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Abstract

In this work, we propose focal modulation network (FocalNet in short), where self-1

attention (SA) is completely replaced by a focal modulation module for modeling2

token interactions. Focal modulation comprises three components: (i) hierarchical3

contextualization, implemented using a stack of depth-wise convolutional layers,4

to encode visual contexts from short to long ranges, (ii) gated aggregation to5

selectively aggregate context features for each token (query) based on its content,6

and (iii) element-wise modulation or affine transformation to fuse the aggregated7

context into the query. Extensive experiments show FocalNets outperform the8

state-of-the-art SA counterparts (e.g., Swin Transformers) with similar compu-9

tational cost on the tasks of image classification, object detection, and semantic10

segmentation. Specifically, FocalNets with tiny and base size achieve 82.3% and11

83.9% top-1 accuracy on ImageNet-1K. After pretrained on ImageNet-22K, it12

attains 86.5% and 87.3% top-1 accuracy when finetuned with resolution 224213

and 3842, respectively. When transferred to downstream tasks, FocalNets exhibit14

remarkable superiority. For object detection with Mask R-CNN, FocalNet base15

trained with 1× outperforms the Swin counterpart by 2.1 points and even surpasses16

Swin trained with 3× schedule (49.0 v.s. 48.5). For semantic segmentation with17

UperNet, FocalNet base at single-scale outperforms Swin by 2.4, and also beats18

Swin at multi-scale (50.5 v.s. 49.7). These results render focal modulation a19

favorable alternative to SA for effective and efficient visual modeling.20

1 Introduction21

Transformers [67], originally proposed for natural language processing (NLP), have become a22

prevalent architecture in computer vision since the seminal work of Vision Transformer (ViT) [18]. Its23

promise has been demonstrated in various vision tasks including image classification [63, 70, 75, 46,24

89, 66], object detection [3, 100, 95, 15], segmentation [68, 73, 12], and beyond [38, 93, 4, 8, 69, 36].25

In Transformers, the self-attention (SA) is arguably the key to its success which enables input-26

dependent global interactions, in contrast to convolution operation which constrains interactions in a27

local region with a shared kernel. Despite this advantages, the efficiency of SA has been a concern28

due to its quadratic complexity over the number of visual tokens, especially for high-resolution29

inputs. To address this, many works have proposed SA variants by token coarsening [70], window30

attention [46, 66, 89], or the combination [80, 13]. Meanwhile, a number of hybrid models have been31

proposed by augmenting SA with (depth-wise) convolution to capture long-range dependencies with32

a good awareness of local structures [75, 21, 79, 19, 17].33

In this work, we aim to answer the fundamental question: Is there a more efficient and effective way34

than (hybrid) SA to model input-dependent long-range interactions? We start with an analysis of the35

current SoTA methods. In Fig. 1(a), we show a window-wise attention between the red query token36

and the surrounding orange tokens proposed in Swin Transformer [46]. With a simple window-shift37

strategy, Swin attains superior performance to ResNets across various vision tasks. To enlarge the38
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(a) Window-wise SA (b) Focal Attention (c) Focal Modulation

Figure 1: Illustrative comparison among (a) Window-wise Self-Attention (SA) [46], (b) Focal Attention (FA) [80]
and (c) the proposed Focal Modulation. Given the query token , window-wise SA captures spatial context
from its surrounding tokens , FA, in addition, uses far-away summarized tokens , and Focal Modulation
first encodes spatial context at different levels of granularity into summarized tokens ( , , ), which are
then selectively fused into the query token based on the query content. Green and purple arrows represent the
attention interactions and query-dependent aggregations, respectively (we do not draw all arrows for clarity).
Both local self-attention and focal attention involve heavy interaction and aggregation operations, while our
focal modulation turn both of them light-weight. Figures better viewed in color.

receptive field, focal attention [80] is proposed to additionally aggregate summarized visual tokens far39

away to capture coarse-grained, long-range visual dependencies, as shown in Fig. 1(b). To generate40

the output, both methods involve a heavy interaction (green arrows) followed by an equally heavy41

aggregation (purple arrows) between the query and a large number of spatially distributed tokens42

(context features), which are extracted via either window partition or unfolding. In this work, we43

take an alternative way by first aggregating contexts around each query and then modulating the44

query with the aggregated context. This alteration still enables input-dependent token interaction, but45

significantly eases the process by decoupling the aggregation with individual queries and making46

the interaction light-weight upon a couple of features. As shown in Fig. 1(c), we can simply apply47

query-agnostic aggregations (e.g., depth-wise convolution) to generate summarized tokens at different48

levels of granularity. Afterwards, these summarized contexts are selectively aggregated depending on49

the query content, and finally fused into the query vector. We call this new method focal modulation50

and replace SA with it for input-dependent token interaction, resulting in a simpler and attention-free51

architecture, called Focal Modulation Network (or FocalNet in short).52

Extensive experiments on image classification, object detection and segmentation, show that our53

FocalNets consistently and significantly outperform the SoTA SA counterparts with comparable54

costs. Notably, our FocalNet achieves 82.3% and 83.9% top-1 accuracy using tiny and base model55

size, but with comparable and doubled throughput than Swin and Focal Transformer, respectively.56

When pretrained on ImageNet-22K, our FocalNets achieve 86.5% and 87.3% in 2242 and 384257

resolution, respectively, which are comparable or better than Swin at similar cost. The advantage is58

particularly significant when transferred to dense prediction tasks. For object detection on COCO [42],59

our FocalNets with tiny and base model size achieve 46.1 and 49.0 box mAP on Mask R-CNN60

1×, surpassing Swin with 3× schedule (46.0 and 48.5 box mAP). For semantic segmentation on61

ADE20k [98], our FocalNet with base model size achieves 50.5 mIoU at single-scale evaluation,62

outperforming Swin at multi-scale evaluation (49.7 mIoU). Finally, we apply our focal modulation to63

monolithic ViT and also demonstrate superior performance across different model sizes.64

2 Related Work65

Self-attentions. Self-attention (SA) [67] is first introduced in Vision Transformer (ViT) [18] by66

splitting an image into a sequence of visual tokens. This simple strategy has demonstrated superior67

performance to modern convolutional neural networks (ConvNets) such as ResNet [26] when trained68

with optimized recipes [18, 63]. Afterwards, multi-scale architectures [5, 70, 79], light-weight69

convolution layers [75, 21, 39], local self-attention mechanisms [46, 89, 13] and learnable attention70

weights [84] have been proposed to boost the performance and support high-resolution input. More71

comprehensive surveys are covered in [34, 23, 34]. Our focal modulation significantly differs from SA72

by first aggregating the contexts from different levels of granularity and then modulating individual73

query tokens, rendering an attention-free model architecture. For context aggregation, our method is74

inspired by focal attention proposed in [80]. However, the context aggregation for focal modulation75

is performed at each query location instead of target location, followed by a modulation rather76

than an attention. These differences in mechanism lead to significant improvement of efficiency77
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and performance as well. Another closely related work is Poolformer [83] which uses a pooling to78

summarize the local context and a simple subtraction to adjust the individual inputs. Though achieving79

decent efficiency, Poolformer lags behind popular vision transformers like Swin on performance. As80

we will show later, capturing local structures at different levels is essential for superior performance.81

MLP architectures. Visual MLPs can be categorized into two groups: (i) Global-mixing MLPs,82

such as MLP-Mixer [60] and ResMLP [62], perform global communication among visual tokens83

through spatial-wise projections augmented by various techniques, such as gating, routing, and84

Fourier transforms [44, 50, 58, 59]. (ii) Local-mixing MLPs sample nearby tokens for interactions,85

using spatial shifting, permutation, and pseudo-kernel mixing [82, 28, 41, 7, 22]. Recently, Mix-86

Shift-MLP [94] exploits both local and global interactions with MLPs, in a similar spirit of focal87

attention [80]. Both MLP architectures and our focal modulation network are attention-free. However,88

focal modulation with multi-level context aggregation naturally captures the structures in both short-89

and long-range, and thus achieves a better accuracy-efficiency trade-off.90

Convolutions. ConvNets have been the primary driver of the renaissance of deep neural networks91

in computer vision. The field has evolved rapidly since the emerge of VGG [51], InceptionNet [55]92

and ResNet [26]. Representative works that focus on the efficiency of ConvNets are MobileNet [29],93

ShuffleNet [92] and EfficientNet [57]. Another line of works aimed at integrating global context to94

compensate ConvNets such as SE-Net [31], Non-local Network [72], GCNet [2], LR-Net [30] and95

