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1 Main Result

In this supplementary material, we prove Theorem II.6 from the main text. We reproduce it
below for convenience.

Theorem 1.1 (Theorem II.6 from Main Text). For any κ > 0, there exists a p∗κ < 1 such that
the following holds. Fix any p ∈ [p∗κ, 1] and any α < α̃c(κ, p). Then,

lim inf
n→∞

P
[
S̃α(κ, p) ̸= ∅

]
> 0.

Moreover, for any κ ∈ (0, 0.817), there exists a p∗∗κ > 0 such that the following holds. Fix any
p ∈ [0, p∗∗κ ] and any α < α̃c(κ, p). Then,

lim inf
n→∞

P
[
S̃α(κ, p) ̸= ∅

]
> 0.

We prove Theorem 1.1 contingent on an assumption regarding a certain real-valued function.
It is worth noting that various related results in the field mentioned earlier were also established
contingent on an analogous assumption, see e.g. [APZ19, Hypothesis 3], [PX21, Assumption 1],
and [DS19, Condition 1.2].

Assumption 1.2. Following the notation in [APZ19], let

Fr,κ,α(β) ≜ h(β) + α log2 P[|Z1| ≤ κ, |Zβ| ≤ κ]

Fu,κ,α(β) ≜ h(β) + α log2 P[|Z1| > κ, |Zβ| > κ],

where Z1, Zβ ∼ N (0, 1) with correlation 2β − 1 and h(β) is the binary entropy function:

h(β) = −β log2 β − (1− β) log2(1− β).

Fix any p ∈ [0, 1] and set Fκ,α,p(β) = pFr,κ,α(β) + (1 − p)Fu,κ,α(β). For any κ > 0 and α > 0
with F

′′
κ,α,p(1/2) < 0, there is at most one β ∈ (1/2, 1) such that F ′

κ,α,p(β) = 0.
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Several remarks are in order. Assumption 1.2 is analogous to [APZ19, Hypothesis 3], adopted
both for the SBP (corresponding to p = 1 in our model) and for the UBP (corresponding to p = 0
in our model) therein. Furthermore, for the SBP, [APZ19, Hypothesis 3] is verified by Abbe,
Li, and Sly [ALS21]. It is likely that their techniques adapt also to the UBP for a range of κ
values, e.g. when κ < κ∗ ≈ 0.8171. In light of these facts, as well as numerical studies reported
in Section 3, Assumption 1.2 is indeed plausible. A rigorous verification is left for future work.

2 Proof of Theorem 1.1

Our proof is very similar to that of [APZ19, Proposition 6], and we use the identical notation
whenever appropriate. Furthermore, we only prove the first part as the second part is identical.

The proof is based on the second moment method.

Lemma 2.1. Let Z be an integer-valued random variable with P[Z ≥ 0] = 1. Then

P[Z > 0] ≥ E[Z]2

E[Z2]
.

Lemma 2.1 is known as the Paley-Zygmund inequality, we provide a proof for completeness.

Proof of Lemma 2.1. Let I = 1{Z > 0}, thus P[Z > 0] = E[I] = E[I2]. We then conclude by
applying Cauchy-Schwarz inequality:

P[Z > 0]E[Z2] = E[I2]E[Z2] ≥ E[Z1{Z > 0}]2 = E[Z]2.

We next provide an auxiliary lemma, originally due to Achlioptas and Moore [AM02, Lemma 2].
The version below is reproduced from [APZ19, Lemma 8].

Lemma 2.2. Let g(β) be a real analytic function on [0, 1] and let

G(β) =
g(β)

ββ(1− β)1−β
.

Suppose that (a) G(1/2) > G(β) for every β ̸= 1/2 and (b) G′′(1/2) < 0. Then, there exists
constants c2 > c1 > 0 such that

c2G(1/2)n ≥
∑

0≤ℓ≤n

(
n

ℓ

)
g(ℓ/n)n ≥ c1G(1/2)n.

