
A Organization of the appendices544

This paper is a contribution to the mathematical foundations of machine learning, and our545

results are motivated by expanding the applicability and performance of neural networks.546

At the same time, we give precise mathematical formulations of our results and proofs.547

The purposes of these appendices are several:548

1. To clarify the mathematical conventions and terminology, thus making the paper549

more accessible.550

2. To provide full proofs of the main results.551

3. To develop context around various construction appearing in the main text.552

4. To discuss in detail examples, special cases, and generalizations of our results.553

We now give a summary of the contents of the appendices.554

Appendix B contains proofs the universal approximation results (Theorems 3 and 5) stated555

in Section 4 of the main text, as well as proofs of additional bounded width results.556

The proofs use notation given in Appendix B.1, and rely on preliminary topological557

considerations given in Appendix B.2.558

In Appendix C, we give a proof of the model compression result given in Theorem 6, which559

appears in Section 5. For clarity and background we begin the appendix with a discussion560

of the version of the QR decomposition relevant for our purposes (Appendix C.1). We also561

establish elementary properties of radial rescaling activations (Appendix C.2).562

The focus of Appendix D is projected gradient descent, elaborating on Section 6. We563

first prove a result on the interaction of gradient descent and orthogonal transformations564

(Appendix D.1), before formulating projected gradient descent in more detail (Appendix565

D.2), and introducing the so-called interpolating space (Appendix D.3). We restate Theorem566

8 in more convenient notation (Appendix D.4) before proceeding to the proof (Appendix567

D.5).568

Appendix E contains implementation details for the experiments summarized in Section569

7. Our implementations use shifted radial rescaling activations, which we formulate in570

Appendix E.1.571

Appendix F explains the connection between our constructions and radial basis functions572

networks. While radial neural networks turn out to be a specific type of radial basis573

functions network, our universality results are not implied by those for general radial basis574

functions networks.575

B Universal approximation proofs and additional results576

In this section, we provide full proofs of the universal approximation (UA) results for radial577

neural networks, as stated in Section 4. In order to do so, we first clarify our notational578

conventions (Appendix B.1), and collect basic topological results (Appendix B.2).579

B.1 Notation580

Recall that, for a point c in the Euclidean space Rn and a positive real number r, we denote581

the r-ball around c by Br(c) = {x 2 Rn | |x� c| < r}. All networks in this section have the582

Step-ReLU radial rescaling activation function, defined as:583

r : Rn
�! Rn, z 7�!

(
z if |z| � 1
0 otherwise

Throughout, � denotes the composition of functions. We identify a linear map with a584

corresponding matrix (in the standard bases). In the case of linear maps, the operation �585
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can be be identified with matrix multiplication. Recall also that an affine map L : Rn ! Rm586

is one of the from L(x) = Ax + b for a matrix A 2 Rm⇥n and b 2 Rm.587

B.2 Topology588

Let K be a compact subset of Rn and let f : K ! Rm be a continuous function.589

Lemma 9. For any e > 0, there exist c1, . . . , cN 2 K and r1, . . . , rN 2 (0, 1) such that, first, the590

union of the balls Bri (ci) covers K; second, for all i, we have f (Bri (ci) \ K) ✓ Be( f (ci)).591

Proof. The continuity of f implies that for each c 2 K, there exists r = rc such that592

f (Brc(c)\K) ✓ Be( f (c)). The subsets Brc(c)\K form an open cover of K. The compactness593

of K implies that there is a finite subcover. The result follows.594

We also prove a variation of Lemma 9 that additionally guarantees that none of the balls in595

the cover of K contains the center point of another ball.596

Lemma 10. For any e > 0, there exist c1, . . . , cM 2 K and r1, . . . , rM 2 (0, 1) such that, first, the597

union of the balls Bri (ci) covers K; second, for all i, we have f (Bri (ci)) ✓ Be( f (ci)); and, third,598

|ci � cj| � ri.599

Proof. Because f is continuous on a compact domain, it is uniformly continuous. So, there600

exists r > 0 such that f (Br(c) \ K) ✓ Be( f (c)) for each c 2 K. Because K is compact it has601

a finite volume, and so does Br/2(K) =
S

c2K Br/2(c). Hence, there exists a finite maximal602

packing of Br/2(K) with balls of radius r/2. That is, a collection c1, . . . , cM 2 Br/2(K)603

such that, for all i, Br/2(ci) ✓ Br/2(K) and, for all j 6= i, Br/2(ci) \ Br/2(cj) = ∆. The first604

condition implies that ci 2 K. The second condition implies that |ci � cj| � r. Finally, we605

argue that K ✓
SM

i=1 Br(ci). To see this, suppose, for a contradiction, that x 2 K does not606

belong to
SM

i=1 Br(ci). Then Br/2(ci) \ Br/2(x) = ∆, and x could be added to the packing,607

which contradicts the fact that the packing was chosen to be maximal. So the union of the608

balls Br(ci) covers K.609

We turn our attention to the minimal choices of N and M in Lemmas 9 and 10.610

Definition 11. Given f : K ! Rm continuous and e > 0, let N( f , K, e) be the minimal611

choice of N in Lemma 9, and let M( f , K, e) be the minimal choice of M in Lemma 10.612

Observe that M( f , K, e) � N( f , K, e). In many cases, it is possible to give explicit bounds613

for the constants N( f , K, e) and M( f , K, e). As an illustration, we give the argument in the614

case that K is the closed unit cube in Rn and f : K ! Rm is Lipschtiz continuous.615

Proposition 12. Let K = [0, 1]n ⇢ Rn be the (closed) unit cube and let f : K ! Rm be Lipschitz616

continuous with Lipschitz constant R. For any e > 0, we have:617

N( f , K, e) 

⇠
R
p

n
2e

⇡n
and M( f , K, e) 

G(n/2 + 1)
pn/2

✓
2 +

2R
e

◆n
.

Proof. For the first inequality, observe that the unit cube can be covered with
l

R
p

n
2e

mn
618

cubes of side length 2e
R
p

n . Each cube is contained in a ball of radius e
R centered at the619

center of the cube. (In general, a cube of side length a in Rn is contained in a ball of620

radius a
p

n
2 .) Lipschitz continuity implies that, for all x, x0 2 K, if |x � x0| < e/R then621

| f (x)� f (x0)|  R|x� x0| < e.622

For the second inequality, let r = e/R. Lipschitz continuity implies that, for all x, x0 2 K, if623

|x� x0| < r then | f (x)� f (x0)|  R|x� x0| < e. The n-dimensional volume of the set of624

points with distance at most r/2 to the unit cube is vol(Br/2(K))  (1 + r)n. The volume625
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of a ball with radius r/2 is vol(Br/2(0)) = pn/2

G(n/2+1) (r/2)n. Hence, any packing of Br/2(K)626

with balls of radius r/2 consists of at most627

vol(Br/2(K))
vol(Br/2(0))


G(n/2 + 1)

pn/2

✓
2 +

2R
e

◆n

such balls. So there also exists a maximal packing with at most that many balls. This628

packing can be used in the proof of Lemma 10, which implies that it is a bound on629

M( f , K, e).630

We note in passing that any differentiable function f : K ! Rn on a compact subset K of631

Rn is Lipschitz continuous. Indeed, the compactness of K implies that there exists R such632

that | f 0(x)|  R for all x 2 K. Then one can take R to be the Lipschitz constant of f .633

B.3 Proof of Theorem 3: UA for asymptotically affine functions634

In this section, we restate and prove Theorem 3, which proves that radial neural networks635

are universal approximators of asymptotically affine functions. We recall the definition of636

such functions:637

Definition 13. A function f : Rn ! Rm is asymptotically affine if there exists an affine638

function L : Rn ! Rm such that, for all e > 0, there exists a compact set K ⇢ Rn such that639

|L(x)� f (x)| < e for all x 2 Rn \ K. We say that L is the limit of f .640

Remark 14. An asymptotically linear function is defined in the same way, except L is taken641

to be linear (i.e., given just by applying matrix multiplication without translation). Hence642

any asymptotically linear function is in particular an asymptotically affine function, and643

Theorem 3 applies to asymptotically linear functions as well.644

Given an asymptotically affine function f : Rn ! Rm and e > 0, let K be a compact set as645

in Definition 13. We apply Lemma 9 to the restriction f |K of f to K and produce a minimal646

constant N = N( f |K, K, e) as in Definition 11. We write simply N( f , K, e) for this constant.647

Theorem 3 (Universal approximation). Let f : Rn ! Rm be an asymptotically affine function.648

For any e > 0, there exists a compact set K ⇢ Rn and a function F : Rn ! Rm such that:649

1. F is the feedforward function of a radial neural network with N = N( f , K, e) layers whose650

hidden widths are (n + 1, n + 2, . . . , n + N).651

2. For any x 2 Rn, we have |F(x)� f (x)| < e.652

Proof. By the hypothesis on f , there exists an affine function L : Rn ! Rm and a compact653

set K ⇢ Rn such that |L(x)� f (x)| < e for all x 2 Rn \ K. Abbreviate N( f , K, e) by N. As654

in Lemma 9, fix c1, . . . , cN 2 K and r1, . . . , rN 2 (0, 1) such that, first, the union of the balls655

Bri (ci) covers K and, second, for all i, we have f (Bri (ci)) ✓ Be( f (ci)). Let U =
SN

i=1 Bri (ci),656

so that K ⇢ U. Define F : Rn ! Rm as:657

F(x) =

(
L(x) if x /2 U
f (cj) where j is the smallest index with x 2 Brj(cj)

If x /2 U, then |F(x)� f (x)| = |L(x)� f (x)| < e. Hence suppose x 2 U. Let j be the658

smallest index such that x 2 Brj(cj). Then F(x) = f (cj), and, by the choice of rj, we have:659

|F(x)� f (x)| = | f (cj)� f (x)| < e.