C3Net [81], etc. Introducing dynamic operation is another way to augment ConvNets as demonstrated96

in Involution [37] and DyConv [9]. Recently, ConvNets strike back from two aspects: (i) convolution97

layers are integrated to SA and bring significant gains [75, 21, 39, 19] or the vice versa [64]; (ii)98

ResNets have closed the gap to ViTs using similar data augmentation and regularization strategies [74],99

and replacing SA with (dynamic) depth-wise convolution [24, 47] can surpass Swin. Our focal100

modulation network also exploits depth-wise convolution as the micro-architecture but goes beyond101

by introducing a multi-level context aggregation and input-dependent modulation. We will show this102

new module significantly outperforms raw depth-wise convolution.103

3 Focal Modulation Network104

3.1 From Self-Attention to Focal Modulation105

Given a visual feature map X ∈ RH×W×C as input, a generic visual modeling generates for each106

visual token (query) xi ∈ RC a feature representation yi ∈ RC via the interaction T with its107

surroundings X (e.g., neighboring tokens) and aggregation M over the contexts. The self-attention108

modules use a late aggregation procedure formulated as109

yi = M1(T1(xi,X),X), (1)

where the aggregation M1 over the contexts X is performed after the query-target attention scores110

are computed via interaction T1. In contrast, we propose focal modulation to generate refined111

representation yi using an early aggregation procedure formulated as112

yi = T2(M2(xi,X),xi), (2)

where the context features are aggregated using M2 first, then the query interacts with the aggregated113

feature using T2 to fuse the contexts to form yi. Comparing (2) with (1), we see that (i) the context114

aggregation of focal modulation M2 amortizes the computation of contexts via a shared operator (e.g.,115

depth-wise convolution), while M1 in SA is more computationally expensive as it requires summing116

over non-shareable attention scores for different queries; (ii) the interaction T2 is a lightweight117

operator between a token and its context, while T1 involves computing token-to-token attention118

scores, which has quadratic complexity. Fig. 2(a) and (b) show SA and focal modulation, respectively.119

Specifically, in this study we implement focal modulation of (2) as120

yi = q(xi)⊙M2(xi,X), (3)

where q(·) is a query projection function, ⊙ is the element-wise multiplication operator. That is, the121

interaction operator T2 is implemented using a simple q(·) and ⊙. The proposed focal modulation122

has the following favorable properties:123

• Translation invariance. Since q(·) and M2(·) are always centered at the target visual token and124

no positional embedding is used, the modulation is invariant to translation of input feature map X.125
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Figure 2: Left: Comparing SA (a) and focal modulation (b) side by side. Right: Detailed illustration
of context aggregation in focal modulation (c).

• Explicit input-dependency. Instead of a set of learnable parameters, the modulator is computed126

via M2 by aggregating the local features around target location i, hence our focal modulation is127

explicitly input-dependent.128

• Spatial- and channel-specific. The target location i as a pointer for M2 enables spatial-specific129

modulation. The element-wise multiplication enables channel-specific modulation.130

• Decoupled feature granularity. q(·) preserve the finest information for individual tokens, while131

M2 extracts the coarser context. They are decoupled but combined through modulation.132

In what follows, we describe in detail the implementation of M2 in Eq. (3).133

3.2 Context Aggregation via M2134

It has been proved that both short- and long-range contexts are important for visual modeling [80, 17,135

47]. However, a single aggregation with larger receptive field is not only computationally expensive in136

time and memory, but also undermines the local fine-grained structures which are particularly useful137

for dense prediction tasks. Inspired by [80], we propose to implement M2 through a multi-scale138

hierarchical context aggregation. As depicted in Fig. 2 (c), the aggregation procedure consists of two139

steps: hierarchical contextualization to extract contexts from local to global ranges at different levels140

of granularity and gated aggregation to condense all context features at different granularity levels141

into a single feature vector, namely modulator.142

Step 1: Hierarchical Contextualization. Given input feature map X, we first project it into a new143

feature space with a linear layer Z0 = fz(X) ∈ RH×W×C . Then, a hierarchical presentation of144

contexts is obtained using a stack of L depth-wise convolutions. At focal level ℓ ∈ {1, ..., L}, the145

output Zℓ is derived by:146

Zℓ = f ℓ
a(Z

ℓ−1) ≜ GeLU(Convdw(Z
ℓ−1)), (4)

where f ℓ
a is the contextualization function at the ℓ-th level, implemented via a depth-wise convolution147

Convdw with kernel size kℓ followed by a GeLU activation function [27]. The use of depth-wise148

convolution for hierarchical contextualization of Eq. (4) is motivated by its desirable properties.149

Compared to pooling [83, 31], depth-wise convolution is learnable and structure-aware. In contrast to150

regular convolution, it is channel-wise and thus computationally much cheaper.151

Hierarchical contextualization of Eq. (4) generates L levels of feature maps. At level ℓ, the effective152

receptive field is rℓ = 1 +
∑ℓ

i=1(k
ℓ − 1), which is much larger than the kernel size kℓ. To capture153

global context of the whole input, which could be high-resolution, we apply a global average pooling154

on the L-th level feature map ZL+1 = Avg-Pool(ZL). Thus, we obtain in total (L+1) feature maps155

{Zℓ}L+1
ℓ=1 , which collectively capture short- and long-range contexts at different levels of granularity.156

Step 2: Gated Aggregation. In this step, the (L + 1) feature maps obtained via hierarchical157

contextualization are condensed into a modulator, i.e., a single feature vector. In an image, the158

relation between a visual token (query) and its surrounding contexts often depends on the content159

itself. For example, we might heavily rely on local fine-grained features for encoding the queries of160
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Figure 3: Visualization of gating values G in Eq. (5) at last layer of our
FocalNet (L = 3) pretrained on ImageNet-1K. The columns from left to
right are input images, gating maps at focal level 1,2,3 and global level.

Figure 4: Visualization of modulator values (corresponding to
the right side of ⊙ in Eq. (6)) at the last layer in FocalNet. The
original modulator map is upsampled for display.

salient visual objects, but mainly global coarse-grained features for the queries of background scenes.161

Based on this intuition, we use a gating mechanism to control how much to aggregate from different162

levels for each query. Specifically, we use a linear layer to obtain a spatial- and level-aware gating163

weights G = fg(X) ∈ RH×W×(L+1). Then, we perform a weighted sum through an element-wise164

multiplication to obtain a single feature map Zout which has the same size as the input X,165

Zout =

L+1∑
ℓ=1

Gℓ ⊙ Zℓ (5)

where Gℓ ∈ RH×W×1 is a slice of G for the level ℓ. When visualizing these gating maps in Fig. 3,166

we surprisingly find our FocalNet indeed learns gathering the context from different focal levels167

adaptively as we expect. As we can see, for a token on a small object, it focuses more on the168

fine-grained local structure, while a token in a uniform background needs to be aware of much larger169

contexts. Until now, all the aggregation is spatial. To model the communication across different170

channels, we use another linear layer h(.) to obtain the modulator M = h(Zout) ∈ RH×W×C .171

Focal Modulation. Given the implementation of M2 as described above, focal modulation of Eq.(3)172

can be rewritten at the token level as173

yi = q(xi)⊙ h(

L+1∑
ℓ=1

gℓ
i · z

ℓ
i) (6)

where gℓ
i and zℓ

i are the gating value and visual feature at location i of Gℓ and Zℓ, respectively. In174

Fig. 4, we visualize the magnitude of modulator M at the last layer of our FocalNet. Interestingly, the175

modulators automatically pay more attention to the foregrounds regions inducing the image category,176

which implies a novel way of interpreting our FocalNets.177

3.3 Complexity178

In focal modulation as Eq. (6), there are mainly three linear projections q(·), h(·), and fz(·) for179

Z0. Besides, it requires a lightweight linear function fg(·) for gating and L depth-wise convolution180

f
{1,...,L}
a for hierarchical contextualization. Therefore, the overall number of learnable parameters181

is 3C2 + C(L+ 1) + C
∑

ℓ(k
ℓ)2. Since L and (kℓ)2 are typically much smaller than C, the model182

size is mainly determined by the first term as we will show in Sec. 4. Regarding the time complexity,183

besides the linear projections and the depth-wise convolution layers, the element-wise multiplications184

introduce O(C(L + 2)) for each visual token. Hence, the total complexity for a feature map is185

O(HW × (3C2 + C(2L+ 3) + C
∑

ℓ(k
ℓ)2)). For comparison, a window-wise attention in Swin186

Transformer with window size w is O(HW × (3C2 + 2Cw2)).187

3.4 Network Architectures188

For fair comparisons, we use the same stage layouts and hidden dimensions as in SoTA methods189

Swin [46] and Focal Transformers [80], but replace the SA modules with the focal modulation190

modules. We thus construct a series of Focal Modulation Network (FocalNet) variants. In FocalNets,191

we only need to specify the number of focal levels (L) and the kernel size (kℓ) at each level. For192

simplicity, we gradually increase the kernel size by 2 from lower focal levels to higher ones, i.e.,193

kℓ = kℓ−1 + 2. To match the complexities of Swin and Focal Transformers, we design a small194

receptive field (SRF) and a large receptive field (LRF) version for each of the four layouts by using 2195

and 3 focal levels, respectively. We use non-overlapping convolution layers for patch embedding at196

the beginning (kernel size=4 × 4, stride=4) and between two stages (kernel size=2 × 2, stride=2),197

respectively. The detailed configurations of our FocalNet variants are summarized in Appendix.198
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Model #Params.
(M)

FLOPs
(G)

Throughput
(imgs/s)

Top-1
(%)

ResNet-50 [26] 25.0 4.1 1294 76.2
ResNet-101 [26] 45.0 7.9 745 77.4
ResNet-152 [26] 60.0 11.0 522 78.3
ResNet-50-SB [74] 25.0 4.1 1294 79.8
ResNet-101-SB [74] 45.0 7.9 745 81.3
ResNet-152-SB [74] 60.0 11.6 522 81.8
DW-Net-T [24] 24.2 3.8 1030 81.2
DW-Net-B [24] 74.3 12.9 370 83.2

Mixer-B/16 [61] 59.9 12.7 455 76.4
gMLP-S [43] 19.5 4.5 785 79.6
gMLP-B [43] 73.4 15.8 301 81.6
ResMLP-S24 [62] 30.0 6.0 871 79.4
ResMLP-B24 [62] 129.1 23.0 61 81.0

DeiT-Small/16 [63] 22.1 4.6 939 79.9
DeiT-Base/16 [63] 86.6 17.5 291 81.8
PVT-Small [70] 24.5 3.8 794 79.8
PVT-Medium [70] 44.2 6.7 517 81.2
PVT-Large [70] 61.4 9.8 352 81.7
PoolFormer-m36 [83] 56.2 8.8 463 82.1
PoolFormer-m48 [83] 73.5 11.6 347 82.5

Swin-Tiny [46] 28.3 4.5 760 81.2
FocalNet-T (SRF) 28.4 4.4 743 82.1
Swin-Small [46] 49.6 8.7 435 83.1
FocalNet-S (SRF) 49.9 8.6 434 83.4
Swin-Base [46] 87.8 15.4 291 83.5
FocalNet-B (SRF) 88.1 15.3 280 83.7
FocalAtt-Tiny [80] 28.9 4.9 319 82.2
FocalNet-T (LRF) 28.6 4.5 696 82.3
FocalAtt-Small 51.1 9.4 192 83.5
FocalNet-S (LRF) 50.3 8.7 406 83.5
FocalAtt-Base [80] 89.8 16.4 138 83.8
FocalNet-B (LRF) 88.7 15.4 269 83.9

Table 1: ImageNet-1K classification comparison.

Model Overlapped
PatchEmbed

#Params.
(M)

FLOPs
(G)

Throughput
(imgs/s)

Top-1
(%)

FocalNet-T (SRF) 28.4 4.4 743 82.1
FocalNet-T (SRF) ✓ 30.4 4.4 730 82.4
FocalNet-S (SRF) 49.9 8.6 434 83.4
FocalNet-S (SRF) ✓ 51.8 8.6 424 83.4
FocalNet-B (SRF) 88.1 15.3 286 83.7
FocalNet-B (SRF) ✓ 91.6 15.3 278 84.0

Table 2: Effect of overlapped patch embedding.

Model Depth Dim. #Params. FLOPs Throughput Top-1

FocalNet-T (SRF) 2-2-6-2 96 28.4 4.4 743 82.1
FocalNet-T (SRF) 3-3-16-3 64 25.1 4.0 663 82.7
FocalNet-S (SRF) 2-2-18-2 96 49.9 8.6 434 83.4
FocalNet-S (SRF) 4-4-28-4 64 38.2 6.4 440 83.5
FocalNet-B (SRF) 2-2-18-2 128 88.1 15.3 280 83.7
FocalNet-B (SRF) 4-4-28-4 96 85.1 14.3 247 84.1

Table 3: Effect of deeper and thinner networks.

Model Img. Size #Params FLOPs Throughput Top-1

ResNet-101x3 [26] 3842 388.0 204.6 - 84.4
ResNet-152x4 [26] 4802 937.0 840.5 - 85.4
ViT-B/16 [18] 3842 86.0 55.4 99 84.0
ViT-L/16 [18] 3842 307.0 190.7 30 85.2
Swin-Base [46] 2242/2242 88.0 15.4 291 85.2
FocalNet-B 2242/2242 88.1 15.3 280 85.6
Swin-Base [46] 3842/3842 88.0 47.1 91 86.4
FocalNet-B 2242/3842 88.1 44.8 94 86.5
Swin-Large [46] 2242/2242 196.5 34.5 155 86.3
FocalNet-L 2242/2242 197.1 34.2 144 86.5
Swin-Large [46] 3842/3842 196.5 104.0 49 87.3
FocalNet-L 2242/3842 197.1 100.6 50 87.3

Table 4: ImageNet-1K finetuning results with models pretrained on
ImageNet-22K. Numbers before and after “/” are resolutions used for
pretraining and finetuning, respectively. To adapt to higher resolution,
we use three focal levels.

4 Experiment199

4.1 Image Classification200

We compare different methods on ImageNet-1K classification [16]. Following the recipes in [63,201

46, 80], we train FocalNet-T, FocalNet-S and FocalNet-B with ImageNet-1K training set and report202

Top-1 accuracy (%) on the validation set. Training details are described in the appendix.203

To verify the effectiveness of FocalNet, we compare it with three groups of methods based on204

ConvNets, Transformers and MLPs. The results are reported in Table 1. We see that FocalNets205

outperform the conventional CNNs (e.g., ResNet [26] and the augmented version [74]), MLP206

architectures such as MLP-Mixer [61] and gMLP [43], and Transformer architectures DeiT [63]207

and PVT [70]. In particular, we compare FocalNets against Swin and Focal Transformers which208

use the same architecture to verify FocalNet’s stand-alone effectiveness at the bottom part. We see209

that FocalNets with small receptive fields (SRF) achieve consistently better performance than Swin210

Transformer but with similar model size, FLOPs and throughput. For example, the tiny FocalNet211

improves Top-1 accuracy by 0.9% over Swin-Tiny. To compare with Focal Transformers (FocalAtt),212

we change to large receptive fields (LRF) though it is still much smaller than the one used in FocalAtt.213

Focal modulation outperforms the strong and sophisticatedly designed focal attention across all model214

sizes. More importantly, its run-time speed is much higher than FocalAtt by getting rid of many215

time-consuming operations like rolling and unfolding.216

Model augmentation. We investigate whether some commonly used techniques for vision transform-217

ers can also improve our FocalNets. First, we study the effect of using overlapped patch embedding218

for downsampling [21]. Following [75], we change the kernel size and stride from (4, 4) to (7, 4) for219

patch embedding at the beginning, and (2, 2) to (3, 2) for later stages. The comparisons are reported220

in Table 2. Overlapped patch embedding improves the performance for models of all sizes, with221

slightly increased computational complexity and time cost. Second, we make our FocalNets deeper222

but thinner as in [17, 99]. In Table 3, we change the depth layout of our FocalNet-T from 2-2-6-2 to223

3-3-16-3, and FocalNet-S/B from 2-2-18-2 to 4-4-28-4. Meanwhile, the hidden dimension at first224

stage is reduced from 96, 128 to 64, 96, respectively. These changes lead to smaller model sizes and225

fewer FLOPs, but higher time cost due to the increased number of sequential blocks. It turns out that226
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Backbone #Params FLOPs Mask R-CNN 1x Mask R-CNN 3x

