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A TRIAGE further details & related work

A.1 Extended related work

This paper primarily engages with the literature on data characterization and contributes to the nascent
area of data-centric AI. We provide specific details of related methods in both these areas below.

Data characterization. Existing scoring methods to characterize data examples are primarily for
classification tasks. In contrast, our method TRIAGE is to the best of our knowledge the first
specifically designed method for regression. As discussed in the main paper, prior classification
focussed methods can be divided into two groups. We provide specific details of each below.

Methods tailored to classification, these methods rely on aspects only found in classification settings.

• Forgetting scores [21] and Split-Second Forgetting Scores [10] surface difficult and easy
examples by analyzing the time when examples change from correct to incorrect discrete
class

• AUM [12] identifies mislabeled examples based on logits

• Data Maps [8] and Data-IQ [9] require probabilities of the true class label to distinguish
easy, ambiguous, and hard examples.

General purpose methods, these methods were built for classification, but could be repurposed for
regression.

• Variance of Gradients (VoG) ranks examples by difficulty [11]

• GradN uses gradient norms to identify "important examples" for pruning during training
[13]

• Loss values to identify different data subsets [18]

• Residual (Error) analysis, a common statistical approach identifying examples with large
model errors.

We argue that methods tailored to classification are not directly related to our regression setting, as they
rely on properties specific to classification that are not present in regression. General purpose methods
(besides errors & losses) based on their scoring method (e.g. gradients), are limited to differentiable
methods like neural networks. Hence, these methods are often inapplicable for example in tabular
settings (e.g. healthcare or finance), where practitioners often use iterative learning algorithms like
XGBoost. In addition, the general scoring methods are not sufficiently fine-grained to distinguish
between examples with the same scores.

Finally, we highlight two specific differences of our approach to all the aforementioned data charac-
terization approaches.

Firstly, all these approaches look to characterize data purely to improve predictive performance.
Whilst we also aim to improve predictive performance, we also highlight the value of characterizing
data beyond predictive performance with regard to fairness (See Appendix C.4).

Secondly, other methods assume that the model deployment environment is the exactly same as the
training environment when characterizing the training data. In contrast, our approach allows for
characterization of the training data in a more nuanced manner, with respect to a potential deployment
environment with minimal access to a limited amount of data (see Sec 5.2.2).

Data-Centric AI. Assessing data quality is a crucial to improve ML system performance, yet is often
overlooked in favor of algorithmic development [46]. However, systematic characterization of data
could offer guidelines for data enhancement as well as, enable ML system performance improvements
[2, 5]. While current approaches when quality is considered is often adhoc or artisinal [7, 19, 46, 47],
there has been a recent shift to giving data "center-stage" termed data-centric AI. The goal being to
build “systematic methods to evaluate, synthesize, clean and annotate the data used to train and test
the AI model” [7, 48].

Our work on characterizing TRIAGE contributes to the best of our knowledge the first method to
evaluate data for regression settings, providing an ML-aware data quality monitoring [4].
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A.2 Adapting TRIAGE to any model

A.2.1 Overview.

TRIAGE’s formulation allows us to use it with any ML model trained in stages (i.e. iterative learning).
Of course, neural networks are easy since we just make use of the model checkpoints. How can we
adapt to gradient boosting decision trees (GBDTs) methods - such as XGBoost, LightGBM etc, and
statistical methods such as linear regression? As a rule of thumb, we simply need a set of checkpoints
through training in order to apply TRIAGE.

This property is incredibly important for practical utility, opening up avenues for more flexible
selection of regressors. We look at how TRIAGE can be used with XGBoost and Linear models next.

A.2.2 XGBoost/GBDTs

XGB - Overview Methods such as GBDTs or XGBoost are widely used by practitioners due
to their performant nature on tabular data (often outperforming neural networks). By iteratively
combininb weak models, it has shown to have great success. Hence, having our method applicable
for GBDTs in addition to neural networks adds to the broad utility.

Before outlining why methods such as GBDT’s fit the TRIAGE paradigm, we provide a brief overview
of GBDTs. Formally, given a dataset Dtrain, GBDT iteratively constructs a model F : X → R to
minimize the empirical risk. At each iteration e the model is updated as:

F (e)(x) = F (e−1)(x) + ϵh(e)(x), (4)

where F (e−1) is a model constructed in the previous iteration, h(e)(x) ∈ H is a weak learner, and ϵ
is the learning rate. We can consider the model at every F (e) as a checkpoint.

Space & Time Complexity. We now provide guidance on how to apply TRIAGE to such methods.
Naively, we could construct the checkpoints as an ensemble of multiple independent GBDT’s.
However, this is inefficient as the space and time complexity scales with N models. To avoid
increasing the overhead of a single model (from a practitioner perspective), we create a pseudo-
ensemble using a single GBDT, see Figure 7.

Implementation. Similar to neural networks, the iterative nature of GBDTs means that the sequen-
tial submodels can be considered as checkpoints. Formally, each sub-model has parameters θ(i),
hence the ensemble of checkpoints can be described as Θ = {θ(i), 1 ≤ i ≤ N}.

We then apply TRIAGE as normal to the checkpoints (θ1, θ2...θE). The flexibility of this approach
is that it applies both to training a new model, but interestingly, we can also apply this to an
ALREADY trained model by looping through the structure to create the pseudo-ensemble.

...

Iteration 1
Iteration 2

Iteration 

Figure 7: Example illustrating how TRIAGE can be adapted to XGBoost or Gradient Boosting
methods by using a pseduo-ensemble. i.e. each sub-model is a checkpoint

A.2.3 Linear models

Overview. Models like linear regression and ridge regression are commonly used statistical models
widely used in regression settings. While they are often solved in closed form, we can also learn
parameters iteratively. For example, using gradient descent.

Implementation. Hence, to use methods like linear regression with TRIAGE, we assume we
iteratively learn the parameters via something like gradient descent and store parameters θ at each
iteration, i.e. checkpoint. We can then run TRIAGE as normal.
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A.3 Further details on Conformal Predictive Distributions

This section provides additional details about Conformal Predictive Systems (CPS) [14, 28] that we
use in TRIAGE.

Recall CPS combines work from parametric statistics of predictive distributions [25, 26] with the
method of conformal prediction [27]. It produces what are called Conformal Predictive Distributions
(CPD), estimating the probability distribution of a continuous variable.

We note that this predictive distribution could be transformed to prediction intervals with the corre-
sponding quantiles.

However, in TRIAGE we specifically study the predictive distribution to model the probability of the
events related to the data’s labels. We provide further details next.

Split Conformal Predictive System (SCPS). We provide a formal definition of an SCPS. An SCPS
is a function that is BOTH: (i) conformal transducer and (ii) randomized predictive system (RPS).

(i) Conformal transducer: As per [14], we thus define a function Q as being a split conformal
transducer, if Q is determined by a conformity measure µ (the same as defined in the main text).,
where µ measures the degree of agreement between the data set and the observation. Then for each
possible label yi ∈ R as part of Dcal ∈ [q], we compute q conformity scores α. This is the same as
described in the main paper.

(ii) RPS: The question is, how can a conformal transducer satisfy the properties of an RPS? For more
details on this definition of an RPS we refer the reader to [14, 28].

Motivating the choice of conformity measure. The implication that affects TRIAGE is that unlike
traditional conformal prediction, where the choice of conformity measure does not matter, in the case
of CPS not all conformity measures result in valid predictive distributions.

