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Appendix A. Proof of Theorem 5

Proof First, we prove that (TV )A
s
= VA implies VA

s
= maxf→WA V fRB(f,VB)

A for a fixed VB.
Suppose that VA

s
= (TV )A. Given a policy f → WA, let fs = f(s) for each s → S. Then,

we obtain for all s → S

VA(s) = (TV )A(s) (9a)
= sup

fs→!(A)
rA(s, fs, RB(s, fs, VB)) + ωAEs→↑p(s→|s,fs,RB(s,fs,VB))

[
VA(s

↓)
]

(9b)

↑ rA(s, fs, RB(s, fs, VB)) + ωAEs→↑p(s→|s,fs,RB(s,fs,VB))

[
VA(s

↓)
]

(9c)
= rA(s, f(s), RB(s, f(s), VB)) + ωAEs→↑p(s→|s,f(s),RB(s,f(s),VB))

[
VA(s

↓)
]
. (9d)

By repeatedly applying this inequality, we obtain

VA(s) ↑ rA(s, f(s), RB(s, f(s), VB)) + ωAEs1 [VA(s1)] (10a)
= rA(s, f(s), RB(s, f(s), VB))

+ ωAEs1

[
rA(s1, f(s1), RB(s1, f(s1), VB)) + ωAEs2 [VA(s2)]

]
(10b)

↑ · · ·

= EfRB(f,VB)

[
n↔1∑

t=0

ωtAr̂A(st, at, bt)

∣∣∣∣∣s0 = s

]
+ ωnAEfRB(f,VB)

[
VA(sn)

∣∣∣s0 = s
]
. (10c)

In the limit for n ↓ ↔, the first term of the right-hand side of Equation (10c) converges
to V fRB(f,VB)

A (s), while the second term converges to 06. As the choice of f is arbitrary, we
obtain VA ↭ supf→WA

V fRB(f,VB)
A .

We show VA
s
= maxf→WA V fRB(f,VB)

A . It su!ces to show that there exists a policy
f↗ → WA such that VA

s
= V f↑RB(f↑,VB)

A . Because RA(s, V ) is non-empty, let f↗
s → RA(s, V )

for each s → S and f↗ be a policy whose action distribution at s is f↗(s) = f↗
s for each s,

we have for all s → S

VA(s) = (TV )A(s) (11a)
= sup

fs→!(A)
rA(s, fs, RB(s, fs, VB)) + ωAEs→↑p(s→|s,fs,RB(s,fs,VB))

[
VA(s

↓)
]

(11b)

= rA(s, f
↗
s , RB(s, f

↗
s , VB)) + ωAEs→↑p(s→|s,f↑

s ,RB(s,f↑
s ,VB))

[
VA(s

↓)
]

(11c)
= rA(s, f

↗(s), RB(s, f
↗(s), VB)) + ωAEs→↑p(s→|s,f↑(s),RB(s,f↑(s),VB))

[
VA(s

↓)
]
. (11d)

Therefore, with the repeated application of this equality, analogously to the above argument,
we obtain VA

s
= V f↑RB(f↑,VB)

A .
Second, letting VA be fixed, we prove that (TV )B

s
= VB implies VB

s
= maxg→WB V fg

B for
f = RA(V ).

6. Since r̂A is bounded and ωA → [0, 1), the inside of the expectation of Equation (10c) is always bounded,
which enables the exchange of the extreme and the expectation. Therefore, the same exchanges are
performed in Equation (14c) and Equation (19c).
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Suppose VB
s
= (TV )B holds. Then, by constructing RB, we obtain

VB(s) = (TV )B(s) ↑ rB(s,RA(s, V ), bs) + ωBEs→↑p(s→|s,RA(s,V ),bs)

[
VB(s

↓)
]

(12)

for all s → S and for all bs → B. It implies that

VB(s) ↑ rB(s,RA(s, V ), g(s)) + ωBEs→↑p(s→|s,RA(s,V ),g(s))

[
VB(s

↓)
]

(13)

for all s → S and for all g → Wd
B. By recursively applying Equation (13) for VB on the

right-hand side, we have for all s → S

VB(s) ↑ rA(s,RA(s, V ), g(s)) + ωBEs1 [VB(s1)] (14a)

↑ rA(s,RA(s, V ), g(s)) + ωBEs1

[
rA(s1, RA(s1, V ), g(s1)) + ωBEs2 [VB(s2)]

]
(14b)

↑ · · ·

↑ ERA(V )g

[
n↔1∑

t=0

ωtB r̂B(st, at, bt)

∣∣∣∣∣s0 = s

]
+ ωnBERA(V )g

[
VB(sn)

∣∣∣s0 = s
]
. (14c)

In the limit for n ↓ ↔, the first term of the right-hand side of Equation (14c) converges to
V RA(V )g
B (s), and the second term converges to 0. Therefore, VB(s) ↑ V RA(V )g

B (s) holds for
all s → S. Since g → Wd

B is arbitrary, it holds that

VB(s) ↭ max
g→Wd

B

V RA(V )g
B . (15)