(M) (G) AP b AP b
50 AP b

75 APm APm
50 APm

75 AP b AP b
50 AP b

75 APm APm
50 APm

75

ResNet50 [26] 44.2 260 38.0 58.6 41.4 34.4 55.1 36.7 41.0 61.7 44.9 37.1 58.4 40.1
PVT-Small[70] 44.1 245 40.4 62.9 43.8 37.8 60.1 40.3 43.0 65.3 46.9 39.9 62.5 42.8
Twins-SVT-S [13] 44.0 228 43.4 66.0 47.3 40.3 63.2 43.4 46.8 69.2 51.2 42.6 66.3 45.8
Swin-Tiny [46] 47.8 264 43.7 66.6 47.7 39.8 63.3 42.7 46.0 68.1 50.3 41.6 65.1 44.9
FocalNet-T (SRF) 48.6 267 45.9 (+2.2) 68.3 50.1 41.3 65.0 44.3 47.6 (+1.6) 69.5 52.0 42.6 66.5 45.6
FocalAtt-Tiny [80] 48.8 291 44.8 67.7 49.2 41.0 64.7 44.2 47.2 69.4 51.9 42.7 66.5 45.9
FocalNet-T (LRF) 48.9 268 46.1 (+1.3) 68.2 50.6 41.5 65.1 44.5 48.0 (+0.8) 69.7 53.0 42.9 66.5 46.1

ResNet101 [26] 63.2 336 40.4 61.1 44.2 36.4 57.7 38.8 42.8 63.2 47.1 38.5 60.1 41.3
ResNeXt101-32x4d [78] 62.8 340 41.9 62.5 45.9 37.5 59.4 40.2 44.0 64.4 48.0 39.2 61.4 41.9
PVT-Medium [70] 63.9 302 42.0 64.4 45.6 39.0 61.6 42.1 44.2 66.0 48.2 40.5 63.1 43.5
Twins-SVT-B [13] 76.3 340 45.2 67.6 49.3 41.5 64.5 44.8 48.0 69.5 52.7 43.0 66.8 46.6
Swin-Small [46] 69.1 354 46.5 68.7 51.3 42.1 65.8 45.2 48.5 70.2 53.5 43.3 67.3 46.6
FocalNet-S (SRF) 70.8 356 48.0 (+1.5) 69.9 52.7 42.7 66.7 45.7 48.9 (+0.4) 70.1 53.7 43.6 67.1 47.1
FocalAtt-Small [80] 71.2 401 47.4 69.8 51.9 42.8 66.6 46.1 48.8 70.5 53.6 43.8 67.7 47.2
FocalNet-S (LRF) 72.3 365 48.3 (+0.9) 70.5 53.1 43.1 67.4 46.2 49.3 (+0.5) 70.7 54.2 43.8 67.9 47.4

ResNeXt101-64x4d [78] 102.0 493 42.8 63.8 47.3 38.4 60.6 41.3 44.4 64.9 48.8 39.7 61.9 42.6
PVT-Large[70] 81.0 364 42.9 65.0 46.6 39.5 61.9 42.5 44.5 66.0 48.3 40.7 63.4 43.7
Twins-SVT-L [13] 119.7 474 45.9 - - 41.6 - - - - - - - -
Swin-Base [46] 107.1 497 46.9 69.2 51.6 42.3 66.0 45.5 48.5 69.8 53.2 43.4 66.8 46.9
FocalNet-B (SRF) 109.4 496 48.8 (+1.9) 70.7 53.5 43.3 67.5 46.5 49.6 (+1.1) 70.6 54.1 44.1 68.0 47.2
FocalAtt-Base [80] 110.0 533 47.8 70.2 52.5 43.2 67.3 46.5 49.0 70.1 53.6 43.7 67.6 47.0
FocalNet-B (LRF) 111.4 507 49.0 (+1.2) 70.9 53.9 43.5 67.9 46.7 49.8 (+0.8) 70.9 54.6 44.1 68.2 47.2

Table 5: COCO object detection and instance segmentation results with Mask R-CNN [25]. Grays rows are the numbers from our FocalNets.

going deeper improves the performance of FocalNets significantly. These results demonstrate that227

the commonly used model augmentation techniques developed for vision transformers can be easily228

adopted to improve the performance of FocalNets.229

ImageNet-22K pretraining. We investigate the effectiveness of FocalNets when pretrained on230

ImageNet-22K which contains 14.2M images and 21K categories. Training details are described231

in the appendix. We report the results in Table 4. Though FocalNet-B/L are both pretrained with232

224× 224 resolution and directly transferred to target domain with 384× 384 image size, we can233

see that they consistently outperform Swin Transformers.234

4.2 Detection and Segmentation235

Object detection and instance segmentation. We make comparisons on object detection with236

COCO 2017 [42]. We choose Mask R-CNN [25] as the detection method and use FocalNet-T/S/B237

pretrained on ImageNet-1K as the backbones. All models are trained on the 118k training images238

and evaluated on 5K validation images. We use two standard training recipes, 1× schedule with239

12 epochs and 3× schedule with 36 epochs. Following [46], we use the same multi-scale training240

strategy by randomly resizing the shorter side of an image to [480, 800]. Similar to [80], we increase241

the kernel size kℓ by 6 for context aggregation at all focal levels to adapt to higher input resolutions.242

Instead of up-sampling the relative position biases as in [80], FocalNets uses simple zero-padding for243

the extra kernel parameters. This expanding introduces negligible overhead but helps extract longer244

range contexts. For training, we use AdamW [49] as the optimizer with initial learning rate 10−4 and245

weight decay 0.05. All models are trained with batch size 16. We set the stochastic drop rates to 0.1,246

0.2, 0.3 in 1× and 0.3, 0.5, 0.5 in 3× training schedule for FocalNet-T/S/B, respectively.247

The results are shown in Table 5. We measure both box and mask mAP, and report the results for both248

small and large receptive field models. Comparing with Swin Transformer, FocalNets improve the249

box mAP (APb) by 2.2, 1.5 and 1.9 in 1× schedule for tiny, small and base models, respectively. In250

3× schedule, the improvements are still consistent and significant. Remarkably, the 1× performance251

of FocalNet-T/B (45.9/48.8) rivals Swin-T/B (46.0/48.5) trained with 3× schedule. When comparing252

with FocalAtt [80], FocalNets with large receptive fields consistently outperform under all settings253

and cost much less FLOPs. For instance segmentation, we observe the similar trend as that of object254

detection for FocalNets. To further verify the generality of FocalNets, we train three detection models,255

Cascade Mask R-CNN [1], Sparse RCNN [54] and ATSS [90] with FocalNet-T as the backbone. We256

train all models with 3× schedule, and report the box mAPs in Table 6. As we can see, FocalNets257

bring clear gains to all three detection methods over the previous SoTA methods.258

Semantic segmentation. We benchmark FocalNets on semantic segmentation, a dense prediction259

task that requires fine-grained understanding and long-range interactions. We use ADE20K [98] for260

our experiments and follow [46] to use UperNet [76] as the segmentation method. With FocalNet-261
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Method Backbone #Param. FLOPs AP b AP b
50 AP b

75

C. Mask R-CNN [1]

R-50 [26] 82.0 739 46.3 64.3 50.5
DW-Net-T [24] 82.0 730 49.9 68.6 54.3
Swin-T [46] 85.6 742 50.5 69.3 54.9
FocalNet-T (SRF) 86.4 746 51.5 70.1 55.8
FocalAtt-T [80] 86.7 770 51.5 70.6 55.9
FocalNet-T (LRF) 87.1 751 51.5 70.3 56.0

Sparse R-CNN [54]

R-50 [26] 106.1 166 44.5 63.4 48.2
Swin-T [46] 109.7 172 47.9 67.3 52.3
FocalNet-T (SRF) 110.5 172 49.6 69.1 54.2
FocalAtt-T [80] 110.8 196 49.0 69.1 53.2
FocalNet-T (LRF) 111.2 178 49.9 69.6 54.4

ATSS [90]

R-50 [26] 32.1 205 43.5 61.9 47.0
Swin-T [46] 35.7 212 47.2 66.5 51.3
FocalNet-T (SRF) 36.5 215 49.2 68.1 54.2
FocalAtt-T [80] 36.8 239 49.5 68.8 53.9
FocalNet-T (LRF) 37.2 220 49.6 68.7 54.5

Table 6: A comparison between our FocalNet with previous CNNs/Transformers
across different object detection methods, trained using the 3× schedule.

