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Appendix A. Proof of Theorem 5

Proof First, we prove that (TV)4 = Vy implies Vy = max feyy VIZRB(f’VB) for a fixed Vg.

Suppose that V4 = (TV) 4. Given a policy f € Wy, let f, = f(s) for each s € S. Then,
we obtain for all s € S

Va(s) = (TV)a(s) (9a)
= fSZXI(DA) rA(S, fo, RB(S, fs; VB)) + YAE g mp(s/(s,fo. R (5. 0,Vi)) [VA(S)] (9b)
> ra(s, fs, RB(S, f5, VB)) + YAE s p(s/]s. fu. R (s.£5,Vis)) | VA(S)] (9¢)
=7ra(s, f(5), RB(s, f(5),VB)) + YaEwwp(s|s. () R (5.5 () Vi) [VA(S)] - (9d)

By repeatedly applying this inequality, we obtain

Va(s) =z ra(s, f(s), Rp(s, f(5),VB)) + yaEs, [Va(s1)] (10a)
= rals, f(s). Rp(s, f(5). Vi) (10b)
+7aEs |ra(s1, f(s1), Rp(s1, f(s1), VB)) + 74Es, [VA(82)]}
Z .
[n—1
— EfRB(fVB) Z’qufA(St,at, by)|so = s| + ,.)/ZEfRB(ﬁVB) {VA(Sn)‘SO = s} . (10c)
Lt=0

In the limit for n — oo, the first term of the right-hand side of Equation (10c) converges
to VIZRBU’VB)(S), while the second term converges to 0°. As the choice of f is arbitrary, we
VIZRB (vaB) .

We show V4 = maxsepw, VIL{RB (VB) It suffices to show that there exists a policy

f* € Wy such that V4 = VIZ*RB(f*’VB). Because Ra(s,V) is non-empty, let f¥ € Ra(s,V)
for each s € § and f* be a policy whose action distribution at s is f*(s) = fI for each s,
we have for all s € S

obtain V4 = supfeyy,

Va(s) = (TV)a(s) (11a)

= Ssup TA(Sa f87 RB(Sa fSa VB)) + 'YAES’Np(sﬂs,fs,RB(s,fs,VB)) [VA(S,)J (11b)
fs€A(A)

= TA(37 f:7 RB(Sa f;ka VB)) + ’YAES’Np(s’\s,fS*,RB(s,fS*,VB)) [VA<3/)] (11C)

= TA('S? f*(s)a RB(Sa f*(S), VB)) + VAES’Np(sﬂs,f*(s),RB(s,f*(s),VB)) [VA(SI)] . (11d)

Therefore, with the repeated application of this equality, analogously to the above argument,
we obtain Vy = V/J; Rp(f ,VB).

Second, letting Vs be fixed, we prove that (T'V)p = Vp implies Vi = max e, Vé‘g for
f=Ra(V).

6. Since 74 is bounded and y4 € [0,1), the inside of the expectation of Equation (10c¢) is always bounded,
which enables the exchange of the extreme and the expectation. Therefore, the same exchanges are
performed in Equation (14c) and Equation (19c¢).
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Suppose Vg = (T'V)p holds. Then, by constructing Rp, we obtain
Vi(s) = (TV)B(s) > ra(s, Ra(s,V),bs) + VBEgp(s'(s,Ra(s,v).00) [VB(S)] (12)
for all s € S and for all by € B. It implies that
Vi(s) > rp(s, Ra(s, V), 9(5)) + YBE g p(st(s.Ra(s.v).0() [VB(S)] (13)

for all s € S and for all g € W%. By recursively applying Equation (13) for Vp on the
right-hand side, we have for all s € §

VB(S) > TA(S7 RA(Sv V)a g(S)) + ’YBE51 [VB(Sl)] (143‘)
> 7a(s, Ra(s, V), () + 78, [ra(sn, Ra(sr, V), 9(s1)) +78Es, [Vi(s2)] | (14D)

>
n—1

> ERa(V)g [Z ’YtB72B<3ta ag, bt) So=s8| + ’Y%ERA(V)g [VB(Sn)‘SO = S} (14C)
t=0

In the limit for n — oo, the first term of the right-hand side of Equation (14c) converges to

