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Toward Robust Live Streaming over LEO Satellite Constellations:
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ABSTRACT
Live streaming has experienced significant growth recently. Yet

this rise in popularity contrasts with the reality that a substantial

segment of the global population still lacks Internet access. The

emergence of Low Earth orbit Satellite Networks (LSNs), such as

SpaceX’s Starlink and Amazon’s Project Kuiper, presents a promis-

ing solution to this issue. Nevertheless, our measurement study

reveals that existing live streaming platforms may not be able to de-

liver a smooth viewing experience on LSNs due to frequent satellite

handovers, leading to frequent rebuffering events. Current state-

of-the-art learning-based Adaptive Bitrate (ABR) algorithms, even

when trained on satellite network traces, fail to manage the abrupt

network variations associated with these handovers effectively. To

address these challenges, for the first time, we introduce Satellite-

Aware Rate Adaptation (SARA), a versatile and lightweight middle-

ware that can be seamlessly integrated with various ABR algorithms

to enhance the performance of live streaming over LSNs. SARA

intelligently modulates video playback speed and furnishes ABR

algorithms with key insights derived from the distinctive network

characteristics of LSNs, thereby aiding ABR algorithms in making

informed bitrate selections and effectively minimizing rebuffering

events that occur during satellite handovers. Our extensive evalua-

tion shows that SARA can effectively reduce the rebuffering time by

an average of 39.41% and slightly improve latency by 0.65% while

only introducing an overall loss in bitrate by 0.13%.

CCS CONCEPTS
• Information systems→Multimedia streaming; • Networks
→Wireless access networks.

KEYWORDS
Multimedia Services, Low Earth Orbit Satellite Network, Network

Performance Measurement & Optimization

1 INTRODUCTION
Live streaming witnessed a significant 99% growth over the past

three years,
1
currently engaging almost 30% of Internet users on

1
https://www.forbes.com/sites/paultassi/2020/05/16/report-livestream-viewership-

grew-99-in-lockdown-microsofts-mixer-grew-02/?sh=351f5a8e76cb
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Figure 1: Overview of live streaming services over LSNswhere
SARA can be easily integrated with various ABR algorithms
to enhance viewers’ live streaming experience.
a weekly basis.

2
. While it has become integral to urban life, ap-

proximately 34% of the global population remains without Internet

access.
3
Fortunately, the commercial success of Low Earth orbit

Satellite Networks (LSNs) operators, notably SpaceX’s Starlink and

Amazon’s Project Kuiper [28], presents a promising solution to

bridge this gap.

Low Earth Orbit (LEO) satellites, orbiting significantly closer

to the Earth than their Geosynchronous Orbit counterparts, offer

reduced communication delays but with a much smaller coverage

area.
4
Additionally, due to their faster orbital periods of 128 min-

utes or less, they only have a visible duration of 2-10 minutes at a

fixed location on the Earth [2, 24]. Consequently, a constellation of

LEO satellites, forming an LSN, is necessary to achieve comprehen-

sive global coverage and provide seamless, high-quality Internet

services [22, 40]. With a dense satellite constellation, LSNs can

offer significant advantages, especially in areas where establishing

terrestrial infrastructure is either challenging or cost-prohibitive.

By resorting to LSNs, live streaming can fully unleash its potential

in currently underserved areas, reaching a broader audience and

offering more resilient services.

Yet, user equipment (UE) connected to LSNs, even stationary

ones, inevitably experience frequent satellite handovers due to satel-

lite motion. Recent measurement studies have shown that Starlink

updates the UE-satellite link at a granularity of 15 seconds [3, 35].