Backbone Crop Size #Param. FLOPs mIoU +MS

ResNet-101 [26] 512 86 1029 44.9 -
Twins-SVT-L [13] 512 133 - 48.8 50.2
DW-Net-T [24] 512 56 928 45.5 -
DW-Net-B [24] 512 132 924 48.3 -

Swin-T [46] 512 60 941 44.5 45.8
FocalNet-T (SRF) 512 61 944 46.5 47.2
FocalAtt-T [80] 512 62 998 45.8 47.0
FocalNet-T (LRF) 512 61 949 46.8 47.8
Swin-S [46] 512 81 1038 47.6 49.5
FocalNet-S (SRF) 512 83 1035 49.3 50.1
FocalAtt-S [80] 512 85 1130 48.0 50.0
FocalNet-S (LRF) 512 84 1044 49.1 50.1
Swin-B [46] 512 121 1188 48.1 49.7
FocalNet-B (SRF) 512 124 1180 50.2 51.1
FocalAtt-B [80] 512 126 1354 49.0 50.5
FocalNet-B (LRF) 512 126 1192 50.5 51.4

Table 7: Semantic segmentation on ADE20K [98]. All
models are trained with UperNet [76]. Single- and multi-
scale (MS) mIoU are reported on validation set.

Model Formula #Param. FLOPs Throughput Top-1

FocalNet-T (LRF) yi = q(xi)⊙ h(
∑L+1

ℓ=1 gℓ
i · zℓ

i) 28.6 4.49 696 82.3

→ Depth-width ConvNet yi = q(GeLU(h(zL
i ))) 28.6 4.47 738 81.6 (-0.7)

→ Pooling Aggregator yi = q(xi)⊙ h(
∑L+1

ℓ=1 gℓ
i · Avg-Pool(zℓ−1

i )) 28.3 4.37 676 80.5 (-1.8)

→ Global Pooling Aggregator yi = q(xi)⊙ h(gi · Avg-Pool(fz(X))) 28.3 4.36 883 75.7 (-6.7)

→ Multi-scale Self-Attention (QKV first) yi = MHSA(xi,z
1
i , ..., z

L+1
i ), fz, q, h = Identity(·) 28.6 4.61 456 81.5 (-0.8)

→ Multi-scale Self-Attention (QKV later) yi = MHSA(xi,z
1
i , ..., z

L+1
i ), fz, q, h = Identity(·) 28.6 7.26 448 80.8 (-1.5)

→ Sliding-window Self-Attention yi = MHSA(xi,N (xi)), |N (xi)| = 7× 7− 1 28.3 4.49 103 81.5 (-0.8)

Table 8: We convert our FocalNet to other model types and report the performance.

T/S/B trained on ImageNet-1K as the backbones, we train UperNet for 160k iterations with input262

resolution 512×512 and batch size 16. For comparisons, we report both single- and multi-scale (MS)263

mIoU. Table 7 shows the results with different backbones. FocalNet outperforms Swin and Focal264

Transformer significantly under all settings. Even for the base models, FocalNet (SRF) exceeds Swin265

Transformer by 2.1 and 1.4 at single- and multi-scale, respectively. Compared with Focal Transformer,266

FocalNets outperform Focal Transformer, with a larger gain than that of Swin Transformer, and267

consume much less FLOPs. These results demonstrate the superiority of FocalNets on the pixel-level268

dense prediction tasks, in addition to the instance-level object detection task.269

4.3 Network Inspection270

Model Variants. We compare in Table 8 six different model variants derived from FocalNet.271

• Depth-wise ConvNet. It feeds the feature vectors at the top level L to a two-layer MLP. The272

resultant model is close to DW-Net [24]. Although it can achieve 81.6% accuracy, surpassing273

Swin Transformer (81.3%), it underperforms FocalNet by 0.7%. Focal modulation uses depth-wise274

convolution as a component but further aggregates hierarchical contexts and combines them with275

fine-grained query features through modulation.276

• Pooling Aggregator. It replaces the depth-wise convolution module with average pooling, and is277

similar to MetaFormer [83] in terms of token aggregation. Average pooling has slightly lower com-278

plexity but leads to a significant drop of accuracy (1.8%). Compared with depth-wise convolution,279

average pooling is permutation-invariant and thus incapable of capturing visual structures, which280

interprets the performance degradation.281

• Global Pooling Aggregator. It removes local aggregations at all levels and only keeps the global282

one (ZL+1). This variant resembles SENet [31]. It turns out that global context alone is insufficient283

for visual modeling, leading to a significant 6.7% drop.284

• Multi-scale Self-Attention. Given the summarized tokens at different levels, a straightforward285

way to combine them is performing a SA among all of them. We have developed two SA methods:286

computing q, k, v before and after aggregation, respectively. Both methods result in some visible287

performance drop and increase the run time latency, compared to FocalNet.288

• Sliding-window Self-Attention. Finally, we apply a sliding-window SA for each visual token289

within a window. Since it involves dense interactions for each fine-grained tokens, the time and290

memory cost explodes, and the performance is worse than FocalNet.291
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Model FLOPs Throughput Top-1 APb APm

FocalNet-T (LRF) 4.48 696 82.3 46.2 41.6

Additive 4.49 670 81.5 (-0.8) 45.6 (-0.6) 41.1 (-0.5)

No global pool 4.48 683 82.0 (-0.3) 45.8 (-0.4) 41.2 (-0.4)

Top-only 4.49 698 81.9 (-0.4) 45.7 (-0.5) 41.2 (-0.4)

No gating 4.48 707 81.9 (-0.4) 45.6 (-0.6) 41.1 (-0.5)

Table 9: Component analysis for focal modulation. Four separate changes are
made to the original FocalNet. Throughput is reported on image classification.
All variants have almost the same size (28.6M) as the default model.

Levels (Kernels) Receptive
Field #Param. FLOPs Throughput Top-1

2 (3-5) 7 28.4 4.41 743 82.1
3 (3-5-7) 13 28.6 4.49 696 82.3

0 (n/a) 0 28.3 4.35 883 75.7
1 (3) 3 28.3 4.37 815 82.0
4 (3-5-7-9) 21 29.0 4.59 592 82.2

1 (13) 13 28.8 4.59 661 81.9
Table 10: Model performance with number of focal levels L.
“Receptive Field” refers to effective receptive field at the top level
regardless of the global average pooling.

Component Analysis. Here we ablate FocalNet to study the relative contribution of each component.292

The result is reported in Table 9, where we investigate the impact of the following model architecture293

changes on model performance:294

• Replacing Multiplication with Addition: we change the element-wise multiplication to addition295

in Eq. (6), which converts the modulator into a bias term. This leads to 0.7% accuracy drop, which296

indicates that element-wise multiplication is a more powerful way of modulation than addition.297

• No Global Aggregation: we remove the top global average pooling in focal modulation. It hurts298

the performance by 0.3%. Even though the hierarchical aggregation already covers a relatively299

large receptive field, global information (ZL+1) is still useful for capturing global context.300

• Top-only Aggregation: Instead of aggregating the feature maps from all focal levels, we only301

use the top level map. In this case, the features at lower levels that are more “local” and “fine-302

grained” are completely discarded. This change leads to 0.4% performance drop, which verifies303

our hypothesis that features at different levels and spatial scopes compensate each other.304

• None-gating Aggregation: We remove the gating mechanism when aggregating the multiple305

levels of feature maps. This causes 0.4% drop. As we discussed earlier, the dependencies between306

visual token (query) and its surroundings differ based on the query content. The proposed gating307

mechanism helps the model to adaptively learn where and how much to interact.308

We study the effect of varying the focal level (i.e. the number of depth-wise convolution layers L).309

In our experiments reported above, the results show that large receptive field in general achieves310

better performance (LRF v.s. SRF). Here, we investigate by further altering L. In additional to setting311

L = 2 and 3, we also try L = 0, L = 1, and L = 4. As shown in Table 10, increasing L brings312

slight improvement and finally reaches a plateau. Surprisingly, a single level with kernel size 3 can313

already obtain a decent performance. When we increase the single-level kernel size from 3 to 13,314

there is a slight 0.1% drop, and a 0.4% gap to the one with three levels but same size of receptive field315

(second row). This indicates that simply increasing the receptive field does not necessarily improve316

the performance, and a hierarchical aggregation for both fine- and coarse-grained context is crucial.317

We recommend L = 2, 3 as a good accuracy-speed trade-off.318

Model Dim #Param. FLOPs Th. (imgs/s) Top-1

ViT-T/16 192 5.7 1.3 2834 72.2
FocalNet-T/16 192 5.9 1.1 2334 74.1 (+1.9)
ViT-S/16 384 22.1 4.6 1060 79.9
FocalNet-S/16 384 22.4 4.3 920 80.9 (+1.0)
ViT-B/16 768 86.6 17.6 330 81.8
FocalNet-B/16 768 87.2 16.9 300 82.4 (+0.6)

Table 11: Comparisons between FocalNet and ViT both with
monolithic architectures.