As shown in [14], in the context of SCPS, the conformity measure µ must be a balanced isotonic
function. See Definition A.1.
Definition A.1. A conformity measure µ is isotonic - order preserving if, y ≤ y′ ⇒ µ(y) ≤ µ(y′)

We wish to satisfy this property and apply Proposition 3.1 from [28] that states: “a split conformal
transducer based on a balanced isotonic split conformity measure is an RPS”.

Hence, this motivates our choice of conformity score, which we define as per Eq. 1 in the main paper.

If Q satisfies (1) a conformal transducer and (2) RPS, then we can relate Q to a CDF of a given y,
since Q is monotonically increasing in y ∈ R and uniformly distributed on [0,1] [14].

While not critical to the performance of TRIAGE, we wish to highlight a nice property of validity that
is provided in TRIAGE through the CPD.

Remarks on validity. The validity of the CPD is guaranteed if the data is exchangeable between
Dcal and Dtest. By validity, this refers to well-calibrated probabilities. (see Assumption A.1). This
means that we aren’t required to impose any additional requirements for the validity of the CPD,
since the aforementioned assumptions on the underlying data are typically made for any ML model.

We further examine the empirical effects on validity under a variety of settings in Appendix C.6.
Assumption A.1 (Exchangeability). In a dataset of n observations, the data points do not follow
any particular order, i.e., all n permutations are equiprobable. Exchangeability is weaker than IID
observations; however, IID observations satisfy exchangeability.

A.4 Comparison of Triage to vanilla Conformal Prediction for regression

We wish to highlight some key similarities between Triage and the usage of conventional conformal
prediction for regression, e.g. [29, 49].

Differences.

• Objective: TRIAGE performs data characterization, scoring samples on their impact on
a regressor, enabling data-centric tasks like data sculpting, dataset selection and feature
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acquisition. In contrast, [29] is conventional conformal prediction for predictive uncertainty
estimation.

• Algorithm: (1) TRIAGE uses conformal predictive distributions (CPDs) providing a full
predictive distribution. This contrasts conformal regression’s prediction intervals, which
are less informative than a predictive distribution. (2) TRIAGE’s novelty is studying the
training dynamics of scores. In contrast, conformal regression computes prediction intervals
once after training, not reflecting dynamic changes, which we show are vital to characterize
differences between samples.

• Experiments: TRIAGE tackles data-centric tasks like data sculpting (Sec 5.2), dataset
selection (Sec 5.3.1) and feature collection/acquisition (Sec 5.3.2). In contrast, conformal
regression like in [29] evaluates the prediction intervals for predictive uncertainty (coverage
and efficiency).

• Results: While conformal regression tackles different tasks from TRIAGE, we adapt the CP
intervals for sculpting (Sec 5.2.2). Table 2’s baseline "CP Intervals Sculpt" corresponds to a
conformal regressor. Table 2 shows that porting CP intervals for sculpting are less effective
than TRIAGE tailored for this task.

Similarities: Similarities are on conformity score and calibration sets usage are general elements
fundamental to conformal prediction itself and not unique to any method. This is akin to loss functions
(conformity scores) and validation sets (calibration sets).

A.5 TRIAGE training dynamics

One might wonder why we need to evaluate training dynamics and how it can help us to differentiate
between samples.

Of course, at the end of training samples can converge to the same score — however samples are
learned differently and at different rates during training. For example: one sample might converge to
a CPS probability of 0.9 quickly during training, while another might take longer and oscillate more.
Clearly, these samples are not the same.

We show in Figure 8 examples of training dynamics where we have already bucketed the samples as
over-, under- and well-estimated. Each line on the curve represents the training dynamics of a
single sample.

We can clearly see certain samples have much higher varying CPS probabilities over training, whilst
others are way more stable.

This motivates our two metrics - Confidence and Variability. Where confidence helps to capture the
average trend, but the variability is also important to delineate these oscillating samples.
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Figure 8: Training dynamics of the different groups – clearly illustrates the necessity and value of
training dynamics in capturing the differences between samples. The oscillations also help motivate
our two metrics, confidence and variability.

A.6 TRIAGE thresholds

As outlined in the main text, we stratify samples in a threshold style applied to C and V . In particular,
the practitioner is required to set Cup and Clow. We deem this as a parameter the practitioner is free
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to set based on their tolerance levels. For example, someone might consider > 0.9 to be confident,
whereas another might consider > 0.7. These could hence vary from application to application and
across problem domains. We take a middle ground such that Cup = 0.75 and Clow = 0.25.

We however, provide a practical method to guide users in how they might select a threshold for Cup

and Clow. We define a threshold thresh ∈ {0, 0.5} such that Cup = 1− thresh and Clow = thresh.

Now assume, for any dataset, we train a model and apply TRIAGE. We can then sweep thresh ∈
{0, 0.5} and assess the proportion of examples of well-estimated examples.

We show results in Figure 9 below as we sweep the threshold. For low threshold values (e.g.
thresh=0.1, Cup = 0.9 and Clow = 0.1, where we want to be very certain to filter values. This results
in a high proportion of well-estimated examples, which then decreases as the threshold increases.

We observe that our heuristic Cup = 0.75 and Clow = 0.25, matches the midpoint of this curve,
highlighting that this is indeed a reasonable choice

MIDWAY

Figure 9: Threshold curve
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A.7 TRIAGE subgroup characterization

With TRIAGE, we can obtain a characteristic curve as a summary of the data where the x-axis
represents variability and the y-axis confidence — both metrics computed wrt the TRIAGE score (i.e.
CPS probability). We now illustrate where example’s lie on the plot.

We highlight in Figure 10, that well-estimated samples are in the middle as they oscillate around 0.5.

We also wish to highlight two types of samples that we DO NOT find in practice. Types of samples
we DO NOT find:

• C >> 0.5 - very high and also have very high variability V
• C << 0.5 - very low and also have very high variability V

This is likely due to the nature of training dynamics, where samples with very high and very low CPS
probabilities are quite clear-cut and hence do not oscillate much over training.

Such phenomena that we observe in practice motivate our rules, which are used to assign samples to
the three categories.

Figure 10: TRIAGE characteristic curve
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B Benchmarks & Experimental Details

B.1 Benchmarks

B.1.1 TRIAGE

The description of TRIAGE is detailed in the main paper, where we compute Conformal Predictive
Distributions at each checkpoint E for each training example. We then study the evolution of the
CPD through training.

Implementation details. We implement TRIAGE in a versatile manner such that it can plug
into regressors built either with Pytorch or Scikit-learn. Our rationale for supporting both types
of model API’s is that since TRIAGE is applicable to any regressor which we can train iteratively,
our functionality should be equally flexible from a usability perspective to foster easy usage and
integration.

Code. We will release the code upon acceptance such that TRIAGE can be used by practitioners
and researchers alike.

B.1.2 General-purpose scoring methods

GraNd The gradient norm at epoch t for an input x, y is computed as :
χt(x, y) = E

∥∥∥∑K
k=1 ∇f(k)ℓ (ft(x), y)

T
ψ
(k)
t (x)

∥∥∥
2

where ψ(k)
t (x) = ∇wtf

(k)
t (x).

Implementation details. The benchmark is based on [50]. We adapt the Jax implementation from 4

to Pytorch with the help of 5.

Losses Losses to assess training dynamics evaluate the loss at each checkpoint E. Such that the
score is evaluated on the training trajectory:

sei = (l(xi, yi, θ1), l(xi, yi, θ2), . . . , l(xi, yi, θE)|(xi, yi) ∈ Dtrain)

Implementation details. The benchmark is based on [18] and we use the implementation from 6.

VoG The Variance of Gradient (VoG) is computed across all E checkpoints. At each checkpoint
the gradient Gx with respect to input x is computed.