Owing to the existence of a deterministic optimal policy for any single-agent MDP, we obtain

VB ↭ max
g→Wd

B

V RA(V )g
B

s
= max

g→WB

V RA(V )g
B . (16)

We show that VB(s)
s
= maxg→WB V RA(V )g

B . It su!ces to show that there exists g↗ such
that VB(s)

s
= V RA(V )g↑

B . Let g↗ such that g↗(s) = RB(s,RA(s, V ), VB) for each s → S. Then,
by the definition of RB, for any s → S, we have

VB(s) = rB(s,RA(s, V ), g↗(s)) + ωBEs→↑p(s→|s,RA(s,V ),g↑(s))

[
VB(s

↓)
]
. (17)

With the repeated application of this equality, analogous to the above argument, we obtain
VB

s
= V RA(V )g↑

B .

Appendix B. Proof of Theorem 7

Proof First, suppose that V ↗
A → PV . Then, by the definition of the SE value function,

we have V ↗
A ↭ v for all v → clV . Therefore, no other PO value function exists. Hence,

PV = {V ↗
A}.

Subsequently, suppose that PV = {v↗} is a singleton. Then, v↗ ↗ v for all v → V \ PV
because, for all v → V \ PV , there exists v̂ → PV such that v̂ ↗ v. Suppose that v↗ ↘ s= V ↗

A.
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Then, for some s → S, v↗(s) < supf→W V f†
A (s) holds. It implies that there exists v → V \PV

such that v↗(s) < v(s) for some s, which contradicts v↗ ↗ v. Hence, v↗ s
= V ↗

A.
Altogether, we have V ↗

A → PV if and only if PV is a singleton. Because PO policies exists
if and only if PV ≃ V ↘= ⇐, the SE policy exists if and only if PV = {v↗} is a singleton and
v↗ → V.

Appendix C. Proof of Theorem 8

Proof We prove each statement one by one.

Proof of (a) The definition of Qf →†
A (s, f) is equivalent to

Qf →†
A (s, f) = EfR↑

B(f) [r̂A(s, a, b)|s] + ωAEfR↑
B(f)

[
V f →†
A (s↓)

∣∣∣s
]
. (18)

Then, if it holds that V f →†
A (s) ⇒ Qf →†

A (s, f) for all s → S, we have, for all s0 → S,

V f →†
A (s0) ⇒ EfR↑

B(f) [r̂A(s0, a0, b0)|s0] + ωAEfR↑
B(f)

[
V f →†
A (s1)

∣∣∣s0
]

(19a)

⇒ EfR↑
B(f) [r̂A(s0, a0, b0)|s0] + ωAEfR↑

B(f)
[

EfR↑
B(f) [r̂A(s1, a1, b1)|s1] + ωAEfR↑

B(f)
[
V f →†
A (s2)

∣∣∣s1
] ∣∣∣s0

]
(19b)

⇒ . . .

⇒ EfR↑
B(f)

[
n↔1∑

t=0

ωtAr̂A(st, at, bt)

∣∣∣∣∣s0

]
+ ωnAEfR↑

B(f)
[
V f →†
A (sn)

∣∣∣s0
]
. (19c)

In the limit for n ↓ ↔, the first term converges to V
fR↑

B(f)
A (s0) and the second term

converges to 0. Therefore, it holds that V f →†
A (s0) ⇒ Qf →†

A (s, f) ⇒ V
fR↑

B(f)
A (s0) = V f†

A (s0) for
all s0 → S.

Proof of (b) If it holds that Qf →†
A (s, f) = V f →†

A (s) ⇑s → S, by the similar derivation of
Equation (19), we obtain

V f →†
A (s0) = EfR↑

B(f)

[
n↔1∑

t=0

ωtAr̂A(st, at, bt)

∣∣∣∣∣s0

]
+ ωnAEfR↑

B(f)
[
V f →†
A (sn)

∣∣∣s0
]

(20)

for all s0 → S. Then, in the limit for n ↓ ↔, we have V f →†
A (s0) = V f†

A (s0) for all s0 → S.
Conversely, if it holds that V f →†

A (s) = V f†
A (s) for all s → S, we have

V f†
A (s) = rA(s, f(s), R

↗
B(s, f)) + ωAEs→↑p(s→|s,f(s),R↑

B(s,f))

[
V f†
A (s↓)

]
(21a)

= rA(s, f(s), R
↗
B(s, f)) + ωAEs→↑p(s→|s,f(s),R↑

B(s,f))

[
V f →†
A (s↓)

]
(21b)

= Qf →†
A (s, f) (21c)

for all s → S, which follows that Qf →†
A (s, f) = V f†

A (s) = V f →†
A (s) for all s → S.
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Proof of (c) By the definition of V f†
A (s), we can rewrite the reward value as

rA(s, f(s), R
↗
B(s, f)) = V f†

A (s)⇓ ωAEs→

[
V f†
A (s↓)

]
. (22)

Plugging it into the definition of Qf →†
A (s, f) and subtracting V f →†

A (s), we have

Qf →†
A (s, f)⇓ V f →†

A (s) = rA(s, f(s), R
↗
B(s, f)) + ωAEs→

[
V f →†
A (s↓)

]
⇓ V f →

A (s) (23)

= V f†
A (s)⇓ V f →†

A (s)⇓ ωAEs→

[
V f†
A (s↓)⇓ V f →†

A (s↓)
]
. (24)

The policy improvement is possible if and only if Qf →†
A (·, f) ↗ V f →†

A . Because of the above
equality, equivalently, we can say that the policy improvement from f ↓ is possible if and only
if there exists a policy f whose value function satisfies

V f†
A (s)⇓ V f →†

A (s) ↑ ωAEs→

[
V f†
A (s↓)⇓ V f →†

A (s↓)
]

(25)

for all s → S, and there exists a state s where the inequality strictly holds.

Appendix D. Proof of Theorem 9

Proof We prove the counterpart of Theorem 9. Taking the negation of Equation (5) for
all f → WA, we have

¬⇑f → WA

{
Qf →†

A (s, f) ↑ V f →†
A (s) ⇑s → S =⇔ V f†

A (s) = V f →†
A (s) ⇑s → S

}

↖⇔ ¬⇑f → WA

{
Qf →†

A (s, f) < V f →†
A (s) ↙s → S ∝ V f†

A (s) = V f →†
A (s) ⇑s → S

}
(26a)

↖⇔ ↙f → WA

{
Qf →†

A (s, f) ↑ V f →†
A (s) ⇑s → S ′ V f†

A (s) ↘= V f →†
A (s) ↙s → S

}
. (26b)

From Theorem 8 (a), since V f†
A (s) ↑ V f →†

A (s) ⇑s → S holds and Qf →†
A (s, f) ↑ V f →†

A (s) ⇑s → S
holds, we have

↙f → WA

{
Qf →†

A (s, f) ↑ V f →†
A (s) ⇑s → S ′ V f†

A (s) ↘= V f →†
A (s) ↙s → S

}

=⇔ ↙f → WA

{
V f†
A (s) ↑ V f →†

A (s) ⇑s → S ′ V f†
A (s) ↘= V f →†

A (s) ↙s → S
}

(27)

↖⇔ ↙f → WA

{
V f†
A ↗ V f →†

A

}
(28)

=⇔ ↙v → V ∞ clV
{
v ↗ V f →†

A

}
(29)

=⇔ V f →†
A /→ PV. (30)

Therefore, f ↓ is not a PO policy. This completes the proof.
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Appendix E. Proof of Theorem 10

Proof First, we prove that (i) =⇔ V f →†
A (s) > V f†

A (s) ↙s → S. Given f → WA, f ↓ → WA, by
the definition of ε(f, f ↓), we have

Es→↑p(s→|s,f(s),R↑
B(s,f))

[
Qf →†

A (s↓, f)⇓ V f →†
A (s↓)

]
⇒ ε(f, f ↓) (31)

for all s → S. Thus, we have

Qf →†
A (s, f) = rA(s, f(s), R

↗
B(s, f)) + ωAEs→↑p(s→|s,f(s),R↑

B(s,f))

[
V f →†
A (s↓)

]
(32a)

↑ rA(s, f(s), R
↗
B(s, f))

+ ωA
(
Es→↑p(s→|s,f(s),R↑

B(s,f))

[
Qf →†

A (s↓, f)
]
⇓ ε(f, f ↓)

)
(32b)

↑ . . .

↑ EfR↑
B(f)

[
n↔1∑

t=0

ωtArA(st, f(st), R
↗
B(st, f)) + ωnAV

f →†
A (sn)

∣∣∣∣∣s0 = s

]

⇓
(

n↔1∑

t=0

ωtA ⇓ ω0A

)
ε(f, f ↓).

(32c)

for all s → S. In the limit for n ↓ ↔, the first term converges to V f†
A (s), the second term

converges to 0, and the third term converges to ⇓ ωA
1↔ωA

ε(f, f ↓). Therefore, we have

Qf →†
A (s, f) ↑ V f†

A (s)⇓ ωA
1⇓ ωA

ε(f, f ↓) (33)

for all s → S. Then, if (i) holds, because there exists s → S such that Qf →†
A (s, f) < V f →†

A (s)⇓
ωA

1↔ωA
ε(f, f ↓), it holds that

V f →†
A (s)⇓ ωA

1⇓ ωA
ε(f,f ↓) > Qf →†

A (s, f) ↑ V f†
A (s)⇓ ωA

1⇓ ωA
ε(f, f ↓) ↙s → S. (34)

↫ V f →†
A (s) > V f†

A (s) ↙s → S. (35)

If (ii) holds, because of Theorem 8 (b), it holds that

V f →†
A (s) = V f†

A (s) ⇑s → S. (36)

Therefore, it holds that

⇑f → WA{(i) or (ii)}

=⇔ ⇑f → WA

{
V f →†
A (s) > V f†

A (s) ↙s → S or V f →†
A (s) = V f†

A (s) ⇑s → S
}
, (37)

where the right-hand side is equivalent to the definition of PO policies (Theorem 6).
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Appendix F. Proof of Theorem 11

Proof We prove each statement one by one. The proof of (a) is based on the monotonicity
of {vt} and the compactness of clV . The proof of (b) is based on the statement (b) of
Theorem 8. The statements (c) and (d) are proved by contradiction using the statement (c)
of Theorem 8.