We proceed to show that F is the feedforward function of a radial neural network. Let660

e1, . . . , eN be orthonormal basis vectors extending Rn to Rn+N . We regard each Rn+i�1 as661

a subspace of Rn+i by embedding into the first n + i� 1 coordinates. For i = 1, . . . , N, we662

set hi =
q

1� r2
i and define the following affine transformations:663

Ti : Rn+i�1
! Rn+i Si : Rn+i

! Rn+i

z 7! z� ci + hiei z 7! z� (1 + h�1
i )hei, ziei + ci + ei
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where hei, zi is the coefficient of ei in z. Consider the radial neural network with widths664

(n, n + 1, . . . , n + N, m), whose affine transformations and activations are given by:665

• For i = 1, . . . , N the affine transformation from layer i� 1 to layer i is given by666

z 7! Ti � Si�1(z), where S0 = idRn .667

• The activation function at the i-th hidden layer is Step-ReLU on Rn+i, that is:668

ri : Rn+i
�! Rn+i, z 7�!

(
z if |z| � 1
0 otherwise

• The affine transformation from layer i = N to the output layer is669

z 7! FL, f ,c � SN(z)

where FL, f ,c is the affine transformation given by:670

FL, f ,c : Rn+N
! Rm, x +

N

Â
i=1

aiei 7! L(x) +
N

Â
i=1

ai( f (ci)� L(ci))

which can be shown to be affine when L is affine. Indeed, write L(x) = Ax + b671

where A is a matrix in Rm⇥n and b 2 Rm is a vector. Then FL, f ,c is the composition672

of the linear map given by the matrix673

[A f (c1)� L(c1) f (c2)� L(c2) · · · f (cN)� L(cN)] 2 Rm⇥(n+N)

and translation by b 2 Rm. Note that we regard each f (ci) � L(ci) 2 Rm as a674

column vector in the matrix above.675

We claim that the feedforward function of the above radial neural network is exactly F. To676

show this, we first state a lemma, whose (omitted) proof is an elementary computation.677

Lemma 3.1. For i = 1, . . . , N, the composition Si � Ti is the embedding Rn+i�1 ,! Rn+i.678

Next, recursively define Gi : Rn ! Rn+i via679

Gi = Si � ri � Ti � Gi�1,

where G0 = idRn . The function Gi admits an direct formulation:680

Proposition 3.2. For i = 0, 1, . . . , N, we have:681

Gi(x) =

(
x if x /2

Si
j=1 Brj(cj)

cj + ej where j  i is the smallest index with x 2 Brj(cj)
.

Proof. We proceed by induction. The base step i = 0 is immediate. For the induction step,682

assume the claim is true for i� 1, where 0  i� 1 < N. There are three cases to consider.683

Case 1. Suppose x /2
Si

j=1 Brj(cj). Then in particular x /2
Si�1

j=1 Brj(cj), so the induction684

hypothesis implies that Gi�1(x) = x. Additionally, x /2 Bri (ci), so:685

|Ti(x)| = |x� ci + hiei| =
q
|x� ci|+ h2

i �
q

r2
i + 1� r2

i = 1.

Using the definition of ri and Lemma 3.1, we compute:686

Gi(x) = Si � ri � Ti � Gi�1(x) = Si � ri � Ti(x) = Si � Ti(x) = x.

Case 2. Suppose x 2 Bj \
Sj�1

k=1 Brk (ck) for some j  i� 1. Then the induction hypothesis687

implies that Gi�1(x) = cj + ej. We compute:688

|Ti(cj + ej)| = |cj + ej � ci + hiei| > |ej| = 1.
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Therefore,689

Gi(x) = Si � ri � Ti(cj + ej) = Si � Ti(cj + ej) = cj + ej.

Case 3. Finally, suppose x 2 Bi \
Si�1

j=1 Brj(cj). The induction hypothesis implies that690

Gi�1(x) = x. Since x 2 Bri (ci), we have:691

|Ti(x)| = |x� ci + hiei| =
q
|x� ci|+ h2

i <
q

r2
i + 1� r2

i = 1.

Therefore:692

Gi(x) = Si � ri � Ti(x) = Si(0) = ci + ei.

This completes the proof of the proposition.693

Finally, we show that the function F defined at the beginning of the proof is the feedforward694

function of the above radial neural network. The computation is elementary:695

Ffeedforward = FL, f ,c � SN � rN � TN � SN�1 � rN�1 � TN�1 � · · · S1 � r1 � T1

= FL, f ,c � GN

= F

where the first equality follows from the definition of the feedforward function, the second696

from the definition of GN , and the last from the case i = N of Proposition 3.2 together with697

the definition of FL, f ,c. This completes the proof of the theorem.698

B.4 Proof of Theorem 5: bounded width UA for asymptotically affine functions699

We restate and prove Theorem 5, which strengthens Theorem 3 by providing a bounded700

width radial neural network approximation of any asymptotically affine function.701

Theorem 5. Let f : Rn ! Rm be an asymptotically affine function. For any e > 0, there exists a702

compact set K ⇢ Rn and a function F : Rn ! Rm such that:703

1. F is the feedforward function of a radial neural network with N = N( f , K, e) hidden704

layers whose widths are all n + m + 1.705

2. For any x 2 Rn, we have |F(x)� f (x)| < e.706

Proof. By the hypothesis on f , there exists an affine function L : Rn ! Rm and a compact set707

K ⇢ Rn such that |L(x)� f (x)| < e for all x 2 Rn \ K. Given e > 0, let N = N( f , K, e) and708

use Lemma 9 to choose c1, . . . , cN 2 K and r1, . . . , rN 2 (0, 1) such that the union of the balls709

Bri (ci) covers K, and, for all i, we have f (Bri (ci)) ✓ Be( f (ci)). Let s be the minimal non-zero710

value of | f (ci)� f (cj)| for i, j 2 {1, . . . , N}, that is, s = mini,j, f (ci) 6= f (cj) | f (ci)� f (cj)|.711

Using the decomposition Rn+m+1 ⇠= Rn ⇥ Rm ⇥ R, we write elements of Rn+m+1 as712

(x, y, q), where x 2 Rn, y 2 Rm, and q 2 R. For i = 1, . . . , N, set:713

Ti : Rn+m+1
! Rn+m+1, (x, y, q) 7!