In the remainder of the proof, we let q(κ) ≜ P[|Z| ≤ κ] where Z ∼ N (0, 1).
Equipped with Lemmas 2.1 and 2.2, we let

Z =
∣∣S̃α(κ, p)

∣∣ = ∑
σ∈Σn

1
{
σ ∈ S̃α(κ, p)

}
.

Theorem II.3 from the main text yields

E[Z] = 2nq(κ)pαn(1− q(κ))(1−p)αn. (1)

1Above κ∗, the model exhibits replica symmetry breaking behaviour, see [APZ19] for details.
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Second Moment Calculation Next, fix any β ∈ [0, 1], let Z ∼ N (0, 1) and Zβ ∼ N (0, 1)
with E[ZβZ] = 2β − 1. Define

qr,κ(β) = P[|Z| ≤ κ, |Zβ| ≤ κ] (2)

qu,κ(β) = P[|Z| > κ, |Zβ| > κ]. (3)

These are precisely the same quantities appearing in [APZ19, Equation 6]. Note that

Z2 =
∑

σ,σ′∈Σn

1

{
σ ∈ S̃α(κ, p),σ

′ ∈ S̃α(κ, p)
}
.

Taking expectations of both sides, we obtain

E[Z2] = 2n
∑

0≤ℓ≤n

(
n

ℓ

)
qr,κ(β)

pαnqu,κ(β)
(1−p)αn.

Soon, we will apply Lemma 2.2 to Gκ,α,p(β) where

Gκ,α,p(β) =
qr,κ(β)

pαqu,κ(β)
(1−p)α

ββ(1− β)1−β
. (4)

Suppose first that Gκ,α,p(·) satisfies the conditions of Lemma 2.2. Then, we immediately obtain

E[Z2] ≤ c2 · 2n ·G(1/2)n = c2 · 4n · q(κ)2pαn · (1− q(κ))2(1−p)αn,

for some c2 > 0. Observe that

qr,κ(1/2) = q(κ)2 and qu,κ(1/2) =
(
1− q(κ)

)2
.

Now recalling (1) and applying Lemma 2.1, we establish the desired result:

lim inf
n→∞

P
[
S̃α(κ, p) ̸= ∅

]
= lim inf

n→∞
P[Z > 0] ≥ E[Z]2

E[Z2]
≥ 1

c2
> 0.

Verifying Conditions of Lemma 2.2 Hence, it suffices to verify that Gκ,α(β) defined in (4)
satisfies the conditions of Lemma 2.2. We proceed analogously to [APZ19]. To that end, we let

Gr,κ,α(β) =
qr,κ(β)

α

ββ(1− β)1−β
and Gu,κ,α(β) =

qu,κ(β)
α

ββ(1− β)1−β
,

and obtain
Gκ,α,p(β) = Gr,κ,α(β)

pGu,κ,α(β)
1−p. (5)

We then set Gκ,α,p(β) = exp
(
Fκ,α,p(β)

)
as in the proof of [APZ19, Proposition 6] and observe,

using (5), that
Fκ,α,p(β) = pFr,κ,α(β) + (1− p)Fu,κ,α(β), (6)

where Fr,κ,α(β) is precisely the term arising in [APZ19, Equation 9] and Fu,κ,α(β) is the term
defined in [APZ19, Section 2.2.2]. Note that a necessary condition is Fκ,α,p(1/2) > Fκ,α,p(1) for
all p, which boils down to the condition

α < − 1

p log2 q(κ) + (1− p) log2
(
1− q(κ)

) = α̃c(κ, p). (7)
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Next, we have F
′′
κ,α,p(1/2) = pF

′′
r,κ,α(1/2)+(1−p)F

′′
u,κ,α(1/2). Using the expressions for F

′′
r,κ,α(1/2)

and F
′′
u,κ,α(1/2) derived in [APZ19], we get

F
′′

κ,α,p(1/2) = 4p

(
−1 +

2

π

ακ2e−κ2

q(κ)2

)
+ 4(1− p)

(
−1 +

2

π

ακ2e−κ2(
1− q(κ)

)2
)

= −4 + α · 8
π
κ2e−κ2

(
p

q(κ)2
+

1− p(
1− q(κ)

)2
)
.