Such frequent handovers can lead to network outages [17, 27, 41],

adversely affecting live streaming services which rely on continu-

ous connectivity. Live streaming services predominantly use HTTP

adaptive streaming and HTTP Live Streaming protocol to deliver

2
https://www.statista.com/statistics/1351162/live-streaming-global-reach/

3
https://www.statista.com/statistics/1229532/

4
https://earthobservatory.nasa.gov/features/OrbitsCatalog

1

https://www.forbes.com/sites/paultassi/2020/05/16/report-livestream-viewership-grew-99-in-lockdown-microsofts-mixer-grew-02/?sh=351f5a8e76cb
https://www.forbes.com/sites/paultassi/2020/05/16/report-livestream-viewership-grew-99-in-lockdown-microsofts-mixer-grew-02/?sh=351f5a8e76cb
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video content. At the heart of this technology are Adaptive Bitrate

(ABR) algorithms. By selecting from various pre-encoded video

quality levels, ABR algorithms can combat variations in underlying

network conditions to ensure viewers receive high-quality and low

latency video streams.

Nevertheless, these ABR algorithms are optimized for terrestrial

networks and lack awareness of the sudden network disruptions

caused by frequent satellite handovers. According to our measure-

ments, Twitch’s ABR algorithm struggles with the variable network

conditions of LSNs, leading to video rebuffering events at the fre-

quency of several minutes during Internet peak hours. Even using

state-of-the-art learning based ABR algorithms trained directly with

satellite network data, the streaming quality still struggles as these

algorithms do not distinguish LSNs from such wireless terrestrial

networks as WiFi or cellular networks, where the handovers are

mostly attributable to user movements, leading to sporadic and

infrequent occurrences and a more gradual degradation in network

conditions. In contrast, LEO satellites usually move at the speed

of 28,080 kilometres per hour
5
, which is two magnitudes higher

than the typical moving speed of pedestrian or vehicular users in

wireless terrestrial networks. Making those handovers in LSNs usu-

ally occur at a far more frequent pace, and the consequent shifts

in network conditions are not only much more abrupt but also

typically accompanied with disruptions. Such fast-paced handovers

in LSNs, coupled with the abruptness of network condition varia-

tions and disruptions, severely challenge the adaptability of current

ABR algorithms, outpacing their capacity to adjust and resulting in

sub-optimal performance and diminished streaming experiences in

the LSN context.

We strive to tackle this challenge and, for the first time, propose

a versatile and lightweight middleware solution named Satellite-

Aware Rate Adaptation (SARA), which can seamlessly work with

various existing ABR algorithms, furnishing them with insight-

ful information interpreted from specific network characteristics

unique to LSNs, enhancing their adaptability, and enabling them

to more effectively navigate and optimize streaming performance

within this brand new type of network environment. The design

of SARA is motivated by our preliminary measurements of the

Starlink network, which focus specifically on its performance in

the context of live streaming services and identifying key charac-

teristics that can significantly impact users’ viewing experience. As

illustrated in Figure 1, SARA is explicitly crafted to enhance the

performance of a variety of different types of ABR algorithms such

as Robust Model Predictive Control (RobustMPC), Buffer Based

Approach (BBA), and Pensieve [12, 25, 38] for live streaming ser-

vices over LSNs where SARA can intelligently control the playback

speed by both accelerating and decelerating the video and assist the

ABR algorithm in selecting the suitable bitrate to avoid rebuffering

events during satellite handovers. Our extensive evaluation shows

that SARA can effectively reduce rebuffering time by an average

of 39.41% while simultaneously maintaining both high bitrate and

low latency for live streaming viewers.

Our primary contributions are as follows:

• We conduct a preliminary measurement study focusing on

LSNs, using Starlink as a case study. The results, particularly

5
https://www.esa.int/ESA_Multimedia/Images/2020/03/Low_Earth_orbit

on Twitch, reveal that existing ABR algorithms struggle to

provide smooth viewing experiences under LSN conditions,

often resulting in frequent video pauses ranging from 5.93

seconds to 23.57 seconds.

• By further in-depth analysis of Starlink’s outage, we dis-

cover that the occurrence of outages surges by 150% during

Internet peak hours compared to non-peak hours.