Vg“‘(v)g(s), and the second term converges to 0. Therefore, Vg(s) > VgA(V)g(s) holds for
all s € S. Since g € W]‘é is arbitrary, it holds that

VB(s) = max VgA(V)g. (15)
geEWd,

Owing to the existence of a deterministic optimal policy for any single-agent MDP, we obtain

VB = max VgA(V)g =

Ry (V).‘] ) (16)
gEWS,

max Vp
gEWRB

We show that Vg(s) = maxgeyy V; 4(V)9 ¢ suffices to show that there exists g* such

S

that Vp(s) = Vg‘*(v)g*. Let ¢g* such that g*(s) = Rp(s, Ra(s, V), Vp) for each s € S. Then,
by the definition of Rp, for any s € S, we have

VB(S) = 7’B(Su RA(37 V)v g*(S)) + ’YBES’Np(sﬂs,RA(s,V),g*(s)) [VB(S,)] . (17)

With the repeated application of this equality, analogous to the above argument, we obtain
s yyRa(V)g*
VB = VB . [ |

Appendix B. Proof of Theorem 7

Proof First, suppose that V; € PV. Then, by the definition of the SE value function,
we have V3 = v for all v € clV. Therefore, no other PO value function exists. Hence,
PY ={Vi}.

Subsequently, suppose that PV = {v*} is a singleton. Then, v* > v for all v € V' \ PV
because, for all v € V \ PV, there exists v € PV such that 0 > v. Suppose that v* =2 Vi.
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Then, for some s € S, v*(s) < supseyy VXT(S) holds. It implies that there exists v € V\ PV

such that v*(s) < v(s) for some s, which contradicts v* = v. Hence, v* = V7.

Altogether, we have V; € PV if and only if PV is a singleton. Because PO policies exists
if and only if PV NV # ), the SE policy exists if and only if PV = {v*} is a singleton and
vt e V. |

Appendix C. Proof of Theorem 8
Proof We prove each statement one by one.

Proof of (a) The definition of QQIT(S, f) is equivalent to

5005, 1) = BRI [ (s,a,0) 8] + yaB/ R0 [V]T(s)

s} . (18)
Then, if it holds that leT(s) < QIJ:T(S, f) for all s € S, we have, for all sy € S,

V{1 (s0) < BP0 [7.(s0, a0, bo) o] + A B 5D [V] (1) o] (192)

< EFE5WD) [ 4 (s, ag, bo)|s0] + MEngm[ (19b)

ES R (74 (51, a1,01)|51] + yaES BB [V/{/T(Sz)‘sl] ‘80}

<...
n—1 ’

<E/0) [Z Vifo(St,at,bt) so| + WZEfR*B(f) [V/J; T(S”)‘SO] ' (19¢)
t=0

*(f)(

In the limit for n — oo, the first term converges to VARB
converges to 0. Therefore, it holds that VIL{/T(S()) < QQ/T(S, f) < VIL{RBU)(SO) = VXT(S()) for
all sg € S.

Proof of (b) If it holds that @/, '(s, f) = VI T(s) Vs € S, by the similar derivation of
Equation (19), we obtain

s0) and the second term

n—1

VIZIT(SO) — gfR5() [Z ’71547214(51‘/, az, by)
t=0

S0

+AE D [V (s)]s0]  (20)

for all sy € S. Then, in the limit for n — oo, we have V[T(SO) = Vj;T(SO) for all s9 € S.
Conversely, if it holds that V/J;/T(s) = VIZT(S) for all s € S, we have

VIZT(S) = TA(Sa f(s)v R*B(Sv f)) + PYAES/NP(Slls,f(S),R*B(S,f)) [VXT(SI)} (213“)
- TA(Sv f(3)7 R*B(Sv f)) + ’YAES/NP(S/ls,f(S),R*B(S,f)) [Vj T(S/)} (21b)

for all s € S, which follows that Q% (s, f) = V{T(s) = V{T(s) for all s € S.
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Proof of (c) By the definition of Vf(s), we can rewrite the reward value as
ra(s, £(s), Ri(s, £)) = V() = 7B [V{T(s)]. (22)
Plugging it into the definition of QQIT(S, f) and subtracting Vf{lT(s), we have