Proof of (a) As ft+1 → W↭(ft), it holds that

vt+1 = V
ff+1†
A ↭ Qft†

A (·, ft+1) ↭ V ft†
A (·) = vt. (38)

Thus, vt+1 ↭ vt holds for all t → N.
Because rA is bounded, so is V f†

A , implying clV is compact. Considering the sequence
{vt(s)}↘t=0 for each s → S, it is a monotonically increasing sequence. {vt(s)}↘t=0 converges in
clV because clV is compact. Let v↘(s) = limt≃↘ vt(s) for each s → S. Then, it holds that
v↘ = limt≃↘ vt.

Proof of (b) First, vt+1
s
= vt ↖= vt

s
= v↘ is apparent.

Second, we prove vt+1
s
= vt =⇔ vt

s
= v↘. As ft+1 → W1↔ε(ft), it holds that

L
[
V ft+1†
A

]
⇓ L

[
V ft†
A

]
↑ L

[
Qft†

A (·, ft+1)
]
⇓ L

[
V ft†
A

]
(39)

↑ (1⇓ ϑ) sup
f→W↭(ft)

(
L
[
Qft†

A (·, f)
]
⇓ L

[
V ft†
A

] )
. (40)

If vt+1
s
= vt, we have L[vt+1]⇓ L[vt] = 0; hence, the above inequality implies

sup
f→W↭(ft)

L
[
Qft†

A (·, f)
]
= L

[
V ft†
A

]
; (41)

therefore, for all f → W↭(ft), we have L
[
Qft†

A (·, f)
]
= L

[
V ft†
A

]
. Because L is Pareto-

compliant, the above equality implies Qft†
A (·, f) ↘↗ V ft†

A . However, because f → W↭(ft),
we have Qft†

A (·, f) ↭ V ft†
A , implying Qft†

A (·, f) s
= V ft†

A . From Statement (b) of Theorem 8,
we have V f†

A
s
= V ft†

A for all f → W↭(ft). (Conversely, if V f†
A

s
= V ft†

A for all f → W↭(ft),
we have vt+1

s
= vt.) Thus, W↭(f) = W↭(ft) holds for all f → W↭(ft). It implies that

W↭(ft+1) = W↭(ft) since ft+1 → W↭(ft); thus, ft+2 → W↭(ft+1) = W↭(ft). Therefore,

V ft†
A

s
= V ft+1†

A
s
= V ft+2†

A
s
= · · · (42)

and hence vt+k
s
= vt for all k ↑ 0, implying that vt = v↘.

Proof of (c) First, we show that

min
s→S

(v(s)⇓ v↘(s)) ⇒ ωA(max
s→S

(v(s)⇓ v↘(s)))

for all v → V.
Suppose that there exists v↗ → V such that

min
s→S

(v↗(s)⇓ v↘(s)) > ωA(max
s→S

(v↗(s)⇓ v↘(s)))
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holds. Then, v↗ ↗ v↘ and there exists f↗ → WA whose value function is V f↑†
A

s
= v↗. Let

ϖ = mins↓S(v↑(s)↔v↔(s))
maxs↓S(v↑(s)↔v↔(s)) . We have 1 ↑ ϖ > ωA.

For an arbitrarily small ϱ > 0 there exists t such that ∈vt ⇓ v↘∈↘ ⇒ ϱ because v↘
s
=

limt≃↘ vt. Because of the continuity of L, it also implies that for an arbitrarily small ϱ↓ > 0
there exists t↓ such that L[vt→ ] > L[v↘]⇓ ϱ↓. Therefore, we can find t satisfying

∈v↘ ⇓ vt∈↘ ⇒ ε
ϖ ⇓ ωA
ωA

∈v↗ ⇓ v↘∈↘ for some ε → (0, 1), and (43)

L[v↘]⇓ L[vt] < (1⇓ ϑ)(L[v̄]⇓ L[v↘]), (44)

where v̄(s) := v↘(s)+(1⇓ ε)(ϖ ⇓ωA)∈v↗⇓ v↘∈↘. Let ft be the corresponding policy whose
value function is V ft†

A
s
= vt. Here, we assume that ωA > 0. For the case of ωA = 0, Statement

(c) is an immediate consequence of Statement (d) because v↘ → PV and PV ∞ ςV .
Subsequently, we show V f↑†

A ↭ Qft†
A (·, f↗) ↭ v̄↘ using Equation (43). In the proof of

Statement (c) of Theorem 8, for all s → S,

Qf →†
A (s, f)⇓ V f →†

A (s) = V f†
A (s)⇓ V f →†

A (s)⇓ ωAEs→

[
V f†
A (s↓)⇓ V f →†

A (s↓)
]
. (45)

Notably, Es→

[
V f†
A (s↓)⇓ V f →†

A (s↓)
]
⇒ ∈V f†

A ⇓ V f →†
A ∈↘. Letting f = f↗ and f ↓ = ft, we have,

for all s → S,

Qft†
A (s, f↗)⇓ V ft†

A (s) ↑ V f↑†
A (s)⇓ V ft†

A (s)⇓ ωA∈V f↑†
A ⇓ V ft†

A ∈↘. (46)

By adding V ft†
A (s)⇓ v↘(s) to both sides of the above inequality, we obtain, for all s → S,

Qft†
A (s, f↗)⇓ v↘(s) ↑ v↗(s)⇓ v↘(s)⇓ ωA∈v↗ ⇓ vt∈↘ (47a)

↑ min
s→S

(v↗(s)⇓ v↘(s))⇓ ωA∈v↗ ⇓ vt∈↘ (47b)

= min
s→S

(v↗(s)⇓ v↘(s))⇓ ωA∈v↗ ⇓ v↘ + v↘ ⇓ vt∈↘ (47c)

↑ min
s→S

(v↗(s)⇓ v↘(s))⇓ ωA∈v↗ ⇓ v↘∈↘ ⇓ ωA∈v↘ ⇓ vt∈↘ (47d)

= (ϖ ⇓ ωA)∈v↗ ⇓ v↘∈↘ ⇓ ωA∈v↘ ⇓ vt∈↘ (47e)
↑ (1⇓ ε)(ϖ ⇓ ωA)∈v↗ ⇓ v↘∈↘. (47f)

Therefore, we have Qft†
A (·, f↗) ↭ v̄. Because v̄ ↗ v↘ ↭ V ft†

A , it implies that Qft†
A (·, f↗) ↭

V ft†
A . From Statement (a) of Theorem 8, we have V f↑†

A ↭ Qft†
A (·, f↗).

Finally, we derive a contradiction. Let φsupt = supf→W↭(ft) L[Q
ft†
A (·, f)]. Because f↗ →

W↭(ft), we have φsupt ↑ L[Qft†
A (·, f↗)]. We also know that L[Qft†

A (·, f↗)] ↑ L[v̄]. Because
ft+1 → W1↔ε(ft), we obtain

L[vt+1]⇓ L[vt] ↑ L[Qft†
A (·, ft+1)]⇓ L[vt] (48a)

↑ (1⇓ ϑ)

(
sup

f→W↭(ft)
L[Qft†

A (·, f)]⇓ L[vt]
)

(48b)

↑ (1⇓ ϑ)(L[Qft†
A (·, f↗)]⇓ L[v↘]) (48c)

↑ (1⇓ ϑ)(L[v̄]⇓ L[v↘]) (48d)
> L[v↘]⇓ L[vt], (48e)



Kudo Akimoto

where we used Equation (44) for the last inequality. It implies L[vt+1] > L[v↘], which
contradicts to the fact that v↘ ↭ vt+1. Therefore, we have mins→S(v(s) ⇓ v↘(s)) ⇒
ωA (maxs→S(v(s)⇓ v↘(s))) for all v → V.

Subsequently, we show that v↘ → ςV .
Suppose that v↘ → V \ ςV (i.e., v↘ is an interior of V). Then, there exists an r > 0

such that E = {v → FS | ∈v ⇓ v↘∈↘ ⇒ r} ∞ V . Let vr↘ be such that vr↘(s) = v↘(s) + r for
all s → S. Then, vr↘ → E . Moreover, because vr↘ → V , there exists a policy f r

↘ such that
V fr

↔†
A = vr↘.

We lead to the contradiction to mins→S v(s)⇓ v↘(s) ⇒ ωA (maxs→S v(s)⇓ v↘(s)). Using
Equation (43), we obtain

mins→S V fr
↔†

A (s)⇓ v↘(s)

maxs→S V fr
↔†

A (s)⇓ v↘(s)
=

mins→S(vr↘(s)⇓ v↘(s))

maxs→S(vr↘(s)⇓ v↘(s))
= 1, (49)

contradicting mins→S v(s)⇓ v↘(s) ⇒ ωA (maxs→S v(s)⇓ v↘(s)) for all v → V.

Proof of (d) In case of ωA = 0, we have Qft†
A (·, f) s

= V f†
A for all ft, f → WA.