So, it suffices to verify that

α <
π

2κ2e−κ2

(
p

q(κ)2
+

1− p(
1− q(κ)

)2
)−1

(8)

to ensure F
′′
κ,α,p(1/2) < 0. We now establish our claim. Fix any κ > 0. Note that the argument

of [APZ19] shows

− 1

log2 q(κ)
<

π

2κ2e−κ2 q(κ)
2. (9)

Define

ζ(p, κ) = − 1

p log2 q(κ) + (1− p) log2
(
1− q(κ)

) − π

2κ2e−κ2

(
p

q(κ)2
+

1− p(
1− q(κ)

)2
)−1

. (10)

Note that for any fixed κ > 0, p 7→ ζ(p, κ) is continuous. Furthermore, (9) yields ζ(1, κ) < 0.
So, for any fixed κ, there is a p∗κ for which ζ(p, κ) < 0 for every p ∈ [p∗κ, 1]. Now if ζ(p, κ) < 0,
then we have

ζ(p, κ) = α̃c(κ, p)−
π

2κ2e−κ2

(
p

q(κ)2
+

1− p(
1− q(κ)

)2
)−1

< 0,

so that for any α < α̃c(κ, p), (8) holds. We now verify that Fκ,α,p(β) is maximized at β = 1/2,
under Assumption 1.2. As Fκ,α,p is symmetric around β = 1

2
, it suffices to consider β ∈ [1/2, 1].

Since F ′
κ,α,p(1/2) = 0 and F

′′
κ,α,p(1/2) < 0, and Fκ,α,p has at most one critical point in (1/2, 1), it

must attain its maxima either at β = 1/2 or at β = 1. As Fκ,α,p(1/2) > Fκ,α,p(1) verified in (7),
the conditions of Lemma 2.2 are satisfied.

The second part of the Theorem 1.1 is established similarly. In this case, an inequality
analogous to (9) holds only when κ < κ∗ = 0.817, marking the onset of replica symmetric
breaking, see [APZ19] for details.

3 Numerical Experiments

3.1 The Function ζ(κ, p)

See Figure 1 for a plot of ζ(κ, p) appearing in (10).
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Figure 1: Plot of ζ(κ, p), truncated as ζ(0, 0) → −∞.

Furthermore, Figure 2 shows the region of (κ, p) pairs for which ζ(κ, p) < 0. Recall that for
any given κ > 0, we establish Theorem 1.1 for a range of p values, i.e. p ∈ [p∗κ, 1] for a suitable
p∗κ. For any fixed κ > 0, the corresponding p∗κ can be read off directly from Figure 2.

Figure 2: Region of (κ, p) pairs with ζ(κ, p) < 0.

3.2 The Function Fκ,α,p(β)

We now plot Fκ,α,p(β) appearing in Assumption 1.2, where the axes correspond to p and β. We
plotted Fκ,α,p across p for a broad range of (κ, α) pairs, see Figure 3 for (κ, α) = (0.6, 1). This
demonstrates typical behavior: Assumption 1.2 is satisfied for all values of p. (6)
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Figure 3: Fκ,α,p(β) for κ = 0.6, α = 1.

See Figure 4 for a plot of Fκ,α,p(β) for κ = 1.8, α = 0.5, where the axes correspond to p and β.
This demonstrates a phase transition, where Assumption 1.2 is only satisfied for p ∈ [p∗κ, 1] for a
suitable p∗κ. At p = 0, corresponding to the UBP, Fκ,α,p(1/2) is not a local maximum. However,
at p = 1, corresponding to the SBP, Fκ,α,p(1/2) is a local maximum.
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Figure 4: Fκ,α,p(β) for κ = 1.8, α = 0.5.
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