For a given set of E checkpoints, we generate the gradients for each sample S for all individual
checkpoints, i.e., {G1, . . . ,SE}. We then calculate the mean gradient µ by taking the average of the
E gradients. The variance of gradients is then:

VoGxi
=

√
1
E

∑E
i=1(Si − µ)2.

Implementation details. The benchmark is based on [11] and we use the implementation from 7.

4https://github.com/mansheej/data_diet
5https://github.com/cybertronai/autograd-lib
6https://github.com/shoaibahmed/metadata_archaeology
7https://github.com/chirag126/VOG
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B.2 Datasets

We provide a summary of the different datasets we use in this paper in Table 4. The datasets vary in
number of samples, number of features and domain.

Table 4: Summary of the datasets used in TRIAGE
Name n sample magnitude n features Domain

Bike [35] 11k 18 General-UCI
Bio [35] 10k 9 General-UCI
Boston Housing [35] 500 13 General-UCI
Concrete [35] 1k 8 General-UCI
CUTRACT Prostate [32] 2k 12 Medical
Microsoft Length of Stay [33] 100k 23 Medical
MIMIC Antibiotics [34] 5k 85 Medical
Protein [35] 46k 9 General-UCI
SEER Prostate [31] 20k 12 Medical
Star [35] 20k 12 General-UCI

B.3 Additional experiment details

We note that all experiments were performed using a single Nvidia Tesla P100 GPU.

B.3.1 Section 3.1. Robustness to variation experiment details.

We assess the robustness to the variation of different scoring methods when using different models
and/or parameterizations.

We parameterize these models differently based on the following changes: (1) Model type, (2) number
of layers, (3) number of hidden units, (4) type of optimizer used. We train the models to similar levels
of performance for each variant.

We motivate these four changes as these are common changes to model architectures or parameteriza-
tions made by practitioners.

We then evaluate all different combinations of these changes over all datasets. We compute both the
Spearman correlation for all combinations for each of the 10 datasets.

(1) Model type: Standard MLP and residual MLP (ResMLP) (2) number of layers — we evaluate a 3
layer, 4 layer and 5 layer MLP
(3) number of hidden units — we either reduce the units per layer by 1/2 as we go from the input
dimension or by 1/4.
(4) type of optimizer — we assess both Adam and SGD.

Finally, through training, we compute the TRIAGE score and the general purpose scores and then
compute the pairwise Spearman correlation of these metrics.

B.3.2 Section 3.2. Fine-grained filter experiment details.

We train a 5-layer MLP for every regression task. Running TRIAGE and the other general-purpose
methods at the end of training to characterize the data (i.e. assign scores to the data). We then take
all the general-purpose scores and rank sort them from lowest-highest. Which represents easiest
to hardest samples. Thereafter, as a baseline for each method we sweep and retrain a model with
an increasing proportion of data included from lowest to highest. As a fine-grained filter, we apply
TRIAGE on top of these other methods and show we can improve performance, simply by virtue of
differentiating samples. What is interesting is that at each proportion, the TRIAGE version contains
less samples.
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B.3.3 Section 3.3. Fit for purpose experiment details.

For this experiment we train a baseline XGBoost regressor model on SEER (US) - Dtrain. The
XGBoost implementation uses the Python version from 8.

We then draw Dcal from CUTRACT (UK), as is Dtest from the UK but a disjoint set. We then assess
the following performances evaluated on the test set wrt. MSE performance. Besides the sculpting
and training directly on different subsets of the data, we assess the following model-driven approaches
described next.

The following models are trained on Dcal, they are then applied to Dtrain, where Dtrain is then sculpted
based on the predictive uncertainty. The following models are assessed: NGBoost 9, Bayesian Neural
Network 10, Gaussian Process 11, Bayesian Ridge Regression 12.

B.3.4 Section 3.4. Beyond example-level to dataset level experiment details.

We compare two synthetic data models as representations of comparing two sources producing
synthetic data (e.g. two companies producing synthetic data). We compare CTGAN and TVAE and
use their implementations from 13.

B.3.5 Section 3.5. Active improvement via acquisition experiment details.

We assess the viability of using TRIAGE to quantify the value of acquiring features based on the
increase in well-estimated samples. The value in the simulated setup is quantified by the Pearson
correlation of the feature to the label. We rank sort these correlations from low to high and sequentially
acquire them, running TRIAGE at each instantiation. Our underlying model in which to do the
quantification is an XGBoost with 20 estimators.

8https://github.com/dmlc/xgboost
9https://github.com/stanfordmlgroup/ngboost

10https://github.com/IBM/UQ360
11https://scikit-learn.org/
12https://scikit-learn.org/
13https://github.com/sdv-dev/SDV
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C Additional experiments

C.1 Consistency across datasets

Goal. In the main paper we looked at consistency and stability of the different scoring methods
when averaged across the different datasets. We now assess the individual correlations for each
dataset in Figure 11.

Figure 11: Consistency all datasets

Takeaway. TRIAGE has the highest consistency across all the different datasets compared to the
other methods. We also see the baselines do not have consistent performance ordering across datasets,
making it challenging to select an appropriate scoring rule.

C.2 Computation time

Goal. An important question is how does TRIAGE scale to the size of the dataset from a computation
time persepctive. To assess this we vary the dataset size from 2000-100k samples and assess the
TRIAGE computation time.
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Figure 12: Overall computation time with data sizes varying between 2000-100k samples

Takeaway. As shown in Figure 12, naturally as the data size increases, so does computational time.
However, even at 100k samples computing the TRIAGE scores for all 100k takes less than 2 min
highlighting TRIAGE’s time efficiency to scale to larger data sizes. This suggests that TRIAGE can
be used efficiently with larger datasets.

C.3 TRIAGE w/ other iterative algorithms: XGBoost & CatBoost

Goal. As discussed in the main paper, TRIAGE can be used with any regressor which can be trained
iteratively. Methods such XGBoost and CatBoost methods are widely used regressors by practitioners
on tabular data, often more so than neural networks [30]. As mentioned, we desire consistency of
data characterization, such that samples are consistently characterized across similar performing
models irrespective of the model.

We have assessed the neural network consistency, but not assessed this across models such as XGBoost
or CatBoost. We train both to achieve a similar level of performance and then apply TRIAGE as an
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assessment for these methods. The evaluation of both on different datasets is in Figure 13, where we
show characteristic curves.

Note, the other baselines could not be easily assessed since the models under evaluation are not
differentiable.

Takeaway. We can see TRIAGE characterizes samples consistently across the two models, as can
be seen across the characteristic curves. We also compute the Spearman correlation of scores across
models in Table 5. The mean Spearman correlation across datasets is 0.88 +−0.04.
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Figure 13: Assessing the consistency & similarity of the TRIAGE characteristic curve using both
XGBoost and CatBoost. The characterization by TRIAGE for both methods is similar.

Table 5: Spearman correlation xgboost vs catboost
Name Scores corr

Bike [35] 0.77
Bio [35] 0.94
Boston Housing [35] 0.8
Concrete [35] 0.83
Prostate [31] 0.97
Protein [35] 0.94
Star [35] 0.97

PTO - SEE NEXT PAGE FOR CONTINUATION
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C.4 Fairness - extending sculpting beyond predictive performance

Goal. Data sculpting can be used to not only improve predictive performance but also address
issues of fairness. For instance, when a dataset contains biases that may harm certain groups at
deployment, a smaller, more reflective dataset can guide the sculpting of the larger dataset, improving
the fairness of the model trained on it.

Experiment. We demonstrate this using a similar calibration approach as in previous experiments,
using the Communities and Crime dataset [35, 51], where the regression task is predicting the
ViolentCrimesPerPop variable (total number of violent crimes per 100K population) based on a set of
demographic variables. Similar to [52], we identify race as a sensitive attribute, often a source of
bias. The protected group is considered as those where more than 50% of the community identifies as
Black.

We compare TRIAGE based sculpting to a baseline XGBoost (trained without sculpting). We also
use the same data-driven and model-driven baselines as the previous experiment. Additionally, we
compare to a method that directly optimizes the model for fairness (as opposed to TRIAGE sculpting
based on a set of examples) i.e. Fair Regression with Bounded Group Loss [53] [53] — BGL Model.

We evaluate the methods using three fairness metrics for regression from (author?) [52]; estimated
via Direct Density Ratio Estimation, i.e.
(i) Independence: S⊥A;
(ii) Separation: S⊥A | Y
(iii) Sufficiency: S⊥A | R.
Where: A - protected group, Y - true target and S - model’s prediction. We use the common 80% rule
[54, 55] and set ϵ = 0.8 as the threshold for fair assessment, comparing the ratio of metrics between
protected and privileged groups, which should fall between (ϵ, 1/ϵ), i.e. (0.8, 1.25).

Results. We show that TRIAGE-based sculpting has potential beyond predictive tasks, as it can
improve fairness metrics without sacrificing performance, as shown in Table 6. Unlike other methods
that require direct access to the protected attribute or direct model optimization, TRIAGE uses a set
of calibration examples to sculpt the data. We compare TRIAGE to BGL models and Baseline Dcal,
which are the only methods to meet the criteria on all three fairness metrics, and show these methods
often sacrifice predictive performance to achieve fairness. TRIAGE offers a flexible alternative to
improve models for fairness simply based on access to a limited set of examples.

Table 6: Assessment of fairness metrics, highlighting the potential of data sculpting via TRIAGE
Fairness

Method Independence Separation Sufficiency MAE

TRIAGE 1.21 (✔) 1.11 (✔) 1.00 (✔) 0.0528
Baseline (Dtrain) 1.29 (✗) 1.18 (✔) 1.01 (✔) 0.0554
Baseline (Dcal) 1.14 (✔) 1.09 (✔) 0.99 (✔) 0.0689
Baseline (Dtrain ∪ Dcal) 1.27 (✗) 1.13 (✔) 1.02 (✔) 0.0467
Error Sculpt 1.41 (✗) 1.19 (✔) 1.03 (✔) 0.0502
CP Intervals Sculpt 1.26 (✗) 1.15 (✔) 1.01 (✔) 0.0467
NGBoost sculpt 1.47 (✗) 1.26 (✗) 1.02 (✔) 0.0594
Bayesian ridge sculpt 1.39 (✗) 1.21 (✔) 1.00 (✔) 0.0578
BNN sculpt 1.27 (✗) 1.15 (✔) 1.00 (✔) 0.0507
GP sculpt 1.43 (✗) 1.28 (✗) 1.02 (✔) 0.0559
BGL Model 1 1.01 (✔) 1.00 (✔) 1.02 (✔) 0.1254
BGL Model 2 1.21 (✔) 1.12 (✔) 1.00 (✔) 0.0602
BGL Model 3 1.31 (✗) 1.16 (✔) 1.0 (✔) 0.1101

Takeaway. TRIAGE demonstrates the value of sculpting larger datasets by leveraging a limited set
of examples. This emphasizes the importance of fit-for-purpose data and demonstrates how it can not
only improve predictive performance but also address important issues such as fairness.
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C.5 Data insights

Goal. Besides characterizing examples, it is often useful to try to understand which types of samples
are in each group. Specifically, for the fit for purpose experiment, we are trying to understand which
samples in Dtrain are sculpted as a consequence of Dcal. Recall Dtrain are patients from the US and
Dcal and Dtest are patients from the UK.

We visualize the output of TRIAGE based sculpting using a radial plot in Figure 14.

1. US patients are associated
with higher stages & greater
PSA scores (label)

2. We reduce this in our
well-estimated via
sculpting to match the
UK better

3. US patients more
often got hormone
therapy. We reduce the
number via sculpting
since they are under-
estimated, & now we
better match the UK
patients

Figure 14: Insights into the different groups resulting from TRIAGE based sculpting. We see we
make Dtrain look more similar to the UK for many features by sculpting.

Takeaway. US patients (Dtrain) typically have higher cancer stages and higher PSA scores than
their UK counterparts (Dcal/Dtest). It is precisely these uncommon samples that are filtered by
TRIAGE to improve predictive performance. i.e. we can see this based on the samples classed
as well-estimated. This now makes the sculpted US data look more similar to the UK data, hence
improving the performance of a model trained on said data. In addition, the US patients more often
get hormone therapy, in the sculpted well-estimated set, we reduce these by filtering to match the UK
better.

C.6 Validity assessment: Calibration curves & CRPS

Goal. We also wish to evaluate the CPDs and their quality. Typically, CPDs are valid, meaning
they are well-calibrated. There are three typical ways in which Conformal Predictive Distributions
(CPDs) are evaluated for such properties like validity and quality.

1. Calibration curves: where the desired curve is diagonal.
2. Computing the Continuous Rank Probability (CRPS) score [56]: measures the quality of the

predictive distribution, where CRPS=0 is perfect accuracy, and CRPS=1 is fully inaccurate,
given by Equation 5.

3. Assigning quantiles to the CPD and then computing coverage of the resulting intervals. i.e.
if we assign quantiles of lower = 0.05 and upper = 0.95, then we desire coverage = 0.9.

CRPS(P, x) =

∫ ∞

−∞
||P (x∗)−H(x∗ − x)||2dx (5)

where x is the true value of x, P (x∗) is the proposed predictive distribution, H(x) the Heaviside step
function (H(x) = 1 if x = 0, H(x) = 0 if x ≤ 0).

We evaluate these metrics for two settings:
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• Fine-grained filter: in this experiment we are IID, hence we satisfy the exchangeability
assumption naturally. Consequently, the CPDs have guaranteed validity.

• Sculpting for a deployment purpose: in this experiment Dtrain and Dcal might not be
exchangeable, hence we wish to assess the potential impact empirically using the different
metrics.

C.6.1 Fine-grained filter

This is the ideal setting since we are IID hence, the data is naturally exchangeable. Hence, we have
guarantees about the validity of our CPDs. However, we still empirically assess the CPDs computing
the calibration curves for all datasets, shown in Figure 15.

Takeaway. We see that all the datasets have calibration curves matching the ideal diagonal line.
The CRPS scores are also very low, indicating high-quality predictive distributions. The takeaway is
that indeed the CPDs are well-calibrated.
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Figure 15: Calibration curves for the different datasets, showing that the CPDs are well calibrated, as
they match the ideal
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C.6.2 Sculpting for a deployment purpose

Goal. We now assess the sculpting for a deployment purpose case where we sculpt Dtrain (US
patients) with respect to Dcal (UK patients). We evaluate this experiment for varying sizes of Dcal
and wish to assess how the potential violation of exchangeability harms calibration, as well as the
quality of the CPDs.

Results. Figure 16 shows in (a) how coverage varies as the size of Dcal increases, while (b) looks at
how CRPS changes as a function of the size of Dcal. We also check the calibration curves in Figure
17.

Takeaway. We see the following

1. When the calibration set Dcal is small, < 0.3 in proportion (< 200/300 samples) then we
still achieve marginal coverage > 0.9 — this is also reflected in the low CRPS and good
calibration curves.

2. After 0.3 (> 300 samples) we have sufficient samples that violate exchangeability. This
reduces the marginal coverage below 0.9. Interestingly, this matches the change-over point
we refer to in the main paper - Table 2, where training directly on Dcal will lead to better
performance.

We do, however, highlight that the harm is not significant— hence our CPDs are still of high quality,
as can be seen by the low CRPS score.

Consequently, we show empirically, even if this may seem an issue — the resulting CPDs are not
significantly harmed by this. Moreover, coverage does not have as dramatic a drop empirically as
one might expect

(a) Coverage (α = 0.1)
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Figure 16: Coverage and CRPS as we increase the size of Dcal
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Figure 17: Calibration curves for different sizes of Dcal

31



C.7 Sculpting for deployment purpose: imbalance and long tails

In the main text, in Section 5.2.2 we looked at sculpting Dtrain guided by Dcal, in order to make the
data more “fit for purpose”. In this setup, we looked at the data on average. We now take a deeper
dive, looking at: (i) Data imbalance (Majority and minority groups) and (ii) Long tails of outcomes

C.7.1 Data Imbalance

Goal. The dataset is heavily skewed towards older patients > 65 years old, with very few younger
patients by virtue of the nature of prostate cancer. We wish to understand, beyond average, what is
the impact of sculpting on performance of different subsets. In particular, the majority (older) and
minority (younger) groups.

We report the results in Table 7 and see the following results. Note: TRIAGE (REST) refers to
over- and under-estimated samples used, whilst TRIAGE (OURS) refers to only using well-estimated
samples:

Takeaway. In the case of data imbalance, TRIAGE demonstrates the utility of sculpting the data to
be more fit for purpose — especially in the small sample regime. After around 200 examples, there
is reduced benefit to sculpting a pre-existing larger dataset to be more fit for purpose, but rather to
directly train on the given examples. We see this benefit also under data imbalance (via attributes)
across both majority and minority groups.

Overall, the behavior we see here is similar to the main experiment on average behavior.

Table 7: Data Imbalance: Comparison of MSE for different approaches as we change the number of prior
examples we have can access.

Dcal examples 10 20 30 40 50 100 200 300 400 500

O
ve

ra
ll

-a
ll

sa
m

pl
es

TRIAGE (Ours) - WE 0.038+-0.002 0.037+-0.002 0.038+-0.002 0.04+-0.002 0.04+-0.002 0.041+-0.002 0.039+-0.002 0.039+-0.001 0.039+-0.001 0.04+-0.001
TRIAGE (REST) OE ∪ UE 0.104+-0.019 0.104+-0.018 0.107+-0.023 0.109+-0.016 0.101+-0.019 0.124+-0.021 0.113+-0.023 0.109+-0.021 0.115+-0.02 0.111+-0.02
Baseline (Dtrain) 0.085+-0.011 0.085+-0.011 0.085+-0.011 0.085+-0.011 0.085+-0.011 0.085+-0.011 0.085+-0.011 0.085+-0.011 0.085+-0.011 0.085+-0.011
Baseline (Dcal) 0.05+-0.01 0.047+-0.011 0.045+-0.004 0.040+-0.003 0.041+-0.002 0.041+-0.003 0.034+-0.001 0.033+-0.001 0.033+-0.001 0.032+-0.001
Baseline (Dtrain ∪ Dcal) 0.071+-0.01 0.062+-0.006 0.059+-0.006 0.054+-0.005 0.051+-0.005 0.044+-0.004 0.039+-0.003 0.035+-0.002 0.033+-0.002 0.031+-0.001
Error Sculpt 0.078+-0.02 0.077+-0.019 0.077+-0.019 0.062+-0.019 0.076+-0.019 0.078+-0.018 0.076+-0.019 0.073+-0.019 0.076+-0.018 0.077+-0.019
CP Intervals Sculpt 0.09+-0.016 0.061+-0.022 0.045+-0.004 0.059+-0.015 0.052+-0.006 0.054+-0.013 0.059+-0.02 0.037+-0.001 0.034+-0.001 0.039+-0.002
NGBoost 0.076+-0.012 0.086+-0.011 0.083+-0.021 0.085+-0.01 0.102+-0.017 0.109+-0.038 0.089+-0.018 0.096+-0.015 0.084+-0.011 0.097+-0.019
Bayesian ridge 0.092+-0.015 0.102+-0.023 0.098+-0.018 0.103+-0.018 0.117+-0.025 0.094+-0.017 0.102+-0.015 0.114+-0.028 0.115+-0.034 0.099+-0.02
BNN 0.081+-0.008 0.088+-0.013 0.062+-0.007 0.101+-0.012 0.095+-0.017 0.11+-0.015 0.092+-0.023 0.078+-0.011 0.078+-0.009 0.077+-0.01
GP 0.122+-0.023 0.117+-0.016 0.12+-0.019 0.113+-0.018 0.108+-0.013 0.125+-0.017 0.131+-0.016 0.13+-0.021 0.145+-0.024 0.144+-0.024
Dcal examples 10 20 30 40 50 100 200 300 400 500

M
aj

or
ity

gr
ou

p
(7

5%
)

TRIAGE (Ours) - WE 0.042+-0.004 0.041+-0.002 0.042+-0.003 0.042+-0.002 0.044+-0.003 0.046+-0.002 0.043+-0.003 0.043+-0.002 0.044+-0.002 0.045+-0.001
TRIAGE (Rest) - OE ∪ UE 0.09+-0.018 0.093+-0.018 0.095+-0.024 0.099+-0.018 0.086+-0.018 0.106+-0.022 0.101+-0.023 0.093+-0.021 0.099+-0.021 0.097+-0.02
Baseline (Dtrain) 0.075+-0.013 0.075+-0.013 0.075+-0.013 0.075+-0.013 0.075+-0.013 0.075+-0.013 0.075+-0.013 0.075+-0.013 0.075+-0.013 0.075+-0.013
Baseline (Dcal) 0.055+-0.012 0.054+-0.014 0.052+-0.004 0.044+-0.003 0.047+-0.002 0.045+-0.003 0.037+-0.001 0.036+-0.001 0.036+-0.001 0.035+-0.001
Baseline (Dtrain ∪ Dcal) 0.056+-0.012 0.048+-0.006 0.045+-0.005 0.042+-0.003 0.044+-0.003 0.037+-0.002 0.034+-0.001 0.032+-0.001 0.032+-0.001 0.031+-0.001
Error Sculpt 0.038+-0.002 0.039+-0.002 0.039+-0.002 0.039+-0.002 0.039+-0.002 0.041+-0.004 0.038+-0.002 0.038+-0.002 0.038+-0.002 0.038+-0.002
CP Intervals Sculpt 0.073+-0.012 0.06+-0.022 0.044+-0.005 0.055+-0.013 0.053+-0.004 0.056+-0.017 0.046+-0.005 0.039+-0.002 0.037+-0.001 0.042+-0.002
NGBoost 0.06+-0.01 0.073+-0.01 0.071+-0.02 0.071+-0.009 0.097+-0.021 0.098+-0.039 0.077+-0.02 0.08+-0.012 0.073+-0.012 0.086+-0.02
Bayesian ridge 0.083+-0.017 0.099+-0.027 0.088+-0.022 0.096+-0.02 0.114+-0.032 0.085+-0.018 0.092+-0.014 0.109+-0.036 0.111+-0.042 0.092+-0.024
BNN 0.074+-0.009 0.075+-0.018 0.05+-0.006 0.086+-0.012 0.086+-0.019 0.106+-0.019 0.081+-0.025 0.067+-0.009 0.066+-0.008 0.062+-0.007
GP 0.102+-0.025 0.094+-0.014 0.095+-0.012 0.098+-0.016 0.094+-0.009 0.105+-0.021 0.111+-0.019 0.113+-0.02 0.129+-0.024 0.132+-0.026
Dcal examples 10 20 30 40 50 100 200 300 400 500

M
in

or
ity

gr
ou

p
(2

5%
)

TRIAGE (Ours) - WE 0.028+-0.004 0.026+-0.002 0.026+-0.002 0.027+-0.003 0.026+-0.002 0.026+-0.002 0.026+-0.003 0.026+-0.002 0.026+-0.003 0.027+-0.003
TRIAGE (Rest) - OE ∪ UE 0.143+-0.027 0.135+-0.021 0.14+-0.023 0.138+-0.014 0.141+-0.026 0.175+-0.022 0.149+-0.027 0.155+-0.024 0.161+-0.024 0.153+-0.027
Baseline (Dtrain) 0.115+-0.016 0.115+-0.016 0.115+-0.016 0.115+-0.016 0.115+-0.016 0.115+-0.016 0.115+-0.016 0.115+-0.016 0.115+-0.016 0.115+-0.016
Baseline (Dcal) 0.036+-0.008 0.027+-0.003 0.027+-0.004 0.025+-0.002 0.026+-0.003 0.028+-0.005 0.026+-0.001 0.025+-0.001 0.024+-0.001 0.024+-0.002
Baseline (Dtrain ∪ Dcal) 0.114+-0.015 0.103+-0.015 0.1+-0.017 0.089+-0.017 0.082+-0.015 0.066+-0.015 0.054+-0.009 0.044+-0.007 0.037+-0.004 0.033+-0.003
Error Sculpt 0.192+-0.074 0.185+-0.073 0.187+-0.073 0.131+-0.071 0.18+-0.071 0.183+-0.07 0.184+-0.071 0.173+-0.071 0.182+-0.069 0.189+-0.071
CP Intervals Sculpt 0.138+-0.034 0.063+-0.023 0.046+-0.009 0.07+-0.022 0.048+-0.01 0.047+-0.017 0.098+-0.069 0.029+-0.001 0.026+-0.002 0.028+-0.003
NGBoost 0.122+-0.027 0.124+-0.023 0.117+-0.029 0.123+-0.018 0.115+-0.013 0.142+-0.037 0.121+-0.016 0.142+-0.026 0.116+-0.02 0.128+-0.022
Bayesian ridge 0.114+-0.017 0.11+-0.015 0.123+-0.016 0.122+-0.017 0.124+-0.016 0.122+-0.022 0.129+-0.022 0.127+-0.022 0.125+-0.021 0.119+-0.02
BNN 0.103+-0.014 0.123+-0.023 0.095+-0.014 0.147+-0.023 0.118+-0.016 0.122+-0.022 0.122+-0.021 0.108+-0.022 0.109+-0.017 0.118+-0.029
GP 0.18+-0.033 0.183+-0.034 0.193+-0.043 0.154+-0.034 0.149+-0.035 0.182+-0.023 0.191+-0.023 0.18+-0.035 0.19+-0.036 0.179+-0.031

We look into the issue of long tail next
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C.7.2 Long tail of outcomes

Goal. Going beyond imbalance on the feature-level, there are also long-tails of outcomes. In this
case, the long tails are few samples are associated with high prostate cancer scores. So we partition
based on the outcome where the tail greater than 0.75 normed score represents only 3% of the data,
whilst the remainder is 97%.

We seek to understand the performance via sculpting on both the head and tail of the distributions to
assses the impact.

The results in Table 8 show the following results. Note: TRIAGE (REST) refers to over- and
under-estimated samples used, whilst TRIAGE (OURS) refers to only using well-estimated samples:

Takeaway. In the case of having long tails on the outcome, TRIAGE demonstrates the utility of
sculpting the data to be more fit for purpose, when assessed overall (averaged across all samples)
— especially in the small sample regime. After around 200 examples, there is reduced benefit to
sculpting a pre-existing larger dataset to be more fit for purpose, but rather to directly train on the
given examples.

Head: For the head of the distribution which represents the majority of the data this is also the case
and we see the best performance for TRIAGE (WE).

Tails: On the long tails of the outcome distribution, we see that in fact using the TRIAGE (REST) -
consisting of the “filtered” examples (OE ∪ UE) has the best performance. This result highlights
an alternative example selection enabled by TRIAGE. i.e. we should train a specific and better
performing model for the long tails specifically using OE ∪ UE.

Table 8: Long tail: Comparison of MSE for different approaches as we change the number of prior examples we
have can access.

Dcal examples 10 20 30 40 50 100 200 300 400 500

O
ve

ra
ll

-a
ll

sa
m

pl
es

TRIAGE (Ours) - WE 0.04+-0.002 0.037+-0.002 0.037+-0.002 0.04+-0.002 0.04+-0.002 0.04+-0.002 0.039+-0.002 0.039+-0.001 0.039+-0.001 0.04+-0.0
TRIAGE (Rest) - OE ∪ UE 0.103+-0.02 0.102+-0.019 0.104+-0.017 0.104+-0.018 0.105+-0.022 0.125+-0.022 0.114+-0.023 0.112+-0.022 0.115+-0.021 0.112+-0.021
Baseline (Dtrain) 0.085+-0.011 0.085+-0.011 0.085+-0.011 0.085+-0.011 0.085+-0.011 0.085+-0.011 0.085+-0.011 0.085+-0.011 0.085+-0.011 0.085+-0.011
Baseline (Dcal) 0.05+-0.01 0.047+-0.011 0.045+-0.004 0.039+-0.003 0.041+-0.002 0.041+-0.003 0.034+-0.001 0.033+-0.001 0.033+-0.001 0.032+-0.001
Baseline (Dtrain ∪ Dcal) 0.071+-0.01 0.062+-0.006 0.059+-0.006 0.054+-0.005 0.051+-0.005 0.044+-0.004 0.039+-0.003 0.035+-0.002 0.033+-0.002 0.031+-0.001
Error Sculpt 0.08+-0.019 0.078+-0.019 0.078+-0.019 0.062+-0.019 0.075+-0.019 0.078+-0.018 0.077+-0.019 0.073+-0.018 0.076+-0.018 0.077+-0.019
CP Intervals Sculpt 0.091+-0.017 0.063+-0.025 0.044+-0.004 0.058+-0.015 0.05+-0.006 0.053+-0.012 0.058+-0.019 0.036+-0.001 0.034+-0.001 0.039+-0.002
NGBoost 0.075+-0.011 0.082+-0.009 0.082+-0.022 0.087+-0.009 0.106+-0.021 0.109+-0.038 0.089+-0.018 0.098+-0.016 0.084+-0.011 0.098+-0.019
Bayesian ridge 0.091+-0.015 0.093+-0.023 0.097+-0.018 0.104+-0.018 0.119+-0.026 0.094+-0.017 0.104+-0.013 0.112+-0.029 0.113+-0.032 0.099+-0.02
BNN 0.091+-0.015 0.114+-0.027 0.099+-0.025 0.082+-0.014 0.075+-0.01 0.072+-0.006 0.079+-0.014 0.065+-0.009 0.073+-0.009 0.095+-0.018
GP 0.111+-0.024 0.117+-0.018 0.12+-0.018 0.113+-0.018 0.108+-0.013 0.125+-0.016 0.135+-0.014 0.129+-0.021 0.146+-0.024 0.142+-0.024
Dcal examples 10 20 30 40 50 100 200 300 400 500

Ta
il

of
di

st
ri

bu
tio

n
(3

%
)

TRIAGE (Ours) - WE 0.574+-0.028 0.57+-0.019 0.582+-0.025 0.604+-0.026 0.61+-0.019 0.616+-0.016 0.597+-0.023 0.603+-0.02 0.611+-0.018 0.621+-0.016
TRIAGE (Rest) - OE ∪ UE 0.272+-0.017 0.289+-0.036 0.264+-0.025 0.256+-0.032 0.224+-0.021 0.25+-0.035 0.246+-0.033 0.268+-0.028 0.262+-0.037 0.268+-0.038
Baseline (Dtrain) 0.315+-0.029 0.315+-0.029 0.315+-0.029 0.315+-0.029 0.315+-0.029 0.315+-0.029 0.315+-0.029 0.315+-0.029 0.315+-0.029 0.315+-0.029
Baseline (Dcal) 0.475+-0.05 0.456+-0.042 0.424+-0.047 0.426+-0.033 0.399+-0.026 0.382+-0.018 0.374+-0.014 0.386+-0.024 0.39+-0.02 0.378+-0.023
Baseline (Dtrain ∪ Dcal) 0.366+-0.032 0.364+-0.024 0.377+-0.035 0.388+-0.028 0.389+-0.026 0.395+-0.025 0.408+-0.018 0.407+-0.016 0.402+-0.017 0.398+-0.017
Error Sculpt 0.503+-0.022 0.504+-0.021 0.504+-0.024 0.502+-0.020 0.501+-0.02 0.492+-0.026 0.488+-0.027 0.494+-0.028 0.498+-0.028 0.495+-0.026
CP Intervals Sculpt 0.346+-0.03 0.433+-0.019 0.445+-0.050 0.447+-0.065 0.39+-0.052 0.512+-0.033 0.526+-0.022 0.532+-0.020 0.504+-0.025 0.509+-0.029
NGBoost 0.42+-0.04 0.369+-0.028 0.379+-0.019 0.324+-0.018 0.293+-0.018 0.402+-0.025 0.425+-0.062 0.359+-0.024 0.414+-0.049 0.408+-0.052
Bayesian ridge 0.357+-0.025 0.341+-0.042 0.332+-0.045 0.333+-0.050 0.371+-0.053 0.339+-0.036 0.299+-0.027 0.339+-0.047 0.34+-0.039 0.341+-0.053
BNN 0.311+-0.032 0.367+-0.046 0.327+-0.043 0.373+-0.034 0.364+-0.053 0.368+-0.027 0.413+-0.054 0.370+-0.026 0.377+-0.040 0.348+-0.060
GP 0.359+-0.055 0.302+-0.036 0.303+-0.033 0.321+-0.032 0.32+-0.022 0.333+-0.034 0.337+-0.049 0.357+-0.057 0.331+-0.045 0.328+-0.042
Dcal examples 10 20 30 40 50 100 200 300 400 500

H
ea

d
of

di
st

ri
bu

tio
n

(9
7%

) TRIAGE (Ours) - WE 0.028+-0.001 0.025+-0.002 0.025+-0.002 0.027+-0.001 0.027+-0.002 0.027+-0.002 0.026+-0.002 0.026+-0.002 0.026+-0.001 0.027+-0.001
TRIAGE (Rest)- OE ∪ UE 0.099+-0.02 0.098+-0.019 0.101+-0.018 0.101+-0.018 0.103+-0.022 0.122+-0.023 0.111+-0.024 0.109+-0.022 0.112+-0.022 0.109+-0.022
Baseline (Dtrain) 0.080+-0.012 0.080+-0.012 0.080+-0.012 0.080+-0.012 0.080+-0.012 0.080+-0.012 0.080+-0.012 0.080+-0.012 0.080+-0.012 0.080+-0.012
Baseline (Dcal) 0.040+-0.011 0.037+-0.012 0.037+-0.004 0.030+-0.003 0.033+-0.002 0.033+-0.002 0.026+-0.001 0.025+-0.001 0.024+-0.001 0.024+-0.001
Baseline (Dtrain ∪ Dcal) 0.065+-0.011 0.056+-0.006 0.052+-0.006 0.047+-0.005 0.043+-0.005 0.036+-0.004 0.031+-0.003 0.027+-0.002 0.025+-0.001 0.023+-0.001
Error Sculpt 0.071+-0.019 0.069+-0.020 0.068+-0.020 0.052+-0.020 0.065+-0.019 0.068+-0.018 0.067+-0.019 0.064+-0.019 0.066+-0.019 0.068+-0.019
CP Intervals Sculpt 0.085+-0.017 0.054+-0.026 0.035+-0.005 0.049+-0.016 0.043+-0.007 0.043+-0.013 0.048+-0.02 0.025+-0.002 0.023+-0.001 0.028+-0.002
NGBoost 0.067+-0.012 0.076+-0.009 0.076+-0.023 0.082+-0.008 0.102+-0.021 0.102+-0.039 0.081+-0.019 0.093+-0.016 0.076+-0.013 0.091+-0.02
Bayesian ridge 0.085+-0.015 0.087+-0.024 0.092+-0.018 0.099+-0.018 0.113+-0.027 0.088+-0.018 0.099+-0.013 0.108+-0.030 0.108+-0.033 0.094+-0.021
BNN 0.086+-0.015 0.108+-0.029 0.094+-0.026 0.076+-0.015 0.068+-0.010 0.066+-0.006 0.072+-0.016 0.058+-0.009 0.066+-0.010 0.089+-0.019
GP 0.105+-0.025 0.113+-0.019 0.116+-0.019 0.109+-0.018 0.103+-0.013 0.120+-0.017 0.131+-0.015 0.124+-0.022 0.142+-0.025 0.138+-0.025
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C.8 Comparison with Data Valuation

Goal. We have presented a conceptual difference of TRIAGE to data valuation methods in Section
2. We now experimentally compare TRIAGE with using data valuation methods for data selection.
Specifically, we compare to two Shapley valuation methods: (i) TMC-Shapley [22], (ii) KNN-Shapley
[23] and LAVA [24], which uses optimal transport. We compare in the context of Table 2- data
selection for sculpting. The TRIAGE Dcal is used as the validation set for these methods.

Note: TMC-Shapley: was computationally unfeasible for all 20k samples. Hence, we sample 5k and
compare it to TRIAGE separately. (ii) KNN-Shapley and LAVA is run on the original 20k samples.

Takeaway. Performance: The results are shown in Tables 9 and 10. While, these methods are com-
petitive with TRIAGE, we find that TRIAGE tailored to regression outperforms them on downstream
MSE performance.

Computational time: We assess their compute time vs TRIAGE. In Figure 18, we show for different
sizes of Dcal that TRIAGE is more time efficient. Additionally, unlike Shapley methods, our cost
doesn’t increase with the size of Dcal. KNN-Shapley is 1-3X and TMC-Shapley 600X more expensive
than TRIAGE.
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(a) Time vs TMC (Data)-Shapley (b) Time vs KNN-Shapley

Figure 18: Computational Time (in seconds): (a) TRIAGE is almost 600X more time efficient than TMC-
Shapley, (b) TRIAGE is more efficient than KNN-Shapley, especially as Dcal’s size increases.

Table 9: Comparison of TRIAGE to Data valuation for different sizes of Dcal. TRIAGE’s approach to data
sculpting outperforms with lower test MSE (↓ better). These rows will be added to Table 2 (main paper)

Dcal sample size 10 20 30 40 50 100 200 300
Ours (Sculpting) TRIAGE (WE) 0.051 0.050 0.046 0.046 0.046 0.046 0.045 0.045

Data Valuation KNN-Shapley 0.092 0.095 0.092 0.122 0.115 0.086 0.054 0.075
LAVA 0.055 0.054 0.058 0.055 0.054 0.055 0.058 0.056

Table 10: Comparison of TRIAGE to TMC-Shapley for data sculpting for different sizes of Dcal. Due to
computational infeasability of TMC-Shapley we subsample to 5k and compare to TRIAGE. TRIAGE’s approach
to sculpting has lower test MSE mostly compared to TMC-Shapley (↓ better).

Dcal sample size 10 20 30 40 50 100 200 300
Ours (Sculpting) TRIAGE (WE) 0.0477 0.0488 0.0498 0.0457 0.0447 0.0468 0.0470 0.0461
Data Valuation TMC-Shapley 0.0580 0.0441 0.0490 0.0472 0.0580 0.0491 0.0501 0.0467
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C.9 Synthetic analysis under Huber’s contamination model

TRIAGE aims to sculpt data for robust regression. One can of course draw similarities to robust
statistics which also aims to train robust models. (1) Post-hoc vs Built-in: TRIAGE wraps a regressor
to detect and sculpt outlier samples, whereas Robust Statistics embeds outlier resilience within
the model [57, 58], e.g. via Huber loss [58]. (2) Additional data-centric applications: TRIAGE
tackles diverse "data-centric AI" tasks, like comparing synthetic data (Sec. 5.3.1) and feature
acquisition/collection (Sec. 5.3.2), which is beyond the scope of robust statistics.

(ii) Theoretical Analysis: Connecting TRIAGE theoretically to robust statistics is an intriguing
question. However, we highlight two important challenges that could be tackled by future work, for
inspiration see [57]:

(1) Interdependence of CPD and training dynamics in TRIAGE. Disentangling their impacts theoreti-
cally is non-trivial. (2) Scores across training epochs are correlated due to iterative model training.
This highlights the complexity of any theoretical guarantee, given the dynamic nature of the scores
and their correlation.

As a step towards this we contrast TRIAGE with robust statistics. We provide a simulation using
Huber’s Contamination Model: Our simulation setup mirrors [59], generating data from a linear
model y = Xβ + η, where X ∼ U [0, 1] and η ∼ N(0, 1) .

Mimicking Huber’s model we contaminate the response y corrupting ϵ samples replacing ηi with
ηi + ci, where ci comes from a different distribution.

We compare TRIAGE with: (i) Error baseline, (ii) Training with Huber Loss, (iii) TRIAGE applied
to a Huber Loss trained model.

The results in Figure 19 show that TRIAGE has a lower MSE compared to the error baseline as ϵ rises.
TRIAGE is also stable in response to contamination due to the clean calibration set. Interestingly,
combining TRIAGE with a model trained using Huber’s loss proves superior to using either alone,
highlighting the compatibility of TRIAGE with robust techniques.

(a) Comparison to error baseline (b) TRIAGE is compatible with robust losses

Figure 19: Simulation with Huber’s contamination model: (a) TRIAGE has lower MSE as ϵ increases and (b)
TRIAGE combined with a model trained with a Huber loss has lower MSE than both alone.
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C.10 Differentiation of general-purpose scoring methods with TRIAGE scores

Goal. The main text (Section 5.2) illustrated that for the same magnitude of general-purpose scores
these can be associated with different TRIAGE scores. Hence, highlighting that TRIAGE scores offer
a viable alternative to differentiating samples.

In the main text, we looked at error vs TRIAGE scores . We now examine the remainder of general
purpose scoring methods in Figure 20.
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Figure 20: Samples with the same general-purpose scores are often associated with, different Triage
scores, highlighting the potential to differentiate sample

Takeaway. The phenomena where TRIAGE scores can be used to differentiate samples with the
same magnitude holds true across the different scoring approaches.
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C.11 Fine-grained filtering: Additional datasets

Goal. In the main paper we demonstrated fine-grained filtering on a dataset to showcase the
potential. We now repeat on all datasets.

Takeaway. The results shown in Figures 21-28 highlight that indeed less is more. Fitting on more
high-quality samples can result it better performance.
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Figure 21: Fine-grained filter: Bike
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Figure 22: Fine-grained filter: Bio
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Figure 23: Fine-grained filter: Concrete
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Figure 24: Fine-grained filter: Prostate

0.0 0.2 0.4 0.6 0.8 1.0
Baseline proportion of data retained. 

 *Triage is applied on top (i.e. less data)

0.04

0.06

0.08

0.10

0.12

Te
st

 M
SE

Baseline (Error filter)
Triage Filter

(a) Errors

0.0 0.2 0.4 0.6 0.8 1.0
Baseline proportion of data retained. 

 *Triage is applied on top (i.e. less data)

0.04

0.06

0.08

0.10

0.12

Te
st

 M
SE

Baseline (Loss filter)
Triage Filter

(b) Loss

0.0 0.2 0.4 0.6 0.8 1.0
Baseline proportion of data retained. 

 *Triage is applied on top (i.e. less data)

0.04

0.06

0.08

0.10

0.12

Te
st

 M
SE

Baseline (Grad filter)
Triage Filter

(c) Grad

0.0 0.2 0.4 0.6 0.8 1.0
Baseline proportion of data retained. 

 *Triage is applied on top (i.e. less data)

0.04

0.06

0.08

0.10

0.12

Te
st

 M
SE

Baseline (VoG filter)
Triage Filter

(d) VoG
Figure 25: Fine-grained filter: LoS
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Figure 26: Fine-grained filter: Mimic
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Figure 27: Fine-grained filter: Protein
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Figure 28: Fine-grained filter: Star
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C.12 Value of feature collection/acquisition: Additional datasets

Goal. The main paper aimed to assess if TRIAGE could quantify the value of data improvement
when we are able to acquire features in Section 5.3.2. We now include results for all datasets (using
the same setup, based on the correlation of the feature with the target). Recall we assume that
acquiring a valuable feature wrt. the task should increase the proportion of well-estimated samples.

Takeaway. We show the results in Figs 29-37. We see similar results to the main text for all datasets.
As we acquire more useful/valuable features, the proportions of well-estimated examples increases
as desired. Indicating the measure can capture the value of a feature. We also see that despite the
category proportions changing, the metrics themselves remain stable. Indicating that we capture
inherent properties to these specific samples, which remain consistent.
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Figure 29: Boston dataset
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Figure 30: Prostate dataset

0 20 40 60 80
Features from least to most important added

0.0

0.2

0.4

0.6

0.8

1.0

Fe
at

ur
e 

Co
rr

0.2

0.4

0.6

Pr
op

or
tio

n 
of

 d
at

a

UNDER WELL OVER

(a) Well estimated subgroup proportion is in-
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Figure 31: Mimic dataset
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(a) Well estimated subgroup proportion is in-
creased as informative features are acquired.
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Figure 32: Bio dataset
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creased as informative features are acquired.
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Figure 33: Star dataset
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(a) Well estimated subgroup proportion is in-
creased as informative features are acquired.
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Figure 34: Concrete dataset
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(a) Well estimated subgroup proportion is in-
creased as informative features are acquired.
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(b) The CPS probabilities for each category
remain stable even as the proportions change

Figure 35: LoS dataset
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(a) Well estimated subgroup proportion is in-
creased as informative features are acquired.
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(b) The CPS probabilities for each category
remain stable even as the proportions change

Figure 36: Bike dataset
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(a) Well estimated subgroup proportion is in-
creased as informative features are acquired.
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(b) The CPS probabilities for each category
remain stable even as the proportions change

Figure 37: Protein dataset
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