✓
x� (1� q)ci , y� q

f (ci)� L(0)
s

, (1� q)hi

◆

where hi =
q

1� r2
i . Note that Ti is an invertible affine transformation, whose inverse is714

given by:715

T�1
i (x, y, q) =

✓
x +

q

hi
ci , y +

⇣
1�

q

hi

⌘ f (ci)� L(0)
s

, 1�
q

hi

◆

For i = 1, . . . , N, define Gi : Rn ! Rn+m+1 via the following recursive definition:716

Gi = T�1
i � r � Ti � Gi�1,
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where G0(x) = (x, 0, 0) : Rn ,! Rn+m+1 is the inclusion, and r : Rn+m+1 ! Rn+m+1 is717

Step-ReLU on Rn+m+1. We claim that, for x 2 Rn, we have:718

Gi(x) =

8
<

:
(x, 0, 0) if x /2

Si
j=1 Brj(cj)⇣

0, f (cj)�L(0)
s , 1

⌘
where j  i is the smallest index with x 2 Brj(cj)

This claim can be verified by a straightforward induction argument, similar to the one719

given in the proof of Proposition 3.2, and using the following key facts:720

• For x 2 Rn,
��Ti
�
(x, 0, 0)

��� =
��(x� ci, 0, hi)

�� < 1 if and only if |x� ci| < ri.721

• T�1
i (0) =

⇣
0, f (ci)�L(0)

s , 1
⌘

.722

• Ti

✓⇣
0, f (cj)�L(0)

s , 1
⌘◆

=
⇣

0, f (cj)� f (ci)
s , 0

⌘
, which, by the choice of s, has norm at723

least 1 if f (cj) 6= f (ci), and is 0 if f (cj) = f (ci).724

Let F : Rn+m+1 ! Rm denote the affine map sending (x, y, q) to L(x) + sy. It follows that725

F = F � GN satisfies726

F(x) =

(
L(x) if x /2

SN
j=1 Brj(cj)

f (cj) where j is the smallest index with x 2 Brj(cj)

By construction, F is the feedforward function of a radial neural network with N hidden727

layers whose widths are all n + m + 1. Let x 2 Rn. If x 2 K, let j be the smallest index728

such that x 2 Brj(cj). Then F(x) = f (cj), and, by the choice of rj, we have |F(x)� f (x)| =729

| f (cj)� f (x)| < e. Otherwise, x 2 Rn \ K, and |F(x)� f (x)| = |L(x)� f (x)| < e.730

B.5 Additional result: bound of max(n, m) + 1731

We state and prove an additional bounded width result. In contrast to the results above, the732

theorem below only holds for functions defined on a compact domain, without assumptions733

about the asymptotic behavior. The proof is an adaptation of the proof of Theorem 5, so734

we give only a sketch.735

Theorem 15. Let f : K ! Rm be a continuous function, where K is a compact subset of Rn. For736

any e > 0, there exists F : Rn ! Rm such that:737

1. F is the feedforward function of a radial neural network with N( f , K, e) hidden layers738

whose widths are all max(n, m) + 1.739

2. For any x 2 K, we have |F(x)� f (x)| < e.740

Sketch of proof. The construction appearing in the proof of Theorem 5 with L ⌘ 0 can741

be used to produce a radial neural network with N( f , K, e) hidden layers with widths742

n + m + 1 that approximates f on K. (Note that the approximation works only on K, as f is743

not defined outside of K.) All values in the hidden layers are of the form (x, 0, 0) or (0, y, 1).744

We can therefore replace (x, y, q) 2 Rn+m+1 by (x + y, q) 2 Rmax(n,m) ⇥R ⇠= Rmax(n,m)+1745

everywhere, without affecting any statements about the hidden layers. In particular, the746

transformation Ti becomes747

Ti : Rmax(n,m)+1
! Rmax(n,m)+1, (x, q) 7!

✓
x� (1� q)ci � q

f (ci)
s

, (1� q)hi

◆
.

With this change the final affine map F sends (x, q) to sx. From the rest of the proof748

of Theorem 5 it follows that the feedforward function F of the radial network satisfies749

|F(x)� f (x)| < e for all x 2 K.750
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B.6 Additional result: bound of max(n, m)751

In this section, we prove a different version of the result of the previous section. Specifically,752

we reduce the bound on the widths to max(n, m) at the cost of using more layers. Again,753

we focus on functions defined on a compact domain without assumptions about their754

asymptotic behavior. Recall the notation M( f , K, e) from Lemma 10 and Definition 11.755

Theorem 16. Let f : K ! Rm be a continuous function, where K is a compact subset of Rn for756

n � 2. For any e > 0, there exists F : Rn ! Rm such that:757

1. F is the feedforward function of a radial neural network with 2M( f , K, e/2) hidden layers758

whose widths are all max(n, m).759

2. For any x 2 K, we have |F(x)� f (x)| < e.760

Proof. We first consider the proof in the case n = m. Set M = M( f , K, e). As in Lemma 10,761

fix c1, . . . , cM 2 K and r1, . . . , rM 2 (0, 1) such that, first, the union of the balls Bri (ci) covers762

K; second, for all i, we have f (Bri (ci)) ✓ Be/2( f (ci)); and third, |ci � cj| � ri for i 6= j. For763

i = 1, . . . , M, set764

Ti : Rn
! Rn, x 7!

x� ci
ri

,

and recursively define Gi : Rn ! Rn as Gi = T�1
i � r � Ti � Gi�1, where G0 = idRn is the765

identity on Rn and r : Rn ! Rn is Step-ReLU.766

Lemma 16.1. For i = 0, 1, . . . , N, we have:767

Gi(x) =

(
x if x /2

Si
j=1 Brj(cj)

cj where j  i is the smallest index with x 2 Brj(cj).

We omit the full proof of Lemma 16.1, as it is a standard induction argument similar768

to Proposition 3.2, relying on the following two facts. First, |Ti(x)| < 1 if and only if769

x 2 Bri (ci). Second, by the choice of ci, we have |ci � cj| � ri for all i 6= j. This implies that770

|Ti(cj)| � 1 for i 6= j.771

Next, perform the following loop over i = 1, . . . , M:772

• Set Pi�1 = {c1, . . . , cM} [ {d1, . . . , di�1}773

• Choose di in Be/2( f (ci)) that is not colinear with any pair of points in Pi�1. This is774

where we use the hypothesis that n � 2.775

• Let si be the minimum distance between any point on the line through ci and di776

and any point in Pi�1 \ {ci}.777

• Let Ui : Rn ! Rn be the following affine transformation:778

Ui : Rn
! Rn, x 7!

x� di
si

+

✓
1

|ci � di|
�

1
si

◆
hx� di, ci � dii

|ci � di|2
(ci � di)

• Define Hi : Rn ! Rn recursively as Hi = U�1
i � r �Ui � Hi�1, where H0 = idRn .779

We note that the transformation Ui can also be written as Ai(x� di) where Ai is the linear780

map given by Ai =
1
si

proj
hci�dii?

+ 1
|ci�di |

proj
hci�dii

, which involves the projections onto781

the line spanned by ci � di and onto the orthogonal complement of this line.782

Lemma 16.2. For i, j = 1, . . . , M, we have:783

Hi(cj) =

(
dj if j  i
cj if j > i
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Proof. It is immediate that Ui(di) = 0 and |Ui(ci)| = 1/2. It is also straightforward to show,784

using the choice of si, that |Ui(p)| � 1 for all p 2 Pi�1 \ {ci}. It follows that U�1
i � r �Ui785

sends ci to di and fixes all other points in Pi�1.786

Lemma 16.3. For x 2 K, we have HM � GM(x) = di where i is the smallest index with787

x 2 Bri (ci)788

Proof. Let x 2 K. By Lemma 16.1, we have that GM(x) = ci where i is the smallest index789

with x 2 Bri (ci). (We use the fact that the balls {Bri (ci)} cover K.) By Lemma 16.2, we have790

that HM(ci) = di for all i. The result follows.791

Set F = HM � GM. We see that, for x 2 K:792

|F(x)� f (x)| = |di � f (x)|  |di � f (ci)|+ | f (ci)� f (x)| < e/2 + e/2 = e

where i is the smallest index with x 2 Bri (ci). We show that F is the feedforward function793

of a radial neural network with 2M hidden layers, all of width equal to n. Indeed, take the794

affine transformations and activations as follows:795

• For i = 1, . . . , M the affine transformation from layer i� 1 to layer i is given by796

x 7! Ti � T�1
i�1(x), where T0 = idRn .797

• For i = 1, . . . , M the affine transformation from layer M + i� 1 to layer M + i is798

given by x 7! Ui �U�1
i�1(x), where U0 = T�1

N .799

• The activation at each hidden layer is Step-ReLU on Rn that is r(x) = x if |x| � 1800

and 0 otherwise.801

• Layer 2M + 1 has the affine transformation U�1
M .802

It is immediate from definitions that the feedforward function of this network is F.803

To conclude the proof, we discuss the cases where n 6= m. Suppose n < m so that804

max(n, m) = m. Then we can regard K as a compact subset of Rm and apply the above805

constructions. Suppose n > m so that max(n, m) = n. Let inc : Rm ,! Rn. Apply the806

above constructions to the function f̃ = inc � f : K ! Rn.807

C Model compression proofs808

The aim of this appendix is to give a proof of Theorem 6. In order to do so, we first (1)809

provide background on a relevant version of the QR decomposition, and (2) establish basic810

properties of radial rescaling activations.811

C.1 The QR decomposition812

In this section, we recall the QR decomposition and note several relevant facts. For integers813

n and m, let (Rn⇥m)upper denote the vector space of upper triangular n by m matrices.814

Theorem 17 (QR Decomposition). The following map is surjective:815

O(n)⇥
�
Rn⇥m�upper

�! Rn⇥m

Q , R 7! Q � R

In other words, any matrix can be written as the product of an orthogonal matrix and an816

upper-triangular matrix. When m  n, the last n�m rows of any matrix in (Rn⇥m)upper
817

are zero, and the top m rows form an upper-triangular m by m matrix. These observations818

lead to the following “complete” version of the QR decomposition, which coincides with819

the above result when m � n:820
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Corollary 18 (Complete QR Decomposition). The following map is surjective:821

µ : O(n)⇥
⇣

Rk⇥m
⌘upper

�! Rn⇥m

Q , R 7! Q � inc � R

where k = min(n, m) and inc : Rk ,! Rn is the standard inclusion into the first k coordinates.822

We make some remarks:823

1. There are several algorithms for computing the QR decomposition of a given824

matrix. One is Gram–Schmidt orthogonalization, and another is the method of825

Householder reflections. The latter has computational complexity O(n2m) in826

the case of a n ⇥ m matrix with n � m. The package numpy includes a func-827

tion numpy.linalg.qr that computes the QR decomposition of a matrix using828

Householder reflections.829

2. In each iteration of the loop in Algorithm 1, the method QR-decomp with mode830

= ‘complete’ takes as input a matrix Ai of size ni ⇥ (nred
i�1 + 1), and pro-831

duces an orthogonal matrix Qi 2 O(ni) and an upper-triangular matrix Ri832

of size min(ni, nred
i�1 + 1) ⇥ (nred

i�1 + 1) such that Ai = Qi � inci � Ri. Note that833

nred
i = min(ni, nred

i�1 + 1).834

3. The QR decomposition is not unique in general, or, in other words, the map µ is835

not injective in general. For example, if n > m, each fiber of µ contains a copy of836

the orthogonal group O(n�m).837

4. The QR decomposition is unique (in a certain sense) for invertible square matrices.838

To be precise, let B+
n be the subset of of (Rn⇥n)upper consisting of upper triangular839

n by n matrices with positive entries along the diagonal. Both B+
n and O(n)840

are subgroups of the general linear group GLn(R), and the multiplication map841

O(n)⇥ B+
n ! GLn(R) is bijective. However, the QR decomposition is not unique842

for non-invertible square matrices.843

C.2 Radial rescaling functions844

We now prove the following basic facts about radial rescaling functions:845

Lemma 19. Let r = h(n) : Rn ! Rn be a radial rescaling function on Rn.846

1. The function r commutes with any orthogonal transformation of Rn. That is, r �Q = Q � r847

for any Q 2 O(n).848

2. If m  n and inc : Rm ,! Rn is the standard inclusion into the first m coordinates, then:849

h(n) � inc = inc � h(m).850

Proof. Suppose Q 2 O(n) is an orthogonal transformation of Rn. Since Q is norm-851

preserving, we have |Qv| = |v| for any v 2 Rn. Since Q is linear, we have Q(lv) = lQv852

for any l 2 R and v 2 Rn. Using the definition of a = h(n) we compute:853

r(Qv) =
h(|Qv|)
|Qv|

Qv =
h(|v|)
|v|

Qv = Q
✓

h(|v|)
|v|

v
◆
= Q(r(v)).

The first claim follows. The second claim is an elementary verification.854

More generally, the restriction of the radial rescaling function r to a linear subspace of Rn855

is a radial rescaling function on that subspace. Given a tuple radial rescaling functions r =856

(ri : Rni ! Rni )L
i=1 suited to widths n = (ni)

L
i=1, we write rred =

⇣
rred

i : Rnred
i ! Rnred

i

⌘
857

for the tuple of restrictions suited to the reduced widths n
red, so that rred

i = ri

����
R

nred
i

.858
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C.3 Proof of Theorem 6859

Adopting notation from above and Section 5, we now restate and prove Theorem 6.860

Theorem 6. Let (W, b, r) be a radial neural network with widths n. Let W
red and b

red be the861

weights and biases of the compressed network produced by Algorithm 1. The feedforward function862

of the original network (W, b, r) coincides with that of the compressed network (Wred, b
red, rred).863

Proof. Let (Wred, b
red, Q) = QR-Compress(W, b) be the output of Algorithm 1, so that864

Q 2 O(nhid) and (Wred, b
red, rred) is a neural network with widths nred and radial865

rescaling activations rred
i = ri

����
R

nred
i

. Let F = F(W,b,r) denote the feedforward function866

of the radial neural network with parameters (W, b) and activations r. Similarly, let867

Fred = F(Wred,bred,rred) denote the feedforward function of the radial neural network with868

parameters (Wred, b
red) and activations rred. Additionally, we have the partial feedforward869

functions Fi and Fred
i . We show by induction that870

Fi = Qi � inci � Fred
i

for any i = 0, 1, . . . , N. (Continuing conventions from Sections 5.1 and 5.2, we set Q0 =871

idRn0 , QL = idRnL , and inci : Rnred
i ! Rni to be the inclusion map.) The base step i = 0872

immediate. For the induction step, let x 2 Rn0 . Then:873

Fi(x) = ri (Wi � Fi�1(x) + bi)

= ri

⇣
Wi �Qi�1 � inci�1 � Fred

i�1(x) + bi

⌘

= ri

✓
[bi Wi �Qi�1 � inci�1]


1

Fred
i�1(x)

�◆

= ri

✓
Qi � inci �

⇥
bred

i Wred
i
⇤  1

Fred
i�1(x)

�◆

= Qi � inci � ri

����
R

nred
i

⇣
Wred

i � Fred
i�1(x) + bred

i

⌘

= Qi � inci � Fred
i

The first equality relies on the definition of the partial feedforward function Fi; the second874

on the induction hypothesis; the fourth on an inspection of Algorithm 1, noting that875

Ri = [bred
i Wred

i ]; the fifth on the results of Lemma 19, observing that ri � inci = ri|
R

nred
i

=876

inci � rred
i ; and the sixth on the definition of Fred

i . In the case i = L, we have:877

F = FL = QL � incL � Fred
L = Fred

since QL = incL = idRnL and Fred
L = Fred. The theorem now follows.878

The techniques of the above proof can be used to show that the action of the group O(nhid)879

of orthogonal change-of-basis symmetries on the parameter space Param(n) leaves the880

feedforward function unchanged. We do not use this result directly, but state is precisely it881

nonetheless:882

Proposition 20. Let (W, b, r) be a radial neural network with widths vector n. Suppose g 2883

O(nhid). Then the original and transformed networks have the same feedforward function:884

F(g·W, g·b, r) = F(W, b, r)

In other words, fix parameters (W, b) 2 Param(n), radial rescaling activations r, and g 2885

O(nhid). Then the radial neural network with parameters (W, b) has the same feedforward886
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function as the radial neural network with transformed parameters (g · W, g · b), where we887

take radial rescaling activations r in both cases.888

We remark that Proposition 20 is analogous to the “non-negative homogeneity” (or “positive
scaling invariance”) of the pointwise ReLU activation function3. In that setting, instead of
considering the product of orthogonal groups O(nhid), one considers the rescaling action
of the following subgroup of ’L�1

i=1 GLni :

G =

(
g = (gi) 2

L�1

’
i=1

GLni | each gi is diagonal with positive diagonal entries

)

Note that G is isomorphic to the product ’L�1
i=1 R

ni
>0, and the action on Param(n) is given889

by the same formulas as those appearing near the end of Section 5.1. The feedforward890

function of a MLP with pointwise ReLU activations is invariant for the action of G on891

Param(n).892

D Projected gradient descent proofs893

In this section, we give a proof of Theorem 8, which relates projected gradient descent894

for a representation with dimension n to (usual) gradient descent for the corresponding895

reduced representation with dimension vector n
red. This proof requires some set up and896

background resutls.897

D.1 Gradient descent and orthogonal symmetries898

We first prove a result that gradient descent commutes with invariant orthogonal trans-899

formations. This section is general and departs from the specific case of radial neural900

networks.901

D.1.1 Setting902

Let L : V = Rp ! R be a smooth function. Semantically, V is a the parameter space of903

a neural network and L the loss function with respect to a batch of training data. The904

differential dLv of L at v 2 V is row vector, while the gradient rvL of L at v is a column905

vector4:906

dLv =


∂L
∂x1

����
v

· · ·
∂L
∂xp

����
v

�
rvL =

2

666664

∂L
∂x1

����
v

...
∂L
∂xp

����
v

3

777775

Hence rvL is the transpose of dLv, that is: rvL = (dLv)T . A step of gradient descent907

with respect to L at learning rate h > 0 is defined as:908

g = gh : V �! V
v 7�! v� hrvL

3See Armenta and Jodoin, The Representation Theory of Neural Networks, arXiv:2007.12213; Dinh,
Pascanu, Bengio, and Bengio, Sharp Minima Can Generalize For Deep Nets, ICML 2017; Meng, Zheng,
Zhang, Chen, Ye, Ma, Yu, and Liu, G-SGD: Optimizing ReLU Neural Networks in its Positively Scale-
Invariant Space, 2019; and Neyshabur, Salakhutdinov, and Srebro. Path-SGD: path-normalized optimiza-
tion in deep neural networks, NIPS’15.

4Following usual conventions, we regard column vectors as elements of V and row vectors as
elements of the dual vector space V⇤. The differential dLv of L at v 2 V is also known as the Jacobian
of L at v 2 V.
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Figure 5: Illustration of Lemma 22. If the loss is invariant with respect to an orthogonal
transformation Q of the parameter space, then optimization of the network by gradient
descent is also invariant with respect to Q. (Note: in this example, projected and usual
gradient descent match; this is not the case in higher dimensions, as explained in D.6.)

We drop h from the notation when it is clear from context. For any k � 0, we denote by gk909

the k-fold composition of the gradient descent map g:910

gk =
kz }| {

g � g � · · · � g

D.1.2 Invariant group action911

Now suppose r : G ! GL(V) is an action of a Lie group G on V such that L is G-invariant,912

i.e.:913

L(r(g)(v)) = L(v)
for all g 2 G and v 2 V. We write simply g · v for r(g)(v), and g for r(g).914

Lemma 21. For any v 2 V and g 2 G, we have:

rvL = gT
· (rg·vL)

Proof. The proof is a computation:915

rvL = (dvL)
T = (d(L � g)v)

T = (dLg·v � dgv)
T = (dLg·v � g)T = gT

· (dLg·v)
T

= gT
· (rLg·v)

The second equality relies on the hypothesis that L � g = L, the third on the chain rule,916

and the fourth on the fact that dgv = g since g is a linear map.917

One can perform the computation of the proof in coordinates, for i = 1, . . . , p:918

(rvL)i = (dLv)
i =

∂L

∂xi

����
v
=

∂(L � g)
∂xi

����
v
=

∂L

∂xj

����
gv

∂gj

∂xi

����
v

=
�
rgvL

�
j gi

j = (gT)
j
i
�
rgvL

�
j =

⇣
gT

·rgvL
⌘

i

D.1.3 Orthogonal case919

Furthermore, suppose the action of G is by orthogonal transformations, so that r(g)T =920

r(g)�1 for all g 2 G. Then Lemma 21 implies that921

rg·vL = g ·rvL (D.1)
for any v 2 V and g 2 G. The proof of the following lemma is immediate from Equation922

D.1, together with the definition of g. See Figure 5 for an illustration.923

Lemma 22. Suppose the action of G on V is by orthogonal transformations, and that L is G-924

invariant. Then the action of G commutes with gradient descent (for any learning rate). That925

is,926

gk(g · v) = g · gk(v)
for any v 2 V, g 2 G, and k � 0.927
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D.2 Gradient descent notation and set-up928

We now turn our attention back to radial neural networks. In this section, we recall notation929

from above, and introduce new notation that will be relevant for the formulation and proof930

of Theorem 8.931

D.2.1 Merging widths and biases932

Let n = (n0, n1, n2, . . . , nL�1, nL) be the widths vector of an MLP. Recall the definition of933

Param(n) as the parameter space of all possible choices of trainable parameters:934

Param(n) =
�
Rn1⇥n0 ⇥Rn2⇥n1 ⇥ · · ·⇥RnL⇥nL�1

�
⇥ (Rn1 ⇥Rn2 ⇥ · · ·⇥RnL)

We have been denoting an element therein as a pair of tuples (W, b) where W = (Wi 2935

Rni⇥ni�1)L
i=1 are the weights and b = (bi 2 Rni )L

i=1 are the biases. However, in this936

appendix we adopt different notation. Observe that, placing each bias vector as a extra937

column on the left of the weight matrix, we obtain matrices:938

Ai = [bi Wi] 2 Rni⇥(1+ni�1).

Thus, there is an isomorphism:939

Param(n) '
LM

i=1
Rni⇥(ni�1+1) = Rn1⇥(n0+1)

⇥Rn2⇥(n1+1)
⇥ · · ·⇥RnL⇥(nL�1+1)

In this appendix, we regard an element of Param(n) as a tuple of ‘merged’ matrices940

A = (Ai 2 Rni⇥(1+ni�1))L
i=1. We now define convenient maps to translate between the941

merged notation and the split notation. For each i, define the extension-by-one map from942

Rni to R⇥Rni ' Rni+1 as follows:943

exti : Rni ! Rni+1 v = (v1, v2, . . . , vni ) 7! (1, v1, v2, . . . , vni ) (D.2)

Observe that, for any i and x 2 Rni�1 , we have

Ai � exti�1(x) = Wix + bi.

Consequently, the i-th partial feedforward function can be defined recursively as:944

Fi = ri � Ai � exti�1 � Fi�1 (D.3)

where ri : Rni ! Rni is the activation5 at the i-th layer, and F0 is the identity on Rn0 .945

D.2.2 Orthogonal change-of-basis action946

To describe the orthogonal change-of-basis symmetries of the parameter space in the947

merged notation, recall the following product of orthogonal groups, with sizes correspond-948

ing to the widths of the hidden layers:949

O(nhid) = O(n1)⇥O(n2)⇥ · · ·⇥O(nL�1)

In the merged notation, the element Q = (Qi)
L�1
i=1 2 O(nhid) transforms A 2 Param(n) as:950

A 7! Q · A :=
✓

Qi � Ai �


1 0
0 Q�1

i�1

�◆L

i=1
(D.4)

where Q0 = idn0 and QL = idnL .951

5In this general formulation, ri can be any piece-wise differentiable function; for most of the rest
of the paper we will be interested in the case where ri is a radial rescaling function.
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D.2.3 Model compression algorithm952

We now restate Algorithm 1 in the merged notation. We emphasize that Algorithms 1 and953

2 are mathematically equivalent; the later simply uses more compact notation.954

Algorithm 2: QR Model Compression (QR-compress)
input : A 2 Param(n)
output : Q 2 O(nhidden) and V 2 Param(nred)

Q, V [ ], [ ] // initialize output matrix lists
M1  A1
for i 1 to L� 1 do // iterate through layers

Qi, Ri  QR-decomp(Mi, mode = ‘complete’ ) // Mi = Qi � inci � Ri
Append Qi to Q

Append Ri to V // reduced merged weights for layer i

Set Mi+1  Ai+1 �


1 0
0 Qi � inci

�
// transform next layer

end

Append ML to V

return Q, V

955

We explain the notation. As noted in Appendix B.1, the symbol ‘�’ denotes composition956

of maps, or matrix multiplication in the case of linear maps. The standard inclusion957

inci : Rnred
i ,! Rni maps into the first nred

i coordinates. As a matrix, Inci 2 Rni⇥nred
i has958

ones along the main diagonal and zeros elsewhere. The method QR-decomp with mode =959

‘complete’ computes the complete QR decomposition of the ni ⇥ (1 + nred
i�1) matrix Mi as960

Qi � inci � Ri where Qi 2 O(ni) and Ri is upper-triangular of size nred
i ⇥ (1 + nred

i�1). The961

definition of nred
i implies that either nred

i = nred
i�1 + 1 or nred

i = ni. The matrix Ri is of size962

nred
i ⇥ nred

i in the former case and of size ni ⇥ (1 + nred
i�1) in the latter case.963

D.2.4 Gradient descent definitions964

As in Section 6, we fix:965

• a widths vector n = (n0, n1, . . . , nL).966

• a tuple r = (r1, . . . , rL) of radial rescaling activations, where ri : Rni ! Rni for967

i = 1, . . . , L.968

• a batch of training data {(xj, yj)} ✓ Rn0 ⇥RnL = Rnred
0 ⇥Rnred

L .969

• a cost function C : RnL ⇥RnL ! R970

As a result, we have a loss function on Param(n):971

L : Param(n)! R L(A) = Â C(F(A,r)(xj), yj)

where F(A,r) is the feedforward of the radial neural network with (merged) parameters A972

and activations r. We emphasize that the loss function L depends on the batch of training973

data chosen above; however, for clarity, we omit extra notation indicating this dependency974

since the batch of training data is fixed throughout this discussion. Similarly, we have:975

• the reduced widths vector n
red = (nred

0 , nred
1 , . . . , nred

L ).976

• the restrictions rred = (rred
1 , . . . , rred

L ), where rred
i : Rnred

i ! Rnred
i for i = 1, . . . , L.977

Using the fact that nred
0 = n0 and nred

L = nL, there is a loss function on Param(nred):978

Lred : Param(nred)! R Lred(B) = Â C(F(B,rred)(xj), yj)
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where F(B,rred) is the feedforward of the radial neural network with parameters B 2979

Param(nred) and activations rred. (Again, technically speaking, the loss function Lred980

depends on the batch of training data fixed above.) For any learning rate h > 0, we obtain981

a gradient descent maps:982

g : Param(n)! Param(n) gred : Param(nred)! Param(nred)

A 7! A� hrAL B 7! B� hrBLred

D.3 The interpolating space983

In this section, we introduce a subspace Paramint(n) of Param(n), that, as we will later see,984

interpolates between Param(n) and Param(nred).985

Let Paramint(n) denote the subspace of Param(n) consisting of those T = (T1, . . . , TL) 2986

Param(n) for which the bottom left (ni � nred
i )⇥ (1 + nred

i�1) block of Ti is zero for each i.987

Schematically:988

Ti =


⇤ ⇤

0 ⇤

�

where the rows are divided as nred
i on top and ni � nred

i on the bottom, while the columns989

are divided as (1 + nred
i�1) on the left and ni�1 � nred

i�1 on the right. Let990

i1 : Paramint(n) ,! Param(n)

be the inclusion. The following proposition follows from an elementary analysis of the991

workings of Algorithm 2 (or, equivalently, Algorithm 1).992

Proposition 23. Let A 2 Param(n) and let Q 2 O(nhid) be the tuple of orthogonal matrices993

produced by Algorithm 2. Then Q
�1 · A belongs to Paramint(n).994

Define a map995

q1 : Param(n)! Paramint(n)

by taking A 2 Param(n) and zeroing out the bottom left (ni � nred
i )⇥ (1 + nred

i�1) block of996

Ai for each i. Schematically:997

A =

✓
Ai =


⇤ ⇤

⇤ ⇤

�◆L

i=1
7! q1(A) =

✓
⇤ ⇤

0 ⇤

�◆L

i=1

It is straightforward to check that q1 is a well-defined, surjective linear map. The transpose998

of q1 is the inclusion i1. We summarize the situation in the following diagram:999

Paramint(n)
i1

--
Param(n)

q1
mm (D.5)

We observe that the composition q1 � i is the identity on Paramint(n).1000

D.4 Projected gradient descent and model compression1001

Recall from Section 6 that the projected gradient descent map on Param(n) is given by:1002

gproj : Param(n)! Param(n), A 7! Proj (A� hrAL)

where A = (W, b) are the merged parameters (Appendix D.2), and, in the notation of the1003

previous section, the map Proj is i1 � q1. To reiterate, while all entries of each weight matrix1004

and each bias vector contribute to the computation of the gradient rAL = r(W,b)L, only1005

those not in the bottom left submatrix get updated under the projected gradient descent1006

map gproj.1007
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Let V, Q = QR-Compress(A) be the outputs of Algorithm 2 (which is equivalent to1008

Algorithm 1), so that V = (Wred, b
red) 2 Param(nred) are the parameters of the com-1009

pressed model corresponding to the full model with merged parameters A = (W, b), and1010

Q 2 O(nhid) is an orthogonal change-of-basis symmetry of the parameter space. Moreover,1011

set T = Q
�1 · A 2 Paramint(n), where we use the change-of-basis action from Appendix1012

D.2 and Proposition 23. We have the following rephrasing of Theorem 8.1013

Theorem 24 (Theorem 8). Let A 2 Param(n), and let V, Q, T be as above. For any k � 0:1014

1. gk(A) = Q · gk(T)1015

2. gk
proj(T) = gk

red(V) + T�V.1016

More precisely, the second equality is gk
proj(T) = i(gk

red(V)) + T � i(V) where i :1017

Param(nred) ,! Param(n) is the inclusion into the top left corner in each coordinate.1018

Also, in the statement of Theorem 8, we have U = T�V.1019

We summarize this result in the following diagram. The left horizontal maps indicate1020

the addition of U = T�V, the right horizontal arrows indicate the action of Q, and the1021

vertical maps are various versions of gradient descent. The shaded regions indicate the1022

(smallest) vector space to which the various representations naturally belong.1023

V T W

gk
red(V) gk

proj(T) gk(T) gk(W)

+T�V

proj-GD on Param(n)

+T�V

GD on Param(nred) GD on Param(n)

Q·

Q·

GD on Param(n)

Param(nred) Paramint(n) Param(n)

D.5 Proof of Theorem 81024

We begin by explaining the sense in which Paramint(n) interpolates between Param(n) and1025

Param(nred). One extends Diagram D.5 as follows:1026

Param(nred)
i2

--
Paramint(n)

q2
mm

i1
--
Param(n)

q1
mm

• The map1027

i2 : Param(nred) ,! Paramint(n)

takes B = (Bi) 2 Param(nred) and pad each matrix with ni � nred
i rows of zeros on1028

the bottom and ni�1 � nred
i�1 columns of zeros on the right:1029

B = (Bi)
L
i=1 7! i2(B) =

✓
Bi 0
0 0

�◆L

i=1

It is straightforward to check that i2 is a well-defined injective linear map.1030

• The map1031

q2 : Paramint(n) ⇣ Param(nred)
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extracts from T the top left nred
i ⇥ (1 + nred

i�1) matrix:1032

T =

 
Ti =

"
T(1)

i T(2)
i

0 T(4)
i

#!L

i=1

7! q2(T) =
⇣

T(1)
i

⌘L

i=1

It is straightforward to check that q2 is a surjective linear map. The transpose of q21033

is the inclusion i2.1034

1035

Lemma 25. We have the following:1036

1. The inclusion i : Param(nred) ,! Param(n) coincides with the composition i1 � i2, and1037

commutes with the loss functions:1038

Param(nred) �
� i1�i2=i

//

Lred
%%

Param(n)

L
zz

R

2. The following diagram commutes:1039

Paramint(n)
q2

// //

_�

i1
✏✏

Param(nred)

Lred

✏✏

Param(n) L // R

3. For any T 2 Paramint(n), we have: q1

⇣
ri1(T)L

⌘
= i2

⇣
rq2(T)Lred

⌘
.1040

Proof. We have the following standard inclusions into the first coordinates and projections1041

onto the first coordinates, for i = 0, 1, . . . , L:1042

inci = incnred
i ,ni

: Rnred
i ,! Rni , finci = inc1+nred

i ,1+ni
: R1+nred

i ,! R1+ni ,
1043

pi : Rni ⇣ Rnred
i , epi : R1+ni ⇣ R1+nred

i .
Observe that Paramint(n) is the subspace of Param(n) consisting of those T = (T1, . . . , TL) 21044

Param(n) such that:1045

(idni � inci � pi) � Ti � finci�1 � epi�1 = 0
for i = 1, . . . , L.1046

By the definition of radial rescaling functions, for each i = 1, . . . , L, there is a piece-wise1047

differentiable function hi : R ! R such that ri = h(ni)
i . Note that rred

i = h(n
red
i )

i , and1048

h(ni) � inci = inci � h(n
red
i ).1049

The identity i = i1 � i2 follows directly from definitions. To prove the commutativity of1050

the first diagram, it is enough to show that, for any X in Param(nred), the feedforward1051

functions of X and i(X) coincide. This follows easily from the fact that, for i = 1, . . . , L, we1052

have:1053

pi � h(ni) � inci = pi � inci � h(n
red
i ) = h(n

red
i ).

For the second claim, let T 2 Paramint(n). It suffices to show that i1(T) and q2(T)1054

have the same feedforward function. Recall the exti maps and the formulation of the1055

feedforward function in the merged notation given in Equation D.3. Using this set-up, the1056

key computation is:1057

inci � h(n
red
i )
� pi � Ti � extni�1 � inci�1 = h(ni) � inci � pi � Ti � finci�1 � extni�1

= h(ni) � Ti � finci�1 � extni�1

= h(ni) � Ti � extni�1 � inci�1
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which uses the fact that (idni � inci � pi) � Ti � finci�1 = 0, or, equivalently, inci � pi � Ti �1058

finci�1 = Ti � finci�1, as well as the fact that exti � inci = finci � exti. Applying this relation1059

successively starting with the second-to-last layer (i = L� 1) and ending in the first (i = 1),1060

one obtains the result. For the last claim, one computes rT(L � i1) in two different ways.1061

The first way is:1062

rT(L � i1) = (d(LT � i1))
T =

⇣
dLi1(T) � dTi1

⌘T
=
⇣

dLi1(T) � i1
⌘T

= iT1

⇣
dLT

i1(T)

⌘
= q1

⇣
ri1(T)L

⌘

where we use the fact that i1 is a linear map whose transpose is q1. The second way uses1063

the commutative diagram of the second part of the Lemma:1064

rT(L � i1) = rT (Lred � q2) = (d (Lred)T
� q2)

T =
⇣

d (Lred)q2(T)
� d (q2)Z

⌘T

=
⇣

d (Lred)q2(T)
� q2

⌘T
= qT

2

⇣
d (Lred)

T
q2(T)

⌘
= i2

⇣
rq2(T)Lred

⌘
.

We also use the fact that q2 is a linear map whose transpose is i2.1065

Proof of Theorem 8. As above, let R, Q = QR-compress(A) be the outputs of Algorithm1066

1, so that V = (Wred, b
red) 2 Param(nred) is the dimensional reduction of the merged1067

parameters A = (W, b), and Q 2 O(nhid). Set T = Q
�1 · A 2 Paramint(n).1068

The action of Q 2 O(nhid) on Param(n) is an orthogonal transformation, so the first claim1069

follows from Lemma 22.1070

For the second claim, it suffices to consider the case h = 1. The general case follows1071

similarly. We proceed by induction. The base case k = 0 amounts to Theorem 6. For the1072

induction step, we set1073

Z
(k) = i(gk

red(V)) + T� i(V).

Each Z
(k) belongs to Paramint(n), so i1(Z(k)) = Z

(k). Moreover, q2

⇣
Z
(k)
⌘
= gk

red(V). We1074

compute:1075

gk+1
proj(Q

�1
· A) = gproj

⇣
gk

proj(Q
�1

· A)
⌘

= gproj

⇣
i(gk

red(V)) + T� i(V)
⌘

= i1 � q1

⇣
i(gk

red(V)) + T� i(V)�ri(gk
red(V))+T�i(V)L

⌘

= i(gk
red(V))� i1 � q1

⇣
ri1(Z(k))L

⌘
+ T� i(V)

= i(gk
red(V))� i1 � i2

⇣
rq2(Z(k))Lred

⌘
+ T� i(V)

= i
⇣

gk
red(V)�rgk

red(V)Lred

⌘
+ T� i(V)

= i
⇣

gk+1
red (V)

⌘
+ T� i(V)

where the second equality uses the induction hypothesis; the third invokes the definition1076

of gproj; the fourth uses the fact that Z
(k) = i(gk

red(V)) + T� i(V) belongs to Paramint(n);1077

the fifth and sixth use Lemma 25 above; and the last uses the definition of gred.1078

D.6 Example1079

We now discuss an example where projected gradient descent does not match usual1080

gradient descent.1081

32



Let n = (1, 3, 1) be a widths vector. The space of parameters with this widths vector is1082

10-dimensional:1083

Param(n) = Hom(R2, R3)�Hom(R4, R) ' R10.

We identify a choice of parameters (in the merged notation)1084

A =

0

@ A1 =

2

4
a b
c d
e f

3

5 , A2 = [g h i j]

1

A 2 Param((1, 3, 1)) (D.6)

with the point p = (a, b, c, d, e, f , g, h, i, j) in R10. To be even more explicit, the weights for1085

the first layer are W1 =

2

4
b
d
f

3

5, the bias in the first hidden hidden layer is b1 = (a, c, e), the1086

weights for the second layer are W2 = [h i j], and the bias for the output layer is b2 = g.1087

The action of the orthogonal group O(n) = O(3) on Param(n) ' R10 can be expressed as:1088

Q 7!

2

64

Q 0 0 0
0 Q 0 0
0 0 1 0
0 0 0 Q

3

75 ,

where the rows and columns are divided according to the partition 3 + 3 + 1 + 3 = 10.1089

Consider the function6:1090

L : Param(n)! R

p = (a, b, c, d, e, f , g, h, i, j) 7! h(a + b) + i(c + d) + j(e + f ) + g

By the product rule, we have:1091

rpL = (h, h, i, i, j, j, 1, a + b, c + d, e + f )

One easily checks that L(Q · p) = L(p) and that rQ·pL = Q ·rpL for any Q 2 O(3).1092

The interpolating space is the eight-dimensional subspace of Param(n) ' R10 with e =1093

f = 0 (using the notation of Equation D.6). Suppose p0 = (a, b, c, d, 0, 0, g, h, i, j) belongs to1094

the interpolating space. Then the gradient is1095

rp0L = (h, h, i, i, j, j, 1, a + b, c + d, 0)

which does not belong to the interpolating space. So one step of usual gradient descent,1096

with learning rate h > 0 yields:1097

g :p0 = (a, b, c, d, 0, 0, g, h, i, j) 7!
(a� hh , b� hh , c� hi , d� hi , �h j , �h j , g� h , h� h(a + b) , i� h(c + d) , j)

On the other hand, one step of projected gradient descent yields:1098

gproj : p0 = (a, b, c, d, 0, 0, g, h, i, j) 7!
(a� hh , b� hh , c� hi , d� hi , 0 , 0 , g� h , h� h(a + b) , i� h(c + d) , j)

Direct computation shows that the difference between the evaluation of L after one step of1099

gradient descent and the evaluation of L after one step of projected gradient descent is:1100

L(g(p0))� L(gproj(p0)) = 2h j2.

6For A 2 Param(n), the neural function of the neural network with affine maps determined by
A and identity activation functions is R ! R; x 7! L(W)x. The function L can appear as a loss
function for certain batches of training data and cost function on R.

33



E Experiments1101

As mentioned in Section 7, we provide an implementation of Algorithm 1 in order to (1)1102

empirically validate that our implementation satisfies the claims of Theorems 6 and Theo-1103

rem 8 and (2) quantify real-world performance. Our implementation uses a generalization1104

of radial neural networks, which we explain presently.1105

E.1 Radial neural networks with shifts1106

In this section, we consider radial neural networks with an extra trainable parameter in1107

each layer that shifts the radial rescaling activation. Adding such parameters allows for1108

more flexibility in the model, and (as shown in Theorem 26) the model compression of1109

Theorem 6 holds for such networks. It is this generalization that we use in our experiments.1110

Let h : R ! R be a function. For any n � 1 and any t 2 R, the corresponding shifted radial1111

rescaling function on Rn is given by:1112

r = h(n,t) : v 7!
h(|v|� t)

|v|
v

if v 6= 0 and r(0) = 0. A radial neural network with shifts consists of the following data:1113

1. Hyperparameters: A positive integer L and a widths vector n = (n0, n1, n2, . . . , nL).1114

2. Trainable parameters:1115

(a) A choice of weights and biases (W, b) 2 Param(n).1116

(b) A vector of shifts t = (t1, t2, . . . , tL) 2 RL.1117

3. Activations: A tuple h = (h1, . . . , hL) of piecewise differentiable functions R ! R.1118

Together with the shifts, we have the shifted radial rescaling activation ri = h(ni ,ti)
i :1119

Rni ! Rni in each layer.1120

The feedforward function of a radial neural network with shifts is defined in the usual1121

recursive way, as in Section 3. The trainable parameters form the vector space Param(n)⇥1122

RL, and the loss function of a batch of training data {(xi, yi)} ⇢ Rn0 ⇥RnL is defined as1123

L : Param(n)⇥RL
�! R; (W, t) 7!Â

j
C(F(W,b,t,h)(xj), yj)

where F(W,b,t,h) is the feedforward function of a radial neural network with weights W,1124

biases b, shifts t, and radial rescaling activations produced from h. We have the gradient1125

descent map:1126

g : Param(n)⇥RL
�! Param(n)⇥RL

which updates the entries of W, b, and t. The group O(nhid) = O(n1)⇥ · · ·⇥O(nL�1)1127

acts on Param(n) as usual (see Section 5.1), and on RL trivially. The neural function1128

is unchanged by this action. We conclude that the O(nhid) action on Param(n) ⇥ RL1129

commutes with gradient descent g. We now state a generalization of Theorem 6 for the1130

case of radial neural networks with shifts. We omit a proof, as it uses the same techniques1131

as the proof of Theorem 6.1132

Theorem 26. Let (W, b, t, h) be a radial neural network with shifts and widths vector n. Let1133

W
red and b

red be the weights and biases of the compressed network produced by Algorithm 1.1134

The feedforward function of the original network (W, b, t, h) coincides with that of the compressed1135

network (Wred, b
red, t, h).1136

Theorem 8 also generalizes to the setting of radial neural networks with shifts, using1137

projected gradient descent with respect to the subspace Paramint(n)⇥RL of Param(n)⇥RL.1138
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E.2 Implementation details1139

Our implementation is written in Python and uses the QR decomposition routine in1140

NumPy [21]. We also implement a general class RadNet for radial neural networks using1141

PyTorch [41]. For brevity, we write Ŵ for (W, b) and Ŵ
red for (Wred, b

red).1142

(1) Empirical verification of Theorem 6. We use synthetic data to learn the function1143

f (x) = e�x2 with N = 121 samples xj = �3 + j/20 for 0  j < 121. We model f
Ŵ

1144

as a radial neural network with widths n = (1, 6, 7, 1) and activation the radial shifted1145

sigmoid h(x) = 1/(1 + e�x+s). Applying QR-compress gives a radial neural network1146

f
Ŵred with widths n

red = (1, 2, 3, 1). Theorem 6 implies that the neural functions of1147

f
Ŵ

and f
Ŵred are equal. Over 10 random initializations of Ŵ, the mean absolute error1148

(1/N)Âj | f
Ŵ
(xj)� f

Ŵred(xj)| = 1.31 · 10�8 ± 4.45 · 10�9. Thus f
Ŵ

and f
Ŵred agree up to1149

machine precision.1150

(2) Empirical verification of Theorem 8. Adopting the notation from above, the claim is1151

that training f
Q�1·Ŵ with objective L by projected gradient descent coincides with training1152

f
Ŵred with objective Lred by usual gradient descent. We verified this on synthetic data1153

using 3000 epochs at learning rate 0.01. Over 10 random initializations of Ŵ, the loss1154

functions match up to machine precision with |L� Lred| = 4.02 · 10�9 ± 7.01 · 10�9.1155

(3) Reduced model trains faster. Due to the relation between projected gradient descent1156

of the full network Ŵ and gradient descent of the reduced network Ŵ
red, our method may1157

be applied before training to produce a smaller model class which trains faster without1158

sacrificing accuracy. We test this hypothesis in learning the function f : R2 ! R2 sending1159

x = (t1, t2) to (e�t2
1 , e�t2

2) using N = 1212 samples (�3 + j/20,�3 + k/20) for 0  j, k <1160

121. We model f
Ŵ

as a radial neural network with layer widths n = (2, 16, 64, 128, 16, 2)1161

and activation the radial sigmoid h(r) = 1/(1+ e�r). Applying QR-compress gives a radial1162

neural network f
Ŵred with widths n

red = (2, 3, 4, 5, 6, 2). We trained both models until1163

the training loss was  0.01. Running on a system with an Intel i5-8257U@1.40GHz and1164

8GB of RAM and averaged over 10 random initializations, the reduced network trained in1165

15.32 ± 2.53 seconds and the original network trained in 31.24 ± 4.55 seconds.1166

F Relation to radial basis function networks1167

In this appendix, we show that radial neural networks are equivalent to a particular class of1168

multilayer radial basis functions networks. This class is obtained by imposing the condition1169

that the so-called ‘hidden dimension’ at each layer is equal to one; the total number of1170

layers, however, is unconstrained. To our knowledge, the literature contains no universal1171

approximation result for this class of radial basis functions networks.1172

F.1 Single layer case1173

We first recall the definition of a radial basis function network. A local linear model extension1174

of a radial basis function network (henceforth abbreviated simply by RBFN) consists of:1175

• An input dimension n, an output dimension m, and a ‘hidden’ dimension N.1176

• For i = 1, . . . , N, a matrix Wi 2 Rm⇥n, a vector bi 2 Rn, and a weight ai 2 Rm.1177

• A nonlinear function7 l : R ! R.1178

7A more general version allows for a different nonlinear function for every i = 1, . . . , N.
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The feedforward function of a RBFN is defined as:

F : Rn
! Rm x 7!

N

Â
i=1

(ai + Wi(x + bi)) l(|x + bi|).

The integer N is commonly referred to as ‘the hidden number of neurons’. This is a bit of1179

a misnomer. Really there is only one layer with input dimension n and output dimension1180

m; the integer N is part of the specification of the activation function.1181

We observe that if N = 1 and a1 = 0, then the feedforward function is given by:

F : Rn
! Rm x 7!Wr(x + b)

where r is the radial rescaling function determined by l. In words, one adds b1 = b 2 Rn1182

to the input vector x, applies the activation r to obtain new vector in Rn, and then applies1183

the linear transformation determined by the matrix W1 = W to obtain the output vector in1184

Rm. Motivated by this observation, we say that a RBFN is constrained if N = 1 and a1 = 0.1185

F.2 Constrained multilayer case1186

Next, we consider the constrained multilayer case of a radial basis functions network.1187

Specifically, a constrained multilayer RBFN consists of:1188

• A widths vector (n0, . . . , nL) where L is the number of layers.1189

• A matrix W` 2 Rn`⇥n`�1 for ` = 1, . . . , L.1190

• A vector b` 2 Rn` for ` = 0, 1, . . . , L� 1.1191

• A nonlinear function l` : R ! R for ` = 0, 1, . . . , L � 1. (Equivalently, the1192

corresponding radial rescaling function r` : Rn` ! Rn` for ` = 0, . . . , L� 1.)1193

The feedforward function is defined as follows. For ` = 0, . . . , L, we recursively define
F` : Rn0 ! Rn` by setting F0(x) = x and

F`(x) = W`r`�1(F`�1(x) + b`�1)

for ` = 1, . . . , L. The feedforward function is FL.1194

F.3 Relation to radial neural networks1195

We now demonstrate that radial neural networks are equivalent to multilayer RBFNs.1196

Proposition 27. For any radial neural network, there is a constrained multilayer RBFN with the1197

same feedforward function. Conversely, for any constrained multiplayer RBFN, there is a radial1198

neural network with the same feedforward function.1199

Proof. For the first statement, let (W, b, r) be a radial neural network with L layers and
widths vector (n0, . . . , nL). Recall the partial feedforward functions G` : Rn0 ! Rn` defined
recursively by setting G0(x) = x and

G`(x) = r` (W`G`�1(x) + b`)

The feedforward function is GL. Consider the constrained multilayer RBFN with L + 11200

layers and the following:1201

• Widths vector (n0, n1, . . . , nL�1, nL, nL). The last two layers have the same dimen-1202

sion.1203

• Weight matrices W` 2 Rn`⇥n`�1 for ` = 1, . . . , L and WL+1 = idnL 2 RnL⇥nL .1204

• A vector b` 2 Rn` for ` = 1, . . . , L, and b0 = 0 2 Rn0 .1205

• A radial rescaling activation r` : Rn` ! Rn` for ` = 1, . . . , L, and r0 = idn0 .1206
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Let F` be the partial feedforward functions for this RBFN, defined recursively as above. We
claim that

F`(x) = W` � G`�1(x)
for any x 2 Rn0 and ` = 1, . . . , L. We prove this by induction. The base case is ` = 1:

F1(x) = W1 � r0 (F0(x) + b0) = W1x = W1 � G0(x)

For the induction step, take ` > 1 and compute:

F`(x) = W` � r`�1 (F`�1(x) + b`�1) = W` � r`�1 (W`�1G`�2(x) + b`�1) = W` � G`�1(x)

The first claim now follows from the case ` = L, using the fact that WL+1 is the identity.1207

For the second statement, let (W, b, r) be a constrained multilayer RBFN with L layers and1208

widths vector (n0, . . . , nL). Consider the radial neural network with L + 1 layers and the1209

following:1210

• Widths vector (n0, n0, n1, . . . , nL�1, nL). The first two layers have the same dimen-1211

sion.1212

• Weight matrices given by W̃1 = idn0 and W̃` = W`�1 for ` = 2, . . . , L + 1.1213

• Bias vectors given by b̃` = b`�1 for ` = 1, 2, . . . , L, and b̃L+1 = 0.1214

• Radial rescaling activations given by r̃` = r`�1 for ` = 1, . . . , L, and r̃L+1 = idnL .1215

One uses the recursive definition of the partial feedforward functions to show that, for
` = 1, . . . , L, we have F`(x) = W` � G`(x), where F` and G` are the partial feedforward
functions of the RBFN and radial neural network, respectively. Then:

GL+1(x) = r̃L+1
�
W̃L+1 � GL(x) + b̃L+1

�
= WL � GL(x) = FL(x),

so the two feedforward functions coincide.1216

F.4 Conclusions1217

While radial neural networks are equivalent to a certain class of radial basis function1218

network, we point out differences between our results and the standard theory of radial1219

basis functions network. First, RBFNs generally only have two layers; we consider ones1220

with unbounded depth. Second, to our knowledge, ours is the first universal approximation1221

result such that:1222

• it uses networks in the subclass of multilayer RBFNs satisfying the constraint that1223

all the number of ‘hidden neurons’ in each layer is equal to 1.1224

• it approximates functions with networks of bounded width.1225

• it can be used to approximate asymptotically affine functions, rather than functions1226

defined on a compact domain.1227

Our compressibility result may apply to multilayer RBFNs where the number of ‘hidden1228

neurons’ N` at each layer is not equal to 1, but we expect the compression to be weaker,1229

and that constrained mulitlayer RBFNs are in some sense the most compressible type of1230

RBFN.1231
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