• Motivated by our measurement study, we propose for the

first time a versatile middleware named SARA to dynami-

cally adjust video playback speed and utilize throughput

and buffer scalars to guide existing ABR algorithms with

bitrate selection and combat network outages under LSNs.

• Our extensive evaluation shows that SARA can significantly

reduce average rebuffering time by 39.41% at a negligible

cost of an average loss in bitrate of 0.65%.

2 MEASUREMENTS AND ANALYSIS
We first conduct a measurement on Starlink to help us understand

the network characteristics and challenges associated with LSNs in

the context of live streaming services. In this paper, we focus on the

client side and evaluate the downlink performance of the Starlink

network. Our Starlink UE is positioned at a vantage point to ensure

an unobstructed view of the sky with an obstruction ratio of 0.734%

as reported by the Starlink portal
6
. We collect our measurement

data on clear days to prevent any performance degradation due to

extreme weather conditions [24]. The data collection commenced

in late March 2023 and spanned approximately four months. During

this period, we measured basic network data, including network

delay and throughput. Additionally, we collected Starlink outage

history using the Starlink mobile app
7
, which provided valuable

insights into the frequency and duration of network disruptions.

Beyond these general network measurements, we also evaluate the

performance of Twtich, TikTok LIVE and YouTube Live in order to

understand the performance of ABR algorithms under LSNs in the

context of live streaming.

2.1 Live Streaming Challenges in the LSNs
In this paper, we specifically evaluate the performance of Twitch, as
our preliminary measurements indicate that all three platforms ex-

hibit comparable performance, and Twitch is the predominant live

streaming platform in North America
8
. To evaluate Twitch ABR’s

performance, we choose a channel that streams content at a typical

resolution of 1920 × 1080, with a default frame rate of 35 FPS and

bitrates around 6Mbps. During our measurement, we observed a

stark contrast in the number of rebuffering events and duration

between LSN and terrestrial network. In terms of duration, rebuffer-

ing lasts an average of 5.93 seconds with a peak of 23.57 seconds

for LSN, while for terrestrial networks, the maximum rebuffering

time is only 4.64 seconds with an average of 2.97 seconds. In terms

of frequency, we observed an average of 1.04 rebuffering events per

hour with LSN, with instances of up to 8 rebuffering events occur-

ring within one hour. In comparison, terrestrial networks exhibit

6
http://dishy.starlink.com/

7
https://play.google.com/store/apps/details?id=com.starlink.mobile

8
https://www.statista.com/statistics/1409393/top-live-streaming-platforms-hours-

watched/

2

https://www.esa.int/ESA_Multimedia/Images/2020/03/Low_Earth_orbit
http://dishy.starlink.com/
https://play.google.com/store/apps/details?id=com.starlink.mobile
https://www.statista.com/statistics/1409393/top-live-streaming-platforms-hours-watched/
https://www.statista.com/statistics/1409393/top-live-streaming-platforms-hours-watched/
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Figure 2: A sequence of rebuffering events observed from
Twitch on the Starlink network.
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Figure 3: A typical rebuffering event, illustrating that short
duration outages can still cause video rebuffering due to
connection re-establishment in the application layer.

an average of 0.27 rebuffering events per hour, with no sequential

rebuffering events observed within one hour.

Figure 2 provides a 30-minute snapshot depicting buffer size

fluctuations on Twitch, which highlights the inadequacy of the

existing ABR algorithms in LSNs. Notably, the average rebuffering

duration, at 5.93 seconds, consistently exceeds the current Latency

to Broadcaster (LtB), which is 3 seconds in the figure. LtB represents

the time taken for content to travel from the streamer’s side to the

viewer’s side and also serves as the maximum limit for the amount

of video content that can be preloaded on the viewer’s side. As a

result, the buffer is consistently emptied after each network outage.

Even when the ABR algorithