Under review as a conference paper at ICLR 2021

A ADDITIONAL EXPERIMENTS

Additional experiments were run to validate the performance of the specialized activation functions
discovered by PANGAEA.

A.1 ScALING Up

PANGAEA discovered specialized activation functions for WRN-10-4, ResNet-v1-56, and ResNet-
v2-56. Table [3 shows the performance of these activation functions when paired with the larger
WRN-16-8, ResNet-v1-110, and ResNet-v2-110 architectures. Due to time constraints, ReLU is the
only baseline activation function in these experiments.

Two of the three functions discovered for WRN-10-4 outperform ReLLU with WRN-16-8, and all
three functions discovered for ResNet-v2-56 outperform ReLU with ResNet-v2-110. Surprisingly,
ReLU achieves the highest accuracy for ResNet-v1-110. Since activation functions are part of the
skip connections in ResNet-v1, it is more difficult to achieve high performance with custom activation
functions when the architecture is very deep. Activation functions are not part of the skip connections
in ResNet-v2, making it easier to achieve high performance with specialized activation functions on
this very deep architecture.

Evolving novel activation functions can be computationally expensive. The results in Table [3|suggest
that in future work it may be possible to alleviate this cost by evolving activation functions for smaller
architectures, and then using the discovered functions with larger architectures.

A.2 ADIJUSTING ARCHITECTURE WIDTH AND DEPTH

To further investigate the effect of network size on the performance of novel activation functions, two
specialized activation functions were paired with neural networks of different widths and depths. Due
to time constraints, the results in this experiment are based on single training runs.

Wide Residual Networks The specialized activation function log(o(ax)) - Sarcsinh(z) was dis-
covered for a Wide ResNet of depth 10 and width four (WRN-10-4). Figure [6]shows the performance
of this function when paired with Wide ResNets of different depths and widths.

For all widths tested, log(o(ax)) - Barcsinh(z)
outperforms ReL.U, albeit with diminishing re-
turns as the width becomes large. This result
implies that log(o(ax)) - Barcsinh(z) gives the
network more representational power than ReLLU.
As the width of the architecture is increased, the
additional network parameters partially offset
this advantage, explaining the decreasing relative
improvement of log(c(ax)) - Sarcsinh(z) over
ReLU.

For a fixed architecture width of four,
log(o(ax)) - Barcsinh(x) outperforms ReLU
only when the depth is 10 and 16. Surprisingly,
as the depth is increased to 22 and beyond, the
performance of log(c(cx)) - Barcsinh(z) drops.
This result suggests that log(o(ax))- Sarcsinh(x)
is specialized to shallow architectures.

Preactivation Residual Networks The spe-
cialized activation function Softplus(ELU(z))
was discovered for a Preactivation ResNet of
depth 56 (ResNet-v2-56). Figure [6 shows the
performance of this function when paired with
Preactivation ResNets of different depths. Unlike
with the Wide ResNets, there is no clear increase

Table 3: Specialized activation functions dis-
covered for WRN-10-4, ResNet-v1-56, and
ResNet-v2-56 are evaluated on larger versions of
those architectures: WRN-16-8, ResNet-v1-110,
and ResNet-v2-110, respectively. CIFAR-100
test accuracy is reported as the median of three
runs, with mean + sample standard deviation
in parenthesis. Specialized activation functions
successfully transfer to WRN-16-8 and ResNet-
v2-110, outperforming ReL.U.

