rd, if ‖x‖2 = 1 we have

‖x− y‖22 ≥ (1− 〈x, y〉)2. (176)

Proof. By basic algebra we get

‖x− y‖22 = ‖x− 〈x, y〉x+ 〈x, y〉x− y‖22 (177)

= ‖x− 〈x, y〉x‖22 + ‖〈x, y〉x− y‖22 − 2(1− 〈x, y〉) 〈x, 〈x, y〉x− y〉 (178)

= ‖x− 〈x, y〉x‖22 + ‖〈x, y〉x− y‖22 (179)

=(1− 〈x, y〉)2 + ‖〈x, y〉x− y‖22 ≥ (1− 〈x, y〉)2. (180)

Lemma F.12. For vectors p, x1, x2 ∈ Rd and a bounded function f : Rd → [0, B], we have

Eu∼N (0,σ2I)[〈p, u〉 (f(x1 + u)− f(x2 + u))] ≤ B ‖p‖2 ‖x1 − x2‖2

(
6 +

3(‖x1‖2 + ‖x2‖2)

σ

)
.

(181)

Proof. The lemma is proved by coupling argument. With out loss of generality, we assume that
x1 = Ce1 and x2 = −Ce1 where e1 is the first basis vector. That is, ‖x1 − x2‖2 = 2C. For a
vector x ∈ Rd, let F (x) be the density of distribution N (0, σ2I) at x. Then we have,

Eu∼N (0,σ2I)[〈p, u〉 f(x1 + u)] =

∫
y∈Rd

F (y − x1) 〈p, y − x1〉 f(y)dy. (182)

As a result,

Eu∼N (0,σ2I)[〈p, u〉 (f(x1 + u)− f(x2 + u))] (183)

=

∫
y∈Rd

F (y − x1) 〈p, y − x1〉 f(y)dy − F (y − x2) 〈p, y − x2〉 f(y)dy. (184)

Define G(y) = min(F (y − x1), F (y − x2)). It follows that,∫
y∈Rd

F (y − x1) 〈p, y − x1〉 f(y)dy − F (y − x2) 〈p, y − x2〉 f(y)dy (185)

≤
∫
y∈Rd

G(y)|〈p, y − x1〉 − 〈p, y − x2〉|f(y)dy (186)

+

∫
y∈Rd

(F (y − x1)−G(y))|〈p, y − x1〉|f(y)dy (187)

+

∫
y∈Rd

(F (y − x2)−G(y))|〈p, y − x2〉|f(y)dy. (188)
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The term in Eq. (186) can be bounded by∫
y∈Rd

G(y)|〈p, y − x1〉 − 〈p, y − x2〉|f(y)dy (189)

≤
∫
y∈Rd

G(y)dy sup
y∈Rd

|〈p, x2 − x1〉 f(y)| ≤ ‖x2 − x1‖2 ‖p‖2B. (190)

Note that the terms in Eq. (187) and Eq. (188) are symmetric. Therefore in the following we only
prove an upper bound for Eq. (187). In the following, we use the notation [y]−1 to denote the
(d− 1)-dimensional vector generated by removing the first coordinate of y. Let P (x) be the density
of distribution N (0, σ2) at point x ∈ R. By the symmetricity of Gaussian distribution, F (y) =
P ([y]1)F ([y]−1).

By definition, F (y − x1)−G(y) = 0 for y such that [y]1 ≤ 0. As a result,∫
y:[y]1>0

(F (y − x1)−G(y))|〈p, y − x1〉|f(y)dy (191)

=

∫
y:[y]1>0

(F (y − x1)− F (y − x2))|〈p, y − x1〉|f(y)dy (192)

≤
∫

[y]1>0

d[y]1(P ([y]1 − [x1]1)− P ([y1]− [x2]1))E[y]−1
[(|〈[p]−1, [y − x1]−1〉+ [p]1[y − x1]1|)f(y)].