Monolithic Architectures. We replace all SA modules319

in ViTs with focal modulation to construct monolithic320

FocalNet-T/S/B. We use three focal levels with kernel321

sizes 3,5 and 7, so that the effective receptive field is322

close to the global SA in ViT. As shown in Table 11, Fo-323

calNets consistently outperform ViT counterparts, with324

comparable FLOPs and inference speed.325

5 Conclusion326

We have proposed focal modulation, a new mechanism that enables input-dependent token interactions327

for visual modeling. It consists of a hierarchical contextualization to gather for each query token its328

contexts from short to long ranges, a gated aggregation to adaptively aggregate context features based329

on the query content, followed by a simple modulation. With focal modulation, we built a series of330

simple yet attention-free Focal Modulation Networks (FocalNets). Extensive experiments show that331

FocalNets significantly outperform the SoTA SA counterparts (e.g., Swin and Focal Transformer)332

with similar time-/memory-cost on the tasks of image classification, object detection and semantic333

segmentation. These encouraging results render focal modulation a favorable alternative to SA for334

effective and efficient visual modeling.335
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A More Implementation Details610

A.1 Model Configuration611

As we discussed in our main submission, we observed in our experiments that different configurations612

(e.g., depths, dimensions, etc) lead to different performance. For a fair comparison, we use the613

same stage layouts and hidden dimensions as Swin [46, 80], but replace the SA modules with focal614

modulation modules. We thus construct a series of Focal Modulation Network (FocalNet) variants as615

shown in Table 12.616

Name Depth Dimension (d) Levels
(L)

Kernel Size
(k1)

Effective Receptive Field
(rL)

FocalNet-T (SRF/LRF) [2,2,6,2] [96,192,384,768]
FocalNet-S (SRF/LRF) [2,2,18,2] [96,192,384,768] [2,2,2,2] [3,3,3,3] [7,7,7,7]
FocalNet-B (SRF/LRF) [2,2,18,2] [128,256,512,1024] [3,3,3,3] [3,3,3,3] [13,13,13,13]
FocalNet-L (SRF/LRF) [2,2,18,2] [192,384,768,1536]

Table 12: Model configurations at four stages for FocalNet. The depth layouts and hidden dimension (d) are the
same to Swin [46] and Focal Transformers [80]. SRF and LRF means small and large receptive field, respectively.
The only difference is the number of focal levels (L) and starting kernel size (kℓ=1). The last column lists the
effective receptive field at top focal level at each stage (rL).

A.2 Training settings for ImageNet-1K617

We follow Swin [46] to use the same set of data augmentations including Random Augmentation [14],618

Mixup [88], CutMix [86] and Random Erasing [97]. For model regularization, we use Label619

Smoothing [56] and DropPath [32]. For all models, the initial learning rate is set to 10−3 after620

20 warm-up epochs beginning with 10−6. For optimization, we use AdamW [49] and a cosine621

learning rate scheduler [48]. The weight decay and the gradient clipping norm is set to 0.05 and 5.0,622

respectively. We set the stochastic depth drop rates to 0.2, 0.3 and 0.5 for our tiny, small and base623

models, respectively. During training, images are randomly cropped to 224× 224, and a center crop624

is used during evaluation. Throughput/Speed is measured on one V100 GPU with batch size 128,625

following [46]. A detailed summary is shown in Table 13.626

Setting FocalNet-T/S/B (Hierarchical) FocalNet-T/S/B (Monolithic)

batch size 1024 1024
base learning rate 1e-3 1e-3
learning rate scheduler cosine cosine
min learning rate 1e-5 1e-5
training epochs 300 300
warm-up epochs 20 20
warm-up schedule linear linear
warm-up learning rate 1e-6 1e-6
optimizer adamw adamw

color jitter factor 0.4 0.4
auto-aug rand-m9-mstd0.5-inc1 rand-m9-mstd0.5-inc1
random-erasing prob. 0.25 0.25
random-erasing mode pixel pixel
mixup α 0.8 0.8
cutmix α 0.8 0.8
mixup prob. 1.0 1.0
mixup switch prob. 0.5 0.5

stochastic drop path rate 0.2/0.3/0.5 0.2/0.2/0.3
label smoothing 0.1 0.1
gradient clip 5.0 5.0
weight decay 0.05 0.05

Table 13: Experimental settings for training on ImageNet-1K with FocalNet (hierarchical and
monolithic).

16



A.3 Training settings for ImageNet-22K627

We train FocalNet-B and FocalNet-L for 90 epochs with a batch size of 4096 and input resolution628

224 × 224. The initial learning rate is set to 10−3 after a warmup of 5 epochs. We set the the629

stochastic depth drop rates to 0.2 for both networks. For stability, we use LayerScale [65] with initial630

value 10−4 for all layers. The other settings follow those for ImageNet-1K. After the pretraining,631

we finetune the models on ImageNet-1K for 30 epochs with initial learning rate of 3× 10−5, cosine632

learning rate scheduler and AdamW optimizer. The stochastic depth drop rate is set to 0.3 and both633

CutMix and Mixup are muted during the finetuning.634

Setting FocalNet-B/L (Pretraining) FocalNet-B/L (Finetuning)

resolution 224×224 224×224 and 384×384
batch size 4096 1024
base learning rate 1e-3 3e-5
learning rate scheduler cosine cosine
min learning rate 1e-5 5e-6
training epochs 90 30
warm-up epochs 5 0
warm-up schedule linear linear
warm-up learning rate 1e-6 1e-6
optimizer adamw adamw

color jitter factor 0.4 0.4
auto-aug rand-m9-mstd0.5-inc1 rand-m9-mstd0.5-inc1
random-erasing prob. 0.25 0.25
random-erasing mode pixel pixel
mixup α 0.8 n/a
cutmix α 0.8 n/a
mixup prob. 1.0 n/a
mixup switch prob. 0.5 n/a
initial layer scale 1e-4 pretrained

stochastic drop path rate 0.2/0.2 0.3
label smoothing 0.1 0.1
gradient clip 5.0 5.0
weight decay 0.05 1e-8

Table 14: Experimental settings for pretraining on ImageNet-22K with FocalNet-B/L and finetuning
on ImageNet-1K.

B Downstream Tasks635

B.1 Object Detection636

B.1.1 Effect of kernel size637

We study how the various kernel sizes affect the object detection performance when finetuning638

FocalNet-T (LRF) with kℓ=1 = 3 pretrained on ImageNet-1K. In Fig. 5, we vary the kernel size at639

first level kℓ=1 from 3 to 15 for object detection finetuning. We have two interesting observations: (i)640

though the pretrained model used kℓ=1 = 3, it can be finetuned with different kernel sizes to adapt641

high-resolution object detection task; (ii) a moderate kernel size (5,7,9,11) have a slightly better642

performance than a kernel size which is too small (3) or too big (13,15), probably because small643

kernel cannot capture the long-range dependency while big kernel misses the detailed local context.644

In Fig. 6, we further show the corresponding wall-clock time cost and peak memory when training on645

16 V100 GPUs with batch size 16. Accordingly, increasing the kernel size gradually increases the646

training memory and time cost. For a good performance/cost trade-off, we therefore set kℓ=1 = 9 for647

all the object detection finetuning experiments in our main submission.648
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Figure 5: Box and mask mAP for Mask R-CNN 1× training. We use
FocalNet-T (LRF) as the baseline model and vary its kernel size at
first level kℓ=1 ∈ {3, 5, 7, 9, 11, 13, 15}.

Figure 6: Training time (wall-clock) and peak memory for Mask
R-CNN 1×. We train Focalnet-T (LRF) with different kernel sizes
on 16 V100 GPUs with batch size 16.

Backbone #Params FLOPs Mask R-CNN 1x Mask R-CNN 3x

(M) (G) AP b AP b
50 AP b

75 APm APm
50 APm

75 AP b AP b
50 AP b

75 APm APm
50 APm

75

FocalNet-T (SRF) 48.6 267 45.9 68.3 50.1 41.3 65.0 44.3 47.6 69.5 52.0 42.6 66.5 45.6
FocalNet-T (LRF) 48.9 268 46.1 68.2 50.6 41.5 65.1 44.5 48.0 69.7 53.0 42.9 66.5 46.1
FocalNet-T (SRF)† 45.8 261 46.8 69.1 51.2 41.9 65.6 44.6 48.5 70.0 53.2 43.3 67.0 46.3

FocalNet-S (SRF) 70.8 356 48.0 69.9 52.7 42.7 66.7 45.7 48.9 70.1 53.7 43.6 67.1 47.1
FocalNet-S (LRF) 72.3 365 48.3 70.5 53.1 43.1 67.4 46.2 49.3 70.7 54.2 43.8 67.9 47.4
FocalNet-S (SRF)† 59.5 312 48.1 70.5 52.8 43.1 67.2 46.2 49.2 70.6 53.9 43.8 67.6 47.2

FocalNet-B (SRF) 109.4 496 48.8 70.7 53.5 43.3 67.5 46.5 49.6 70.6 54.1 44.1 68.0 47.2
FocalNet-B (LRF) 111.4 507 49.0 70.9 53.9 43.5 67.9 46.7 49.8 70.9 54.6 44.1 68.2 47.2
FocalNet-B (SRF)† 107.1 481 49.6 71.2 54.6 44.0 68.2 47.6 50.2 71.0 55.0 44.3 68.1 47.9

Table 15: Gray rows are additional results using deeper but thinner FocalNets in Table 3 as the backbone for
Mask R-CNN.

B.1.2 Results with deeper and thinner FocalNets649

In our main submission, we compared with previous SoTA methods Swin and Focal Transformer in a650

restricted way by using the same network depth layout. Meanwhile, we also showed that different651

depth layouts lead to different image classification performance. Here, we investigate how the layout652

affects the object detection performance. We use the deeper but thinner FocalNets in Table 4 of653

our main submission as the backbones. Specifically, we change the depth layout of our FocalNet-T654

from 2-2-6-2 to 3-3-16-3, and FocalNet-S/B from 2-2-18-2 to 4-4-28-4. Meanwhile, we reduce the655

initial hidden dimension from 96, 128 to 64, 96, respectively. In Table 15, we add the additional656

gray rows to compare with the results reported in our main submission. In Table 16, we further show657

the 1× results of deeper and thinner FocalNets with large receptive field. Accordingly, the object658

detection performance (both box and mask mAP) are boosted over the shallower and wider version of659

FocalNets with same receptive field. On one hand, this trend suggests a feasible way to improve the660

performance for our FocalNet, and further demonstrate its effectiveness for both image classification661

and object detection. On the other hand, it suggests that keeping network configuration (depth,662

hidden dimension, etc.) the same is important for a fair comparison with previous works.663

B.2 Image Segmentation664

In Table 17, we report the results using the deeper and thinner FocalNets as the backbone for665

semantic segmentation. As we can see, for FocalNet-T, increasing the depth does not bring extra666

improvement. For larger models, however, a deeper version outperforms the shallow ones, particularly667

on FocalNet-B. Additionally, we further compare with most recent work MPViT [35] which also668

exploits multi-scale features but in parallel manner. As we can see, our FocalNets achieve better669

performance than MPViT with comparable cost. Compared with MPViT, the hierarchical and670

gated contextualization proposed in FocalNets can rapidly cover large receptive field facilitating the671

high-resolution dense prediction tasks.672
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Backbone #Param. FLOPs APb APm

Swin-Tiny 47.8 264 43.7 39.8
FocalAtt-Tiny 48.8 291 44.8 41.0
FocalNet-T (SRF) 48.6 267 45.9 41.3
FocalNet-T (SRF)† 45.8 261 46.8 41.9
FocalNet-T (LRF) 48.9 268 46.1 41.5
FocalNet-T (LRF)† 46.1 262 46.7 41.9

Swin-Small 69.1 354 46.5 42.1
FocalAtt-Small 71.2 401 47.4 42.8
FocalNet-S (SRF) 70.8 356 48.0 42.7
FocalNet-S (SRF)† 59.5 312 48.1 43.1
FocalNet-S (LRF) 72.3 365 48.3 43.1
FocalNet-S (LRF)† 60.0 315 48.6 43.3

Swin-Base 107.1 497 46.9 42.3
FocalAtt-Base 110.0 533 47.8 43.3
FocalNet-B (SRF) 109.4 496 48.8 43.3
FocalNet-B (SRF)† 107.1 481 49.6 44.0
FocalNet-B (LRF) 111.4 507 49.0 43.5
FocalNet-B (LRF)† 107.9 485 49.9 44.2

Table 16: Additional results of Mask R-CNN 1× with deeper and
thinner FocalNets (LRF) in gray rows. We use the same pretrained
model as FocalNet (SRF)†, but add an extra focal level on top with
kernel initialized with all-zeros.

Backbone #Param. FLOPs mIoU +MS

Swin-T [46] 60 941 44.5 45.8
FocalAtt-T [80] 62 998 45.8 47.0
FocalNet-T (SRF) 61 944 46.5 47.2
FocalNet-T (LRF) 61 949 46.8 47.8
FocalNet-T (SRF)† 55 934 47.4 48.5

Swin-S [46] 81 1038 47.6 49.5
FocalAtt-S [80] 85 1130 48.0 50.0
MPViT-S [35] 52 943 48.3 n/a
FocalNet-S (SRF) 83 1035 49.3 50.1
FocalNet-S (LRF) 84 1044 49.1 50.1
FocalNet-S (SRF)† 69 986 49.4 50.3

Swin-B [46] 121 1188 48.1 49.7
FocalAtt-B [80] 126 1354 49.0 50.5
MPViT-B [35] 105 1186 50.3 n/a
FocalNet-B (SRF) 124 1180 50.2 51.1
FocalNet-B (LRF) 126 1192 50.5 51.4
FocalNet-B (SRF)† 117 1159 51.0 51.9

Table 17: Semantic segmentation on ADE20K [98]. All models are trained
with UperNet [76]. Grays rows are additional results with deeper yet thinner
FocalNets (SRF).

Given the superior results for FocalNets on segmentation tasks shown in Table 17, we further inves-673

tigate its effectiveness while scaling up. Particularly, to fairly compare with Swin-L pretrained on674

ImageNet-22K with 384×384, we also pretrain our FocalNet-L on ImageNet-22K with 384×384675

with 3 focal levels and kernel sizes [3, 5, 7]. We follow the same pretraining settings summarized676

in Table 14, and use Mask2former [11] for semantic segmentation on ADE20K and panoptic seg-677

mentation on COCO. As shown in Table 18, FocalNet-L achieves superior performance to Swin-L678

with similar model size and same pretraining data. We note that the methods in gray font like679

Swinv2-G and ViT-Adapter-L achieve better performance but use much more parameters and training680

data. We will leave the further scaling-up of our FocalNets as future work. In Table 19, we further681

compare different models for panoptic segmentation on COCO with 133 categories. Our FocalNet-L682

outperforms Swin-L on PQ, rendering a new state-of-the-art for panoptic segmentation. The683

results here clearly demonstrate the effectiveness of our FocalNets for various segmentation tasks.684

Backbone Method #Param mIoU +MS

HRNet-w48 [53] OCRNet [85] 71M 45.7 -
ResNeSt-200 [87] DLab.v3+ [6] 88M 48.4 -

Swin-B [46] UperNet [76] 121M 48.1 49.7
Twins-SVT-L [13] UperNet [76] 133M 48.8 50.2
MiT-B5 [77] SegFormer [77] 85M 51.0 51.8
ViT-L/16† [18] SETR [96] 308M 50.3 -
Swin-L† [46] UperNet [76] 234M 52.1 53.5
ViT-L/16† [18] Segmenter [52] 334M 51.8 53.6
Swin-L† [46] K-Net [91] - - 54.3
Swin-L† [46] PatchDiverse [20] 234M 53.1 54.4
VOLO-D5 [84] UperNet [76] - - 54.3
Focal-L† UperNet [76] 240M 54.0 55.4
CSwin-L† UperNet [76] 208M 54.0 55.7

BEIT-L† UperNet [76] 441M 56.7 57.0
Swinv2-G‡ [45] UperNet [76] >3.0B 59.1 -
ViT-Adapter-L† [10] Mask2Former [11] 568M 58.3 59.0

Swin-L† Mask2Former [11] 216M 56.4 57.7
Swin-L-FaPN† Mask2Former [11] - 56.1 57.3
Swin-L-SeMask† [33] Mask2Former [11] - 57.0 58.2
FocalNet-L† (Ours) Mask2Former [11] 218M 57.3 58.5

Table 18: Systematic comparisons of semantic segmentation on
ADE20K validation set. † indicates pretraining with ImageNet-22K
and ‡ means using extra data additionally. “MS” means multi-scale
evaluation. All model are trained with 640×640 image resolution.

Backbone Method #Param. PQ AP mIoU

ResNet-50 [26] DETR [3] - 43.4 - -
ResNet-50 [26] K-Net [91] - 47.1 - -

ResNet-50 [26] Panoptic
SegFormer [40] 47M 50.0 - -

ResNet-50 [26] Mask2Former [11] 44M 51.9 41.7 62.4

PVTv2-B5 [71] Panoptic
SegFormer [40] 101M 54.1 - -

Swin-T [46] MaskFormer [12] 42M 47.7 33.6 60.4
Swin-B [46] MaskFormer [12] 102M 51.1 37.8 62.6
Swin-T [46] Mask2Former [11] 47M 53.2 43.3 63.2
Swin-B [46] Mask2Former [11] 107M 55.1 45.2 65.1

Swin-L† [46] MaskFormer [12] 212M 52.7 40.1 64.8

Swin-L† [46] Panoptic
SegFormer [40] - 55.8 - -

Swin-L† [46] Mask2Former [12]
(200 queries) 216M 57.8 48.6 67.4

Focal-L† (Ours) Mask2Former [12]
(200 queries) 226M 57.9 48.4 67.3

Table 19: Panoptic segmentation on COCO [42]. † means pretraining with
ImageNet-22K. All models evaluated on minival with single-scale. PQ, AP
and mIoU are three metrics for measuring the panoptic segmentation, in-
stance segmentation and semantic segmentation performance, respectively.

C Comparing with ConvNeXt685

In Sec. 2, we briefly discuss several concurrent works to ours. Among them, ConvNeXts [47]686

achieves new SoTA on some challenging vision tasks. Here, we quantitatively compare FocalNets687

with ConvNeXts by summarizing the results on a series of vision tasks in Table 20. FocalNets688

outperform ConvNeXt in most cases across the board. Our FocalNets use depth-wise convolution as689
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Image Classification Object Detection Segmentation

Model Multi-scale Monolithic Mask R-CNN C. Mask R-CNN UperNet
Tiny Small Base Large Small Base Tiny 3× Tiny 3× Tiny Small Base

Metric Top-1 Acc. Top-1 Acc. APb APm APb APb
50 APb

75 mIoU

ConvNeXt [47] 82.1 83.1 83.8 86.6 79.7 82.0 46.2 41.7 50.4 69.1 54.8 46.7 49.6 49.9
FocalNet (Ours) 82.3 83.5 83.9 86.5 80.9 82.4 47.6 42.6 51.5 70.1 55.8 47.2 50.1 51.1

Table 20: Comparison with ConvNeXts with compiled results on a range of computer vision tasks. The numbers
of ConvNeXt are reported in [47].

in ConvNeXt for contextualization but also use modulation to fuse the contexts to each individual690

tokens, which explains the superiority of our method. However, we note that these numbers should691

be compared with cautions since they may use different model architectures and training settings.692

D Discussions693

Window-wise SA is performed based on the following formula:694

yi =
∑

j∈N (i)

Softmax(
q(xi)k(X)⊤√

C
)jv(xj) (7)

where q, k, v are three linear projection functions, N (·) is the set of token indices in the neighborhood695

defined by the window. In Eq. (7), a heavy interaction between the query token and all target696

tokens is needed before the weighted sum. In contrast, in the proposed focal modulation in Eq. (6),697

q(xi) is taken out of the summation over N (i), making the computation of token-wise interactions698

light-weight and decoupled with the feature aggregation.699

Depth-wise Convolution has been used to augment the local structural modeling for SA [75, 17, 21]700

or enable efficient long-range interactions [29, 24, 47]. Though not constrained, our focal modulation701

also employs depth-wise convolution to build the hierarchical context representations, and the702

resultant focal modulation networks broadly belong to the ConvNet family. According to Eq. (6),703

focal modulation recovers depth-wise convolutions when removing the hierarchical aggregation and704

modulation, which however are both essential as demonstrated in our experiments.705

Squeeze-and-Excitation (SE) and PoolFormer can also be considered as special cases of focal706

modulation. SE exploits a global average pooling to get the squeezed global context representation,707

and then a multi-layer perception (MLP) followed by a Sigmoid to obtain the excitation scalar or708

modulator for each channel. In contrast, focal modulation is input-dependent in that it extracts the709

“squeezed” and “focal” context specifically for each query token. Setting L = 0, focal modulation710

becomes q(xi)⊙ h(fg(xi) · Avg-Pool(fz(X))) which closely approximates SE. On the other hand,711

PoolFormer uses sliding-window average pooling to extract the context.712

E Additional Model Interpretation713

Our focal modulation consists of three main components: (i) convolution for contextualization; (ii)714

gating mechanism for aggregation of multiple granularity and (iii) linear projection for generating715

modulator. Here we attempt to interpret each of them.716

Convolutional kernel patterns at different levels and layers. In Fig. 7 and Fig. 8, we show717

the learned depth-wise convolutional kernels in our FocalNet-T (LRF) and FocalNet-B (LRF).718

Specifically, we show the averaged 3×3, 5×5 and 7×7 kernels at last layer of each of four stages.719

We observe some interesting patterns from the visualizations. In the earlier stage, the models usually720

focus on local regions and thus have more scattered weights at low focal levels (level 1 and 2).721

Nevertheless, when it comes to later stage, the model requires more global context to make the final722

prediction, which explains the more scattered weights at the third focal level.723

Gating function for adaptive contextualization. Similar to Fig. 3, we make more visualizations724

of the gating values in our FocalNets. On a set of randomly selected ImageNet-1K validation images,725

we show more gating maps in Fig. 9, 10 and 11. The property is consistent to what we showed in726
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Stage 1 Stage 2 Stage 3 Stage 4

Level 1

Level 2

Level 3
(7x7)

(5x5)

(3x3)

Figure 7: Visualization of learned kernels at three levels and four
stages in FocalNet-T (LRF). For clarity, we only show for the last
layer of each stage.

Stage 1 Stage 2 Stage 3 Stage 4

Level 1

Level 2

Level 3
(7x7)

(5x5)

(3x3)

Figure 8: Visualization of learned kernels at three levels and four
stages in FocalNet-B (LRF). For clarity, we only show for the last
layer at each stage.

our main submission. For the visual tokens at object regions (ℓ = 1), their gating values are much727

higher than those outside object regions at first level. When looking more closely, we can see that the728

predicted gating values mainly lie on the most complicated textures within object regions. At the729

second level ℓ = 2, the gating values are still higher in object regions but the peak values usually730

move to the object boundaries instead. At the third level ℓ = 3, the whole object regions have higher731

gating values than background regions. Finally at level ℓ = 4, we find there is a clear distinction732

between foreground and background regions when aggregating the global contexts. The foreground733

regions usually show less interest in the global context and the other way around for the background734

regions. Even for those images containing multiple foreground objects, our model still shows coherent735

patterns. Comparing the gating values for first three levels and the last global context, we can find our736

model does gather more information from local regions when modulating foreground visual tokens737

and more global context for background tokens. This aligns with our intuitions discussed in our main738

submission.739

F Limitation and Social Impact740

Limitations. In this work, we have demonstrated focal modulation is an effective yet efficient741

way for visual modeling. The main goal of this work is to develop a new way for visual token742

interaction. Though it seems straightforward, a more comprehensive study is needed to verify743

whether the proposed focal modulation networks can be applied to other domains such as pure744

NLP tasks. Moreover, when coping with multi-modality tasks, SA can be feasibly transformed to745

cross-attention by alternating the queries and keys. The proposed focal modulation requires the746

number of gathered contexts same to that of queries so that an element-wise multiplication can747

be conducted for modulation. Hence, how to perform the so-called cross-modulation needs more748

exploration.749

Social Impact. This work is mainly focused on architecture design for computer vision tasks. We750

have trained the models on various datasets and tasks. One concern is that it might be biased to the751

training data. When it is trained on large-scale webly-crawled image data, the negative impact might752

be amplified due to the potential offensive or biased contents in the data. To avoid this, we need to753

have a careful sanity check on the training data and the model’s predictions before training the model754

and deploying it to the realistic applications.755
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Figure 9: Visualization of gating values G at last layer of our FocalNet-B (LRF) pretrained on
ImageNet-1K. From left to right, we show input image, and gating weights Gℓ, ℓ = 1, 2, 3, 4.
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Figure 10: Visualization of gating values G at last layer of our FocalNet-B (LRF) pretrained on
ImageNet-1K. The order from left to right column is same to Fig. 9
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Figure 11: Visualization of gating values G at last layer of our FocalNet-B (LRF) pretrained on
ImageNet-1K. The order from left to right column is same to Fig. 9
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