WRN-16-8

log(o(ax)) - arcsinh(x)
log(o(ax)) - Barcsinh(z)
—Swish(Swish(z))
ReLU

ResNet-v1-110

az — Blog(a(yz))

ax — log(o(52))
max{Swish(z), 0}

78.42 (78.34 + 0.20)
78.38 (78.36 £ 0.17)
77.90 (78.00 + 0.35)
78.14 (78.15 + 0.03)

70.88 (70.85 + 0.50)
70.40 (70.34 + 0.60)
70.30 (70.36 + 0.56)

ReLU 71.15 (71.23 + 0.25)
ResNet-v2-110
Softplus(ELU(z)) 77.34 (77.14+0.38)

min{log(o(x)), alog(c(Bz))}
SELU(Swish(z))
ReLU

76.99 (76.93 + 0.19)
77.04 (76.96 + 0.14)
76.35 (76.34 £ 0.11)

11

Under review as a conference paper at ICLR 2021

& 0 &7 S Bos S
© 75 = ~ @© 2 = © =
= P = 4 5 = v
5 2 3 76 = 3 2.0
5] . 8 9 s} 9 S 76 e
< 70 5 < 75 0 & < =
= e - b4 = 4
17 6 = 7] = 7] 4
& E S E R 13 =
o 65 =213 22 74 g
= S : 5 = 10D
& 60 —RelU 2 8, == RelU “, Thtr o oE™ — RelLU A
I 22 = ~— log(o(ax)) - Barcsinhi(x) L o —— Softplus(ELU(x)) =
8 4 O 71 -6 8 0.5
12 4 8 16 10 16 22 28 34 20 38 56 74 92110 164
WRN-10-X (Changing Width) WRN-X-4 (Changing Depth) ResNet-v2-X

Figure 6: CIFAR-100 test accuracy for different neural networks and activation functions. Accuracy
with ReLU is shown in blue, and accuracy with the specialized activation functions in red. The relative
improvement of the specialized functions over ReLU is shown as a dotted green line, according to the
axis values on the right of each plot. Left: The depth of Wide ResNet is fixed at 10, and the width
varies from 1 to 16. Center: The depth of Wide ResNet varies from 10 to 34, while the width is fixed
at four. Right: The depth of Preactivation ResNet ranges from 20 to 164. The width and depth of a
network can affect how much a specialized activation function outperforms ReLU.

or decrease in relative improvement over ReLU as depth increases. Impressively, ResNet-v2-164 with
Softplus(ELU(x)) achieved test set accuracy 78.01, outperforming the accuracy of ResNet-v2-1001
with ReLU (77.29) as reported by He et al. (2016b).

B TRAINING DETAILS

Wide Residual Network (WRN-10-4) When measuring final performance after evolution, the
standard WRN setup is used; all ReLU activations in WRN-10-4 are replaced with the evolved
activation function, but no other changes to the architecture are made. The network is optimized using
stochastic gradient descent with Nesterov momentum 0.9. The network is trained for 200 epochs;
the initial learning rate is 0.1, and it is decreased by a factor of 0.2 after epochs 60, 120, and 160.
Dropout probability is set to 0.3, and L2 regularization of 0.0005 is applied to the weights. Data
augmentation includes featurewise center, featurewise standard deviation normalization, horizontal
flip, and random 32 x 32 crops of images padded with four pixels on all sides. This setup was chosen
to mirror the original WRN setup (Zagoruyko & Komodakis, [2016)) as closely as possible.

During evolution of activation functions, the training is compressed to save time. The network is
trained for only 100 epochs; the learning rate begins at 0.1 and is decreased by a factor of 0.2 after
epochs 30, 60, and 80. Empirically, the accuracy achieved by this shorter schedule is sufficient to
guide evolution; the computational cost saved by halving the time required to evaluate an activation
function can then be used to search for additional activation functions.

Residual Network (ResNet-v1-56) As with WRN-10-4, when measuring final performance with
ResNet-v1-56, the only change to the architecture is replacing the ReLU activations with an evolved
activation function. The network is optimized with stochastic gradient descent and momentum 0.9.
Dropout is not used, and L2 regularization of 0.0001 is applied to the weights. In the original ResNet
experiments (He et al.| [2016a), an initial learning rate of 0.01 was used for 400 iterations before
increasing it to 0.1, and further decreasing it by a factor of 0.1 after 32K and 48K iterations. An
iteration represents a single forward and backward pass over one training batch, while an epoch
consists of training over the entire training dataset. In this paper, the learning rate schedule is
implemented by beginning with a learning rate of 0.01 for one epoch, increasing it to 0.1, and then
decreasing it by a factor of 0.1 after epochs 91 and 137. (For example, (48K iterations / 45K training
images) * batch size of 128 = 137.) The network is trained for 200 epochs in total. Data augmentation
includes a random horizontal flip and random 32 x 32 crops of images padded with four pixels on all
sides, as in the original setup (He et al., 2016a).

When evolving activation functions for ResNet-v1-56, the learning rate schedule is again compressed.
The network is trained for 100 epochs; the initial warmup learning rate of 0.01 still lasts one epoch,
the learning rate increases to 0.1, and then decreases by a factor of 0.1 after epochs 46 and 68.

12

Under review as a conference paper at ICLR 2021

When evolving activation functions, their relative performance is more important than the absolute
accuracies they achieve. The shorter training schedule is therefore a cost-efficient way of discovering
high-performing activation functions.

Preactivation Residual Network (ResNet-v2-56) The full training setup, data augmentation, and
compressed learning rate schedule used during evolution for ResNet-v2-56 are all identical to those
for ResNet-v1-56 with one exception: with ResNet-v2-56, it is not necessary to warm up training
with an initial learning rate of 0.01 (He et al., 2016b), so this step is skipped.

C IMPLEMENTATION AND COMPUTE REQUIREMENTS

High-performance computing in two clusters is utilized for the experiments. One cluster uses
HTCondor (Thain et al., 2005) for scheduling jobs, while the other uses the Slurm workload manager.
Training is executed on GeForce GTX 1080 GPUs on both clusters. When a job begins executing, a
parent activation function is selected by sampling S = 16 functions from the P = 64 most recently
evaluated activation functions. This is a minor difference from the original regularized evolution
(Real et al.,[2019), which is based on a strict sliding window of size P. This approach may give extra
influence to some activation functions, depending on how quickly or slowly jobs are executed in each
of the clusters. In practice the method is highly effective; it allows evolution to progress quickly by
taking advantage of extra compute when demand on the clusters is low.

It is difficult to know ahead of time how computationally expensive the evolutionary search will
be. Some activation functions immediately result in an undefined loss, causing training to end. In
that case only a few seconds have been spent and another activation function can immediately be
evaluated. Other activation functions train successfully, but their complicated expressions result in
longer-than-usual training times. In these experiments, evolution for WRN-10-4 took 2,314 GPU
hours, evolution for ResNet-v1-56 took 1,594 GPU hours, and evolution for ResNet-v2-56 took
2,175 GPU hours. These numbers do not include costs for reranking and repeated runs in the final
experiments. Although substantial, the computational cost is negligible compared to the cost in
human labor in designing activation functions. Evolution of parametric activation functions requires
minimal manual setup and delivers automatic improvements in accuracy.

D BASELINE ACTIVATION FUNCTION DETAILS

Name Definition Reference(s)

ReLU max{x,0} Nair & Hinton (2010)
ELiSH 2= if £2>0 else £ Basirat & Roth (2018)

ELU z if >0 else a(e* —1),witha=1 Clevert et al. [(2015)

GELU 2®(z), with &(z) = P(X < z),X ~ N(0,1), Hendrycks & Gimpel|(2016)

approximated as 0.5x(1 + tanh[/2/7(z + 0.044715z3)])
HardSigmoid max{0, min{1,0.2z + 0.5}}

Leaky ReLU 2 if z >0 else 0.0lz Maas et al.|(2013)

Mish x - tanh(Softplus(x)) Misra|(2019)

SELU Ar if >0 else da(e” —1), Klambauer et al. (2017)
with A = 1.05070098, a = 1.67326324

sigmoid (1+e)71

Softplus log(e® + 1)

Softsign z/(|z| +1)

Swish x-o(x), witho(z) = (1 +e7)71 Ramachandran et al. (2018)

and [Elfwing et al.|(2018)
tanh ‘(f:;‘;i

Table 4: Baseline activation functions from the operator search space (Table|[I)) and final results (Table

2).

13