K5, 1) = VIT(8) = rals, £5), Ris(s, D) + 4B (VT =V () (23)
= Vi) = v{(s) = By [VI(s) = v{T(s)]. (24)
The policy improvement is possible if and only if QQI T(‘, f) >~ Vj;/T. Because of the above

equality, equivalently, we can say that the policy improvement from f’ is possible if and only
if there exists a policy f whose value function satisfies

Vi) = v{T(s) 2 B VA1) - viT(s)] (25)

for all s € S, and there exists a state s where the inequality strictly holds. |

Appendix D. Proof of Theorem 9

Proof We prove the counterpart of Theorem 9. Taking the negation of Equation (5) for
all f € Wy, we have

_Vfe WA{ s, > viTs)vse s = Vii(s)=v{T(s) vs e 3}
= Ve Wy {QQ’T(S, £ <vits)3sesvviis) =viTs)vse 5} (26a)

— 3fewy {QQT(S, H>vits) vsesaviis) £ viTs) 3se 3} . (26h)

From Theorem 8 (a), since VXT(S) > Vj‘mr(s) Vs € S holds and QJXT(S, f) > V/J;/T(S) VseS
holds, we have

If € Wi {QQ’T(s,f) > vit(s) vs e SAVIT(s) £ VIT(s) 3s € 5}

— 3f e Wa {V/{T(s) > V{T(s) Vs e SAVIT(s) £ V]T(s) Is € s} (27)
— fewa{v] - v{1} (28)
— JpeVcCdy {v - vj’*} (29)
— viT¢py. (30)

Therefore, f’ is not a PO policy. This completes the proof. |
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Appendix E. Proof of Theorem 10
Proof First, we prove that (i) = V[T(s) > Vf(s) ds € S. Given f € Wa, f' € Wa, by
the definition of §(f, ), we have

Eymp(s s sonmpe. | @4 (82 F) = VAT()] < a(4.1) (31)

for all s € S. Thus, we have

QQIT(Sa f) = TA(S, f(s)a R*B(sa f)) + PYAES’Np(s’\S,f(s),R}‘B(S,f)) [VX/T(SI)} (323‘)
> TA(Saf(S)’R*B(Saf)) (32b)
+ 74 (Es/Np(s’\s,f(s),R’fB(s,f)) [QJXT(SQ f)} —4(f, f’))

n—1
> E/RB() [Z Yara(se, f(se), RE(se, f)) + ’YZV,{ T(sn) S0 = s] (32¢)

t=0
n—1
- (Z v - fyii) 5(f, ).
t=0

for all s € §. In the limit for n — oo, the first term converges to V/J;T(S), the second term
converges to 0, and the third term converges to — IZ‘j‘YA(S (f, f"). Therefore, we have

QAT 2 V{1(9) = {2801 (33)

for all s € S. Then, if (i) holds, because there exists s € S such that QQ/T(S, f) < VIL{/T(S) -
TA_G(f, f), it holds that

1—va

vt - A 5 S > f/Ts, > vits) - A 5 . f) Fses. 34
16 = 725000 > Q416 2 V{TGs) = 1240071 3
Vit > Vi) 3ses. (35)
If (ii) holds, because of Theorem 8 (b), it holds that

vIits)=viis) vses. (36)

Therefore, it holds that

VF € Wal(i) or (ii)}
— VfeW, {Vj;”[(s) >Vils) 3seS or V{T(s)=v{i(s) Vse 5}, (37)

where the right-hand side is equivalent to the definition of PO policies (Theorem 6). [
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Appendix F. Proof of Theorem 11

Proof We prove each statement one by one. The proof of (a) is based on the monotonicity
of {v;} and the compactness of clV. The proof of (b) is based on the statement (b) of
Theorem 8. The statements (c) and (d) are proved by contradiction using the statement (c)
of Theorem 8.

Proof of (a) As fi11 € Wo(f:), it holds that
vipr = VI = QUG fran) = VT () = vn (38)

Thus, vi4+1 = v; holds for all t € N.

Because r4 is bounded, so is v T, implying clV is compact. Considering the sequence
{ve(8)}52, for each s € S, it is a monotonically increasing sequence. {v:(s)}72, converges in
clV because clV is compact. Let voo(s) = limy_yo0 v¢(s) for each s € S. Then, it holds that
Voo = limy_ o vt

Proof of (b) First, vy Z vy <= v = Uy is apparent.
Second, we prove vsy1 2 = U = Vs, As frr1 € Wi—_e(ft), it holds that

vt = e[V = 2@ )| - £ [V (39)
>(-9 sw (clefe.n]-c[Vi]). o
FEW(ft)

If v41 = vy, we have L]v;1] — L[vg] = 0; hence, the above inequality implies

swp L[4, 0] = £ [viT]; (41)
FeEW,(ft)
therefore, for all f € W._(f:), we have L {QQT(-,JC)} =L [Vj;”]. Because L is Pareto-

compliant, the above equality implies QQT(-, f) # V/{”L. However, because f € Wy(fi),
we have Q]XT(‘, f) = Vf{tT, implying QQT(-, f) = Vj;ﬁ. From Statement (b) of Theorem 8,
we have V/{T = Vg’fT for all f € W_(ft). (Conversely, if VIZT = Vf{” for all f € Wo.(ft),
we have vi11 = v.) Thus, Wo.(f) = W.(f;) holds for all f € W.(f;). It implies that
We (fi41) = We(ft) since fir1 € W (fi); thus, fire € We(fis1) = Wi (fi). Therefore,

Vf];ﬁ S Vj;t-‘—l-l- S VIZH‘QT S, (42)

and hence vy =y, for all k > 0, implying that v, = vs.

Proof of (c) First, we show that

gneig(v(s) — Vo (8)) < WA(I?Eagi(U(S) — Uso(5)))

for all v € V.
Suppose that there exists v* € V such that

min (v (5) = vo(5)) > 74 (max(v”(5) = ve(5)))
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holds. Then, v* > vy and there exists f* € W4 whose value function is VX*T = v*. Let
7= Wises(O(8) = () o have 1 > 7 > 4.

maxses(v*(8)—voo(s))
For an arbitrarily small £ > 0 there exists ¢ such that ||v; — veo||eo < € because voo =
lim;_, o, v;. Because of the continuity of £, it also implies that for an arbitrarily small & > 0
there exists ¢’ such that L[vy] > L[ve] — &' Therefore, we can find ¢ satisfying

U Y

Voo — Vt]|oo < 5T — Usolloo  for some 0 € (0,1), and (43)

Llveo] = Llve] < (1 = e)(L[v] = L]vec]), (44)

where 9(s) := voo(s) + (1 —0) (T —74)||v* — Voo ||o- Let fi be the corresponding policy whose
value function is Vj{” = v,. Here, we assume that v4 > 0. For the case of 74 = 0, Statement
(c) is an immediate consequence of Statement (d) because vy € PV and PV C 9V.

Subsequently, we show Vj;*T = QQT(~,f*) = Uso using Equation (43). In the proof of
Statement (c) of Theorem 8, for all s € S,

Qs 1) =) = vi(s) = V1) =y [VIT) - VIT&)] . ()

Notably, Ey {Vj;T(s') - Vj;“r(s’) < HV};Jr - V/J;/THOO. Letting f = f* and f’ = f;, we have,
for all s € S,

QU (s, 1) =V (5) 2 VAT ) = V() = rallV{ T = Ve (46)
By adding Vj{tT(s) — VUso(s) to both sides of the above inequality, we obtain, for all s € S,
QUM (5, /") = voo(8) 2 v*(8) = vao(s) = Yallv” = vil|oo (47a)
2 min (v7(s) = voo(s)) = vaflv” = velleo (47b)
= min (v7(s) = Voo (s)) = Yallv" = Voo + Voo — villoo (47¢)
2 min (v7(s) = voo(s)) = Yallv” = voofloo = Vallveo —vellec  (47d)
= (T = 74)[lv" = voolloo = Vallveo = villoo (47¢)
> (1 =0)(T = ya)[v" = vooloo- (47f)

Therefore, we have QQT(VJC*) > U. Because U > Voo s Vj;”, it implies that Q,J}T('vf*) =
Vj{”. From Statement (a) of Theorem 8, we have Vj; f = Qf’T( f*)

Finally, we derive a contradiction. Let ¢;"F = SUP few () [QA (-, f)]. Because f* €
W (f1), we have £ > LIQYT(-, f*)]. We also know that L[Q%(-, f*)] > L[t]. Because
fte1 € Wi—e(ft), we obtain

Llvrpa] = Llvi] > QKT fiyn)] — Llvr] (48a)
>(1—e¢) ( sup  LIQYT( )] - E[vt]) (48b)
FEWs(ft)
> (1— )(LIQET(, )] — Llvoo) (48¢)
> (1 e)(L[0] — L[veo)) (48d)
> L[voo] — L[vy], (48e)
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where we used Equation (44) for the last inequality. It implies Llvi1] > Llvs], which
contradicts to the fact that ve = wvi41. Therefore, we have minges(v(s) — voo(s)) <
Y4 (maxses(v(s) — vao(s))) for all v € V.

Subsequently, we show that v, € OV.

Suppose that vo, € V \ OV (i.e., v is an interior of V). Then, there exists an r > 0
such that & = {v € Fs | [|v — voolloo <7} C V. Let v}, be such that v (s) = veo(s) + 1 for
all s € §. Then, v, € £. Moreover, because v, € V, there exists a policy f._ such that
VIZ‘:"T = vg.

We lead to the contradiction to minges v(s) — voo(s) < 74 (Mmaxses v(s) — Voo(s)). Using
Equation (43), we obtain

minges VA&T(S) — Voo () _ minges (V5 (8) — Voo(8)) =1, (49)

maxses VX&T(S) —Uoo(s)  MaXses (Vi (s) — voo(s))

contradicting minges v(s) — Voo (8) < 4 (Maxses v(s) — veo(s)) for all v € V.

Proof of (d) In case of y4 =0, we have QJXT(-, f) = Vf for all fi, f € Wa.
Suppose that vs, ¢ PV. Then, there exists a value function v* € clV such that v* > ve.
Similar to the proof of Statement (c), we choose ¢ such that

Llvso] — Lvg] < (1 —€)(L]v*] — Lveo))- (50)

Let Vo(v) == {v € V| v = v} and clVo(v) := {v € clV | v = v}. Then, we have
v* € clV. (v;) because v* = v = v¢. Moreover, because V. (vy) = {Vf{T cfeW(fr)}, we
obtain

6P = sup E[VJ;T] (5la)
fEW.(ft)
= sup L[v] (51b)
vEVy (vt)
= veg%/i}fvt) L[v] (51c)
> L[v]. (51d)
Therefore,

Llvi] — Llve] = (1 = ) (6™ — L[ve]) (52a)
> (1 -6 (& = Llvx]) (52b)
> (L= e)(L[v"] = L]veo]) (52c)
> Lveo] — Ly, (52d)

where the derivation of Equation (52a) is due to the definition of Wi_(f;) in Equation (7)
and QQT(-, f)= VIL{T. This implies L[vi4+1] > L[vso], which contradicts to ve = vi41. There-
fore, voo € PV. |
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Appendix G. Splitting the Search Space

The proposed algorithm in Algorithm 1 can be impractical when the leader’s policy space
W, is prohibitively large to search for the next policy in Equation (6) and Equation (8). To
avoid the exhaustive search, we propose a splitting strategy for the search space to obtain
improved policies from each subspace efficiently.

We first split Wy into disjoint sets Wy U - - - U W, where the best response is Rj;(f) =
g; € Wg; for f € W;. Because the set of deterministic policies, W%, is finite, we can always
find such a separation. Additionally, we argue that the number of deterministic policies that
form the best response is rather limited, enabling us to enumerate them easily.

We consider replacing (8) with locating a Pareto optimal f with respect to QQT(-, f)- Be-
cause (8) also locates Pareto optimal f, this replacement corresponds to selecting a different
L at each t.

This is realized in two steps. First, we locate a policy satisfying Q]XT(‘, f) = V};”. It is
nontrivial as the best response R} changes as f changes. However, if we limit our attention
to a subset W, for some k, the best response does not change with f € W;. Then, locating
f € W, satisfying QQT(-, f) = Vj;” is casted as the following constrained optimization
problem:

min z s.t. Vf{tT(s) - QQT(S, f)<z forallseS, (53)
2, fEW

where QQT(S, f) is differentiable with respect to f and is easily computable as the best
response is constant. Therefore, it will be solved by, e.g., a gradient-based solver with
projection onto W;. A solution with z < 0 satisfies QQT(-, f) = Vj;ﬁ. Such a solution must
exist in W, for some k because f; satisfies this condition.
Once we find such a solution, denoted as (z, f{), we find a Pareto optimal policy for
QT(-, ) in WeNW._(f;) by improving f/. It is done by performing a Pareto ascent method
with projection,

fe Ty, (f +n4), where ATVQH(s,f)>0 forallses, (54)

or its variants, e.g., Harada et al. (2006), with f; as a feasible initial solution of this step. If
we find f; such that QQT(-, f) = V(L{”, we let fiy1 = f;. These steps will be continued until
a predefined termination criterion is satisfied, or no policy strictly dominating the current
policy is found. The whole algorithm is shown in Algorithm 2.
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Algorithm 2 Practical Pareto-Optimal Policy Iteration
Input: Maximum number of iterations M.
1: Split the leader’s policy space Wy into disjoint sets Wi U --- U Wy, where the best
response is R (f) = gF € W% for f € W
2: Randomly initialize fy € W4 and compute gy = R (fo)
3: fort=0to M —1do .
4:  Compute Vj;ﬁ by repeatedly applying Tj;tRB

(ft)

5. LetZ,={1,...,K)}

6:  while |Z;| > 0 do

7: Randomly select k € Z;

8: Solve (53) to obtain z, f}

9: if 2z <0 then

10: Perform the Pareto ascent (54) to obtain f;
11: Let fir1 = f; and break if Q%t1(-, fr) = Vi
12: end if

13: Update Z; <+ Z; \ {]{I}

14: end while

15:  Let fay =+ = fiy1 = fr and break if Z; =)
16: end for

Output: A stationary policy far

Appendix H. Backtracking

Algorithm 1 may not output a PO policy because the terminate condition in line 5 of
Algorithm 1 is the necessary condition for PO policies. In this case, Theorem 10 can be used
to determine whether the output policy is a PO policy: provided (i) or (ii) in Theorem 10
holds for all f € W, with the output policy f; and its state value function VXtT, fr is a PO
policy. Notably, this judgment is not perfect because the policy may be determined not to
be a PO policy when it really is a PO policy.

We proposed selecting another policy f € W(fi—1) that has not been selected thus far
and restarting the for loop with f; < f’, which we call "Backtracking", to deal with the case
where the output policy f;(t < M) is determined not to be a PO policy. If there is no policy
left in W( f;—1), then it backtracks one by one, as W(fi—2), W(fi—3), ..., until it reaches the
set with policies that have never been selected. This method requires that W(f;) is saved
at each iteration.

The entire proposed algorithm with the PO-policy judgement and the backtracking is
shown in Algorithm 3. W is a list to save each W(f;) and M is the maximum number of
iterations. This algorithm is designed such that the number of times to compute Vj;” in line
5 and W.(f;) in line 7 is at most M. If the PO-policy judgment in line 9 does not return
True during M iterations, the algorithm outputs the policy that maximizes the objective
Y oses ast‘C‘T(s) among the ones that satisfy the necessary condition for PO policies thus far
and fas (see lines 12, 25, and 26).
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Algorithm 3 Pareto-Optimal Policy Iteration with Backtracking
Input: Pareto-compliant scalarization £, maximum number of iterations M, a M-length
list of empty sets W.
1: W(O) — Wy
2: Randomly sample fp from W (0) without replacement.
3: Woutput — {}
4: fort=0to M — 1 do i
5. Compute Vi € F(S) such that (7" 29y {1ty (s) = VI (s) for all s € S.

6: QQT(S, a,b) < 14(8,0,0) + ARy p(s/|s,0.,0) [Vjﬁ(s’)] forall s€e S,ae€ A,be B.
W) 1 € Wa | By @1 (s.0, Riy(s, )] = VI (s) vs € ).
8 if Bqope) [QQT (s, a, RY(s, f))} = V{(s) ¥s € S,¥f € W.(f,) then

9: if f; satisfies (i) or (ii) of Theorem 10 for all f € W4 then
10: return f* « f.

11: end if

12: Put ft into Woutput'

13: # Backtracking

14: k+t

15: while |W (k)| =0 do

16: k+—k-1

17: end while

18: Randomly sample fiy; from W (k) without replacement.

19: else

200 W(fi) < argmaxsew, (1) £ [Eansi) Q%10 B )]
21: W(t+1) < W(fe).

22: Randomly sample fiy; from W(t + 1) without replacement.
23:  end if
24: end for

25: Put far into Woutput-
26: return f* € argmaxy, ey, £ [Vj;”(.)}
Output: A stationary policy f*

Appendix I. Relation between the methods of Zhang et al. (2020) and
Bucarey et al. (2022)

Zhang et al. (2020a) defined the optimal value functions as V;*(i € {A, B}), which are the
solution of the following equations (Zhang et al., 2020a): let a € A,b € B,y € [0,1), and for
all s € S,

Qf(sv a, b) - TZ‘(S, a, b) + 7E3’~p(s’|s,a,b) [‘/z*(s/)] ’ (55)
Vi*(s) = STACKELBERG;(Q’(s), Q(5)), (56)

where QF(s) is the Q-value Q;(a, b, s) of an action pair (a,b) € A x B in state s. Given the
fixed s, Q7 (b,a,s) can be viewed as the payoff of (a,b) for the agent i; thus, Q7 (s) can be
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viewed as the payoff table of agent i in the state s. STACKELBERG;(Q%(s), Q5(s)) is the
payoff for agent ¢ in the Stackelberg equilibrium of the normal-form game represented by
the payoff tables (Q%(s), Q5(s)). Therefore, Equation (56) can be written as

Vi'(s) = Qi (s, Ria(s), R (s, Ry(s))), (57a)
where R/4(s) := argmax Q% (s, a, Rg(s,a)), (57b)
acA
R5(s,a) := argmax Q%(s, a, b). (57¢)
beB

By substituting Equation (55) to Equation (57), we obtain

‘/Yz*(s) = 7“7;(8, R%(S)a R/B(S’ R%(s))) + VEs’rvp(sﬂs,R’A(s),RB(s,R’A(s))) [V;*(S/)] ) (583)
where R;l(s) = argn;lax TA(37 a, RIB(S7 a)) + VEs’fvp(sﬂs,a,RB(s,a)) [VZ(S,)} ) (58b)
ac
Rip(s,a) := argmaxrp(s, a,b) + YEgp(s(s.ap)) [VE(s)] (58¢)
beB

Meanwhile, the operator used in Bucarey et al. (2022) is given by

(Tv);(s) = ri(s, Ra(s,v), Rp(s, Ra(s,v),vp)) (59a)
+ VB (s, R (5,0), B (5, R a (5,0)00)) [Vi(8)]
where R4(s,v) := argmaxra(s, fs, Rp(s, fs,vB)) (59Db)
fs€eA(A)
+ VBrrop([s.fo R (s S0 [04(5)]
Rp(s, fs,vp) := ar%é%axrg(s,fs,b) + VB g p(s'[s,fo.0) [0B(5")] - (59¢)

Notably, v = y4 = vp. Let us consider only the deterministic leader policies in the fixed
point of Equation (59) and replace argmax a4y With argmax,c 4 in the definition of R4.
Then, letting (V4, Vp) be the fixed point of T', it holds from Equation (59), for all s € S,
which is expressed as