(193)

Note that conditioned on [y]1, [y − x1]−1 ∼ N (0, σ2I). Consequently,

E[y]−1
[|〈[p]−1, [y − x1]−1〉|f(y)] (194)

≤ E[y]−1

[
〈[p]−1, [y − x1]−1〉2

]1/2
E[y]−1

[
f(y)2

]1/2
(195)

≤ Bσ ‖[p]−1‖2 ≤ Bσ ‖p‖2 . (196)

On the other hand, we have∫
[y]1>0

d[y]1(P ([y]1 − [x1]1)− P ([y1]− [x2]1)) ≤ TV
(
N (−C, σ2),N (C, σ2)

)
≤ 1

σ
‖x1 − x2‖2 .

(197)

It follows that,∫
y:[y]1>0

(F (y − x1)−G(y))|〈p, y − x1〉|f(y)dy (198)

≤ B ‖p‖2 ‖x1 − x2‖2 +B

∫
[y]1>0

d[y]1(P ([y]1 − [x1]1)− P ([y1]− [x2]1))|[p]1[y − x1]1|.

(199)

Note that the second term in Eq. (199) involves only one dimensional Gaussian distribution. In-
voking Lemma F.14, the second term can be bounded by ‖p‖2

(
3‖x1−x2‖2

σ ‖x1‖2 + 4 ‖x1 − x2‖2
)

.
Therefore, we have∫
y:[y]1>0

(F (y − x1)−G(y))|〈p, y − x1〉|f(y)dy ≤ 5B ‖p‖2 ‖x1 − x2‖2 + ‖p‖2
3B ‖x1 − x2‖2

σ
.

(200)

Lemma F.13. For vectors p, q, x1, x2 ∈ Rd with ‖x1 ≤ 1‖ ≤ 1 ‖x2‖2 ≤ 1 and a bounded function
f : Rd → [0, B], we have

Eu∼N (0,σ2I)[〈p, u〉 〈q, u〉 (f(x1 + u)− f(x2 + u))] ≤ poly(B, σ, 1/σ, ‖p‖2 , ‖q‖2) ‖x1 − x2‖2 .
(201)
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Proof. Proof of this lemma is similar to that of Lemma F.13. With out loss of generality, we assume
that x1 = Ce1 and x2 = −Ce1 where e1 is the first basis vector. That is, ‖x1 − x2‖2 = 2C. For a
vector x ∈ Rd, let F (x) be the density of distribution N (0, σ2I) at x. Then we have,

Eu∼N (0,σ2I)[〈p, u〉 〈q, u〉 f(x1 + u)] =

∫
y∈Rd

F (y − x1) 〈p, y − x1〉 〈q, y − x1〉 f(y)dy. (202)

As a result,

Eu∼N (0,σ2I)[〈p, u〉 〈q, u〉 (f(x1 + u)− f(x2 + u))] (203)

=

∫
y∈Rd

F (y − x1) 〈p, y − x1〉 〈q, y − x1〉 f(y)dy − F (y − x2) 〈p, y − x2〉 〈q, y − x2〉 f(y)dy.

(204)

Define G(y) = min(F (y − x1), F (y − x2)). It follows that,∫
y∈Rd

F (y − x1) 〈p, y − x1〉 〈q, y − x1〉 f(y)dy − F (y − x2) 〈p, y − x2〉 〈q, y − x2〉 f(y)dy

(205)

≤
∫
y∈Rd

G(y)|〈p, y − x1〉 〈q, y − x1〉 − 〈p, y − x2〉 〈q, y − x2〉|f(y)dy (206)

+

∫
y∈Rd

(F (y − x1)−G(y))|〈p, y − x1〉 〈q, y − x1〉|f(y)dy (207)

+

∫
y∈Rd

(F (y − x2)−G(y))|〈p, y − x2〉 〈q, y − x2〉|f(y)dy. (208)

By basic algebra we have∫
y∈Rd

G(y)|〈p, y − x1〉 〈q, y − x1〉 − 〈p, y − x2〉 〈q, y − x2〉|f(y)dy (209)