Suppose that v↘ /→ PV . Then, there exists a value function v↗ → clV such that v↗ ↗ v↘.
Similar to the proof of Statement (c), we choose t such that

L[v↘]⇓ L[vt] < (1⇓ ϑ)(L[v↗]⇓ L[v↘]). (50)

Let V↭(vt) := {v → V | v ↭ vt} and clV↭(vt) := {v → clV | v ↭ vt}. Then, we have
v↗ → clV↭(vt) because v↗ ↗ v↘ ↭ vt. Moreover, because V↭(vt) = {V f†

A : f → W↭(ft)}, we
obtain

φsupt := sup
f→W↭(ft)

L[V f†
A ] (51a)

= sup
v→V↭(vt)

L[v] (51b)

= max
v→clV↭(vt)

L[v] (51c)

↑ L[v↗]. (51d)

Therefore,

L[vt+1]⇓ L[vt] ↑ (1⇓ ϑ)(φsupt ⇓ L[vt]) (52a)
↑ (1⇓ ϑ)(φsupt ⇓ L[v↘]) (52b)
↑ (1⇓ ϑ)(L[v↗]⇓ L[v↘]) (52c)
> L[v↘]⇓ L[vt], (52d)

where the derivation of Equation (52a) is due to the definition of W1↔ε(ft) in Equation (7)
and Qft†

A (·, f) s
= V f†

A . This implies L[vt+1] > L[v↘], which contradicts to v↘ ↭ vt+1. There-
fore, v↘ → PV .
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Appendix G. Splitting the Search Space

The proposed algorithm in Algorithm 1 can be impractical when the leader’s policy space
WA is prohibitively large to search for the next policy in Equation (6) and Equation (8). To
avoid the exhaustive search, we propose a splitting strategy for the search space to obtain
improved policies from each subspace e!ciently.

We first split WA into disjoint sets W1 ∋ · · · ∋WK , where the best response is R↗
B(f) =

g↗i → Wd
B for f → Wi. Because the set of deterministic policies, Wd

B, is finite, we can always
find such a separation. Additionally, we argue that the number of deterministic policies that
form the best response is rather limited, enabling us to enumerate them easily.

We consider replacing (8) with locating a Pareto optimal f with respect to Qft†
A (·, f). Be-

cause (8) also locates Pareto optimal f , this replacement corresponds to selecting a di"erent
L at each t.

This is realized in two steps. First, we locate a policy satisfying Qft†
A (·, f) ↭ V ft†

A . It is
nontrivial as the best response R↗

B changes as f changes. However, if we limit our attention
to a subset Wk for some k, the best response does not change with f → Wk. Then, locating
f → Wk satisfying Qft†

A (·, f) ↭ V ft†
A is casted as the following constrained optimization

problem:

min
z,f→Wk

z s.t. V ft†
A (s)⇓Qft†

A (s, f) ↬ z for all s → S, (53)

where Qft†
A (s, f) is di"erentiable with respect to f and is easily computable as the best

response is constant. Therefore, it will be solved by, e.g., a gradient-based solver with
projection onto Wk. A solution with z ⇒ 0 satisfies Qft†

A (·, f) ↭ V ft†
A . Such a solution must

exist in Wk for some k because ft satisfies this condition.
Once we find such a solution, denoted as (zt, f ↓

t), we find a Pareto optimal policy for
Qft†

A (·, f) in Wk≃W↭(ft) by improving f ↓
t . It is done by performing a Pareto ascent method

with projection,

f △ !Wk(f + ↼”), where ”⇐▽Qft†
A (s, f) ⊜ 0 for all s → S, (54)

or its variants, e.g., Harada et al. (2006), with ft as a feasible initial solution of this step. If
we find f↗

t such that Qft†
A (·, f) ↗ V ft†

A , we let ft+1 = f↗
t . These steps will be continued until

a predefined termination criterion is satisfied, or no policy strictly dominating the current
policy is found. The whole algorithm is shown in Algorithm 2.
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Algorithm 2 Practical Pareto-Optimal Policy Iteration
Input: Maximum number of iterations M .
1: Split the leader’s policy space WA into disjoint sets W1 ∋ · · · ∋ WK , where the best

response is R↗
B(f) = g↗i → Wd

B for f → Wi

2: Randomly initialize f0 → WA and compute g0 = R↗
B(f0)

3: for t = 0 to M ⇓ 1 do

4: Compute V ft†
A by repeatedly applying T

ftR↑
B(ft)

A
5: Let It = {1, . . . ,K}
6: while |It| > 0 do

7: Randomly select k → It
8: Solve (53) to obtain zt, f ↓

t

9: if zt ⇒ 0 then

10: Perform the Pareto ascent (54) to obtain f↗
t

11: Let ft+1 = f↗
t and break if Qft†

A (·, f↗
t ) ↗ V ft†

A
12: end if

13: Update It △ It \ {k}
14: end while

15: Let fM = · · · = ft+1 = ft and break if It = ⇐
16: end for

Output: A stationary policy fM

Appendix H. Backtracking

Algorithm 1 may not output a PO policy because the terminate condition in line 5 of
Algorithm 1 is the necessary condition for PO policies. In this case, Theorem 10 can be used
to determine whether the output policy is a PO policy: provided (i) or (ii) in Theorem 10
holds for all f → WA with the output policy ft and its state value function V ft†

A , ft is a PO
policy. Notably, this judgment is not perfect because the policy may be determined not to
be a PO policy when it really is a PO policy.

We proposed selecting another policy f ↓ → W(ft↔1) that has not been selected thus far
and restarting the for loop with ft △ f ↓, which we call "Backtracking", to deal with the case
where the output policy ft(t < M) is determined not to be a PO policy. If there is no policy
left in W(ft↔1), then it backtracks one by one, as W(ft↔2),W(ft↔3), . . . , until it reaches the
set with policies that have never been selected. This method requires that W(ft) is saved
at each iteration.

The entire proposed algorithm with the PO-policy judgement and the backtracking is
shown in Algorithm 3. W is a list to save each W(ft) and M is the maximum number of
iterations. This algorithm is designed such that the number of times to compute V ft†

A in line
5 and W↭(ft) in line 7 is at most M . If the PO-policy judgment in line 9 does not return
True during M iterations, the algorithm outputs the policy that maximizes the objective∑

s→S ↽sV
ft†
A (s) among the ones that satisfy the necessary condition for PO policies thus far

and fM (see lines 12, 25, and 26).
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Algorithm 3 Pareto-Optimal Policy Iteration with Backtracking
Input: Pareto-compliant scalarization L, maximum number of iterations M , a M -length

list of empty sets W .
1: W (0) △ WA

2: Randomly sample f0 from W (0) without replacement.
3: Woutput △ {}
4: for t = 0 to M ⇓ 1 do

5: Compute V ft†
A → F(S) such that (T

ftR↑
B(ft)

A V ft†
A )(s) = V ft†

A (s) for all s → S.
6: Qft†

A (s, a, b) △ rA(s, a, b) + ωAEs→↑p(s→|s,a,b)

[
V ft†
A (s↓)

]
for all s → S, a → A, b → B.

7: W↭(ft) △ {f → WA | Ea↑f(s)

[
Qft†

A (s, a,R↗
B(s, f))

]
↑ V ft†

A (s) ⇑s → S}.

8: if Ea↑f(s)

[
Qft†

A (s, a,R↗
B(s, f))

]
= V ft†

A (s) ⇑s → S, ⇑f → W↭(ft) then

9: if ft satisfies (i) or (ii) of Theorem 10 for all f → WA then

10: return f↗ △ ft.
11: end if

12: Put ft into Woutput.
13: # Backtracking
14: k △ t
15: while |W (k)| = 0 do

16: k △ k ⇓ 1
17: end while

18: Randomly sample ft+1 from W (k) without replacement.
19: else

20: W(ft) △ argmaxf→W↭(ft) L
[
Ea↑f(·)

[
Qft†

A (·, a, R↗
B(·, f))

]]
.

21: W (t+ 1) △ W(ft).
22: Randomly sample ft+1 from W (t+ 1) without replacement.
23: end if

24: end for

25: Put fM into Woutput.
26: return f↗ → argmaxft→Woutput

L
[
V ft†
A (·)

]

Output: A stationary policy f↗

Appendix I. Relation between the methods of Zhang et al. (2020) and
Bucarey et al. (2022)

Zhang et al. (2020a) defined the optimal value functions as V ↗
i (i → {A,B}), which are the

solution of the following equations (Zhang et al., 2020a): let a → A, b → B, ω → [0, 1), and for
all s → S,

Q↗
i (s, a, b) = ri(s, a, b) + ωEs→↑p(s→|s,a,b)

[
V ↗
i (s

↓)
]
, (55)

V ↗
i (s) = Stackelbergi(Q

↗
A(s), Q

↗
B(s)), (56)

where Q↗
i (s) is the Q-value Qi(a, b, s) of an action pair (a, b) → A̸ B in state s. Given the

fixed s, Q↗
i (b, a, s) can be viewed as the payo" of (a, b) for the agent i; thus, Q↗

i (s) can be
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viewed as the payo" table of agent i in the state s. Stackelbergi(Q↗
A(s), Q

↗
B(s)) is the

payo" for agent i in the Stackelberg equilibrium of the normal-form game represented by
the payo" tables (Q↗

A(s), Q
↗
B(s)). Therefore, Equation (56) can be written as

V ↗
i (s) = Q↗

i (s,R
↓
A(s), R

↓
B(s,R

↓
A(s))), (57a)

where R↓
A(s) := argmax

a→A
Q↗

A(s, a,RB(s, a)), (57b)

R↓
B(s, a) := argmax

b→B
Q↗

B(s, a, b). (57c)

By substituting Equation (55) to Equation (57), we obtain

V ↗
i (s) = ri(s,R

↓
A(s), R

↓
B(s,R

↓
A(s))) + ωEs→↑p(s→|s,R→

A(s),RB(s,R→
A(s)))

[
V ↗
i (s

↓)
]
, (58a)

where R↓
A(s) := argmax

a→A
rA(s, a,R

↓
B(s, a)) + ωEs→↑p(s→|s,a,RB(s,a))

[
V ↗
A(s

↓)
]
, (58b)

R↓
B(s, a) := argmax

b→B
rB(s, a, b) + ωEs→↑p(s→|s,a,b))

[
V ↗
B(s

↓)
]
. (58c)

Meanwhile, the operator used in Bucarey et al. (2022) is given by

(Tv)i(s) = ri(s,RA(s, v), RB(s,RA(s, v), vB))

+ ωEs→↑p(s→|s,RA(s,v),RB(s,RA(s,v),vb))

[
vi(s

↓)
]
,

(59a)

where RA(s, v) := argmax
fs→!(A)

rA(s, fs, RB(s, fs, vB))

+ ωEs→↑p(s→|s,fs,RB(s,fs,vB))

[
vA(s

↓)
]
,

(59b)

RB(s, fs, vB) := argmax
b→B

rB(s, fs, b) + ωEs→↑p(s→|s,fs,b)
[
vB(s

↓)
]
. (59c)

Notably, ω = ωA = ωB. Let us consider only the deterministic leader policies in the fixed
point of Equation (59) and replace argmaxfs→!(A) with argmaxa→A in the definition of RA.
Then, letting (VA, VB) be the fixed point of T , it holds from Equation (59), for all s → S,
which is expressed as

Vi(s) = ri(s,RA(s, V ), RB(s,RA(s, V ), VB))

+ ωEs→↑p(s→|s,RA(s,V ),RB(s,RA(s,V ),VB))

[
Vi(s

↓)
]
,

(60a)

where RA(s, V ) := argmax
a→A

rA(s, a,RB(s, a, VB))

+ ωEs→↑p(s→|s,a,RB(s,a,VB))

[
VA(s

↓)
]
,

(60b)

RB(s, a, VB) := argmax
b→B

rB(s, a, b) + ωEs→↑p(s→|s,a,b)
[
VB(s

↓)
]
. (60c)

Comparing these with Equation (58), the definition of (V ↗
A, V

↗
B) by Equation (58) is equiva-

lent to the definition of (VA, VB) by Equation (60). It follows that the fixed point in Zhang
et al. (2020) is the same in Bucarey et al. (2022) when the leader policies in the fixed point
are restricted to deterministic stationary policies.

By applying the discussion in the proof of Theorem 5 to (VA, VB) defined by Equa-
tion (60), we obtain

VA(s) = max
f→Wd

A

V fRB(f,VB)
A (s), VB(s) = max

g→WB

V RA(V )g
B (s), (61)



Policy Iteration for Two-Player General-Sum Stochastic Stackelberg Games

for all s → S. Then, the problem of the method of Bucarey et al. discussed in Section 5 also
occurs to (VA, VB): VA does not coincide with the state value function of the deterministic
SSE policies since RB(f, VB) is not guaranteed to be the best response against any f → Wd

A.

Appendix J. Application: Policy Teaching by Intervention to the
Transitions

In single-agent MDPs, the policy aimed by the agent can be changed by making changes
to the agent’s observations, reward signals, and transition probabilities, among others. For
example, in an MDP (S,A, p, ⇀, r, ω), the changes in the observations and the transition
probabilities are represented by replacement to another transition function p↓, which changes
the agent’s aim from the optimal policies of (S,A, p, ⇀, r, ω) to those of (S,A, p↓, ⇀, r, ω). This
is the theoretical foundation of poisoning attacks against RL (Behzadan and Munir, 2017;
Huang and Zhu, 2019; Zhang et al., 2020b; Rakhsha et al., 2020; Sun et al., 2020) and policy
teaching (Zhang and Parkes, 2008; Zhang et al., 2009), which aims to guide the agent’s
policy learning.

SSGs can be viewed as a model of intervention in transition probabilities by the leader,
where the follower is the victim of the attack or the teaching. Even if the follower takes the
same action at each state, the transition can be shifted by the leader changing its actions be-
cause the transition probability depends on the actions of all the agents. Therefore, suppose
the follower cannot observe both the attendance and the actions of the leader, then the fol-
lower’s learning can be represented as learning the optimal policies of the single-agent MDP
(S,AB, pf , ⇀, r̂B, ωB), where f → WA is the leader’s policy, pf (s↓|s, b) := Ea↑f(s)[p̂(s

↓|s, a, b)],
and r̂B : S ̸ B ↓ R. Notably, R↗

B(f) is its optimal policy. Then, the problem of guiding
the follower’s aim to the leader’s objective is expressed as

max
f→WA

EfR↑
B(f)

[ ↘∑

t=0

ωtAr̂A(st, at, bt)

]
, (62)

where r̂A is the leader’s reward function that represents the desired follower’s behavior
intended by the leader. f↗ is the optimal solution of Equation (62), and the state-action
sequences generated by the corresponding follower’s optimal policy R↗

B(f) maximize not
only the follower’s expected cumulative discounted reward but also that of the leader’s.
This can be viewed as the follower attaining the leader’s desired behavior when the follower
achieves its own learning goal.

The optimal solution of Equation (62) is given by the PO policy f that maximizes
L[V f†

A ] =
∑

s→S ⇀(s)V f†
A (s). Therefore, our proposed approach can be applied to this prob-

lem when the transition function is known and the follower’s best response can be computed.
Although the optimality of the obtained solution is not guaranteed unless ωA = 0, our analy-
sis guarantees the monotone improvement of the leader’s policy, which is of great importance
in practice. In contrast, existing methods trying to obtain the SSE policy may be inade-
quate because it is usual that the follower is not myopic, and hence, the SSE policy does
not necessarily exist.