V:L(S) :’I"Z‘(S,RA(S,V),RB(S,RA(S,V),VB)) (603“)
+ VB (s ls, R (s,V), Ris (s, R (5,1), Vi) [Vi(5)]
where R4(s, V) := argmaxry(s,a, Rp(s,a,Vp)) (60b)
acA
+ ’YES/Np(s’\s,a,RB(&a,VB)) [VA(SI)] )
Rp(s,a,Vg) := argmaxrp(s,a,b) + VEg.p(s(s.ap) [VB(S)] - (60c)
beB

Comparing these with Equation (58), the definition of (V}, V}) by Equation (58) is equiva-
lent to the definition of (V4, Vp) by Equation (60). It follows that the fixed point in Zhang
et al. (2020) is the same in Bucarey et al. (2022) when the leader policies in the fixed point
are restricted to deterministic stationary policies.

By applying the discussion in the proof of Theorem 5 to (V4,Vp) defined by Equa-
tion (60), we obtain

Va(s) = max VIOV () Vp(s) = max Vi), (61)
fewd gEWEB
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for all s € S. Then, the problem of the method of Bucarey et al. discussed in Section 5 also
occurs to (V4,Vp): V4 does not coincide with the state value function of the deterministic
SSE policies since Rp(f,Vp) is not guaranteed to be the best response against any f € Wff‘.

Appendix J. Application: Policy Teaching by Intervention to the
Transitions

In single-agent MDPs, the policy aimed by the agent can be changed by making changes
to the agent’s observations, reward signals, and transition probabilities, among others. For
example, in an MDP (S, A, p,p,r,7v), the changes in the observations and the transition
probabilities are represented by replacement to another transition function p’, which changes
the agent’s aim from the optimal policies of (S, A, p, p, r,7) to those of (S, A, p’, p,r,~). This
is the theoretical foundation of poisoning attacks against RL (Behzadan and Munir, 2017;
Huang and Zhu, 2019; Zhang et al., 2020b; Rakhsha et al., 2020; Sun et al., 2020) and policy
teaching (Zhang and Parkes, 2008; Zhang et al., 2009), which aims to guide the agent’s
policy learning.

SSGs can be viewed as a model of intervention in transition probabilities by the leader,
where the follower is the victim of the attack or the teaching. Even if the follower takes the
same action at each state, the transition can be shifted by the leader changing its actions be-
cause the transition probability depends on the actions of all the agents. Therefore, suppose
the follower cannot observe both the attendance and the actions of the leader, then the fol-
lower’s learning can be represented as learning the optimal policies of the single-agent MDP
(S, Ap,p’, p,7B,vB), where f € Wy is the leader’s policy, pf (s'|s,b) := Eonps)[D(S]5, @, )],
and 7 : & x B — R. Notably, Rj(f) is its optimal policy. Then, the problem of guiding
the follower’s aim to the leader’s objective is expressed as

max E/f5() Lra(se, anby) |, 62
max ;VA A(st, ag, by) (62)

where 74 is the leader’s reward function that represents the desired follower’s behavior
intended by the leader. f* is the optimal solution of Equation (62), and the state-action
sequences generated by the corresponding follower’s optimal policy Rj(f) maximize not
only the follower’s expected cumulative discounted reward but also that of the leader’s.
This can be viewed as the follower attaining the leader’s desired behavior when the follower
achieves its own learning goal.

The optimal solution of Equation (62) is given by the PO policy f that maximizes
E[V/{T] = scs p(s)Vj{T(s). Therefore, our proposed approach can be applied to this prob-
lem when the transition function is known and the follower’s best response can be computed.
Although the optimality of the obtained solution is not guaranteed unless v4 = 0, our analy-
sis guarantees the monotone improvement of the leader’s policy, which is of great importance
in practice. In contrast, existing methods trying to obtain the SSE policy may be inade-
quate because it is usual that the follower is not myopic, and hence, the SSE policy does
not necessarily exist.