≤
∫
y∈Rd

G(y)|〈p, x2 − x1〉 〈q, y − x1〉|f(y)dy (210)

+

∫
y∈Rd

G(y)|〈p, y − x2〉 〈q, x2 − x1〉|f(y)dy. (211)

Continue with the first term we get∫
y∈Rd

G(y)|〈p, x2 − x1〉 〈q, y − x1〉|f(y)dy (212)

≤ ‖x2 − x1‖2 ‖p‖2
∫
y∈Rd

G(y)|〈q, y − x1〉|f(y)dy (213)

≤ ‖x2 − x1‖2 ‖p‖2
∫
y∈Rd

F (y − x1)|〈q, y − x1〉|f(y)dy (214)

= ‖x2 − x1‖2 ‖p‖2 Eu∼N (0,σ2I)[|〈q, u〉|f(u+ x1)] (215)

≤ ‖x2 − x1‖2 ‖p‖2 Eu∼N (0,σ2I)

[
〈q, u〉2

]1/2
Eu∼N (0,σ2I)

[
f(u+ x1)2

]1/2
(216)

≤ σB ‖x2 − x1‖2 ‖p‖2 ‖q‖2 . (217)

For the same reason, the second term in Eq. (211) is also bounded by σB ‖x2 − x1‖2 ‖p‖2 ‖q‖2 .
As a result,∫
y∈Rd

G(y)|〈p, y − x1〉 〈q, y − x1〉 − 〈p, y − x2〉 〈q, y − x2〉|f(y)dy ≤ 2σB ‖x2 − x1‖2 ‖p‖2 ‖q‖2 .

(218)

Now we turn to the term in Eq. (207). Note that the terms in Eq. (207) and Eq. (208) are symmetric.
Therefore in the following we only prove an upper bound for Eq. (207). In the following, we use the

44



notation [y]−1 to denote the (d − 1)-dimensional vector generated by removing the first coordinate
of y. Let P (x) be the density of distribution N (0, σ2) at point x ∈ R. By the symmetricity of
Gaussian distribution, F (y) = P ([y]1)F ([y]−1).

By definition, F (y − x1) − G(y) = 0 for y such that [y]1 ≤ 0. Define the shorthand I =
|[p]1[y − x1]1|, J = |〈[p]−1, [y − x1]−1〉|, C = |[q]1[y − x1]1|, D = |〈[q]−1, [y − x1]−1〉|. When
condition on [y]1, A,C are constants. As a result,∫

y:[y]1>0

(F (y − x1)−G(y))|〈p, y − x1〉 〈q, y − x1〉|f(y)dy (219)

=

∫
y:[y]1>0

(F (y − x1)− F (y − x2))|〈p, y − x1〉 〈q, y − x1〉|f(y)dy (220)

≤
∫

[y]1>0

d[y]1(P ([y]1 − [x1]1)− P ([y1]− [x2]1))E[y]−1
[|(I + J)(C +D)|f(y)] (221)

≤
∫

[y]1>0

d[y]1(P ([y]1 − [x1]1)− P ([y1]− [x2]1))ICE[y]−1
[f(y)] (222)

+

∫
[y]1>0

d[y]1(P ([y]1 − [x1]1)− P ([y1]− [x2]1))IE[y]−1
[Df(y)] (223)

+

∫
[y]1>0

d[y]1(P ([y]1 − [x1]1)− P ([y1]− [x2]1))CE[y]−1
[Jf(y)] (224)

+

∫
[y]1>0

d[y]1(P ([y]1 − [x1]1)− P ([y1]− [x2]1))E[y]−1
[JDf(y)]. (225)

Note that conditioned on [y]1, [y − x1]−1 ∼ N (0, σ2I). Consequently,

E[y]−1
[Df(y)] ≤ E[y]−1

[
D2
]1/2E[y]−1

[
f(y)2

]1/2 ≤ Bσ ‖q‖2 (226)

E[y]−1
[Jf(y)] ≤ E[y]−1

[
J2
]1/2E[y]−1

[
f(y)2

]1/2 ≤ Bσ ‖p‖2 (227)

E[y]−1
[JDf(y)] ≤ E[y]−1

[
J4
]1/4E[y]−1

[
D4
]1/4E[y]−1

[
f(y)2

]1/2 ≤ √3Bσ2 ‖p‖2 ‖q‖2 . (228)
Invoking Lemma F.14 we get∫

[y]1>0

d[y]1(P ([y]1 − [x1]1)− P ([y1]− [x2]1)) ≤ 1

σ
‖x1 − x2‖2 , (229)∫

[y]1>0

d[y]1(P ([y]1 − [x1]1)− P ([y1]− [x2]1))I ≤ poly(B, σ, 1/σ) ‖p‖2 ‖x1 − x2‖2 , (230)∫
[y]1>0

d[y]1(P ([y]1 − [x1]1)− P ([y1]− [x2]1))C ≤ poly(B, σ, 1/σ) ‖q‖2 ‖x1 − x2‖2 , (231)∫
[y]1>0

d[y]1(P ([y]1 − [x1]1)− P ([y1]− [x2]1))IC ≤ poly(B, σ, 1/σ) ‖p‖2 ‖q‖2 ‖x1 − x2‖2 .

(232)
As a result, we get∫
y:[y]1>0

(F (y − x1)−G(y))|〈p, y − x1〉 〈q, y − x1〉|f(y)dy ≤ poly(B, σ, 1/σ, ‖p‖2 , ‖q‖2) ‖x1 − x2‖2 .

Lemma F.14. Let P (x) be the density function of N (0, σ2). Given a scalar x ≥ 0. we have∫
y>0

(P (y − x)− P (y + x))dy ≤ x

σ
, (233)∫

y>0

(P (y − x)− P (y + x))|y − x|dy ≤ 3x2

σ
+ 4x, (234)∫

y>0

(P (y − x)− P (y + x))|y − x|2dy ≤ x2

σ
+ 4σx. (235)
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Proof. Note that TV
(
N (−x, σ2),N (x, σ2)

)
≤ x

σ . Consequently,∫
y>0

(P (y − x)− P (y + x))dy ≤ x

σ
. (236)

Using the same TV-distance bound, we get∫
y>0

(P (y − x)− P (y + x))|y − x|dy (237)

≤
∫
y>0

(P (y − x)− P (y + x))((y − x) + 2x)dy (238)

≤
∫
y>2x

(P (y − x)− P (y + x))(y − x)dy +
3x2

σ
. (239)

Recall P (x) = 1√
2π

exp
(
− x2

2σ2

)
. By algebraic manipulation we have∫

y>2x

(
exp

(
− (y − x)2

2σ2

)
− exp

(
− (y + x)2

2σ2

))
(y − x)dy (240)

≤
∫
y>2x

exp

(
− (y − x)2

2σ2

)(
1− exp

(
−4xy

2σ2

))
(y − x)dy (241)

≤
∫
y>2x

exp

(
− (y − x)2

2σ2

)
4xy

2σ2
(y − x)dy (242)

≤
∫
y>2x

exp

(
− (y − x)2

2σ2

)
4x

σ2
(y − x)2dy (243)

≤ 4x. (244)

Now we turn to the third inequality. Because |y − x| ≤ x for y ∈ [0, 2x], using the TV-distance
bound we get∫

y>0

(P (y − x)− P (y + x))|y − x|2dy ≤
∫
y>2x

(P (y − x)− P (y + x))(y − x)2dy +
x2

σ
.

(245)

By algebraic manipulation we have∫
y>2x

(
exp

(
− (y − x)2

2σ2

)
− exp

(
− (y + x)2

2σ2

))
(y − x)2dy (246)

≤
∫
y>2x

exp

(
− (y − x)2

2σ2

)(
1− exp

(
−4xy

2σ2

))
(y − x)2dy (247)

≤
∫
y>2x

exp

(
− (y − x)2

2σ2

)
4xy

2σ2
(y − x)2dy (248)

≤
∫
y>2x

exp

(
− (y − x)2

2σ2

)
4x

σ2
(y − x)3dy (249)

≤ 4σx. (250)

Lemma F.15. For four vectors p, q, v, w ∈ Rd with unit norm and a bounded function f : Rd →
[−B,B], we have

Eu∼N (0,σ2I)[(〈p, u〉 〈v, u〉 − 〈q, u〉 〈w, u〉)f(u)] ≤
√

3σ2B(‖p− q‖2 + ‖v − w‖2). (251)

Proof. First of all, by telescope sum we get

Eu∼N (0,σ2I)[(〈p, u〉 〈v, u〉 − 〈q, u〉 〈w, u〉)f(u)] (252)
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= Eu∼N (0,σ2I)[(〈p, u〉 〈v, u〉 − 〈p, u〉 〈w, u〉)f(u)] (253)

+ Eu∼N (0,σ2I)[(〈p, u〉 〈w, u〉 − 〈q, u〉 〈w, u〉)f(u)]. (254)

By Hölder inequality we have

Eu∼N (0,σ2I)[(〈p, u〉 〈v, u〉 − 〈p, u〉 〈w, u〉)f(u)] (255)

≤ Eu∼N (0,σ2I)

[
〈p, u〉4

]1/4
Eu∼N (0,σ2I)

[
〈v − w, u〉4

]1/4
Eu∼N (0,σ2I)

[
f(u)2

]1/2
(256)

≤
√

3σ2 ‖p‖2 ‖v − w‖2B. (257)

Similarly we have

Eu∼N (0,σ2I)[(〈p, u〉 〈w, u〉 − 〈q, u〉 〈w, u〉)f(u)] ≤
√

3σ2 ‖p− q‖2 ‖w‖2B. (258)

F.2 Helper Lemmas on Reinforcement Learning

Lemma F.16 (Telescoping or Simulation Lemma, see Luo et al. [55], Agarwal et al. [2]). For any
policy π and deterministic dynamical model T, T̂ , we have

V π
T̂

(s1)− V πT (s1) = Eτ∼ρπT

[
H∑
h=1

(
V π
T̂

(T̂ (sh, ah))− V π
T̂

(T (sh, ah))
)]
. (259)

Lemma F.17 (Policy Gradient Lemma, see Sutton, Barto [69]). For any policy πψ , deterministic
dynamical model T and reward function r(sh, ah), we have

∇ψV
πψ
T = E

τ∼ρ
πψ
T

[(
H∑
h=1

∇ψ log πψ(ah | sh)

)(
H∑
h=1

r(sh, ah)

)]
(260)

Proof. Note that

V
πψ
T =

∫
τ

Pr [τ ]

H∑
h=1

r(sh, ah) dτ.

Take gradient w.r.t. ψ in both sides, we have

∇ψV
πψ
T = ∇ψ

∫
τ

Pr [τ ]

H∑
h=1

r(sh, ah) dτ

=

∫
τ

(∇ψ Pr [τ ])

H∑
h=1

r(sh, ah) dτ

=

∫
τ

Pr [τ ](∇ψ log Pr [τ ])

H∑
h=1

r(sh, ah) dτ

=

∫
τ

Pr [τ ]

(
∇ψ log

H∏
h=1

πψ(ah | sh)

)
H∑
h=1

r(sh, ah) dτ

=

∫
τ

Pr [τ ]

(
H∑
h=1

∇ψ log πψ(ah | sh)

)
H∑
h=1

r(sh, ah) dτ

= E
τ∼ρ

πψ
T

[(
H∑
h=1

∇ψ log πψ(ah | sh)

)
H∑
h=1

r(sh, ah)

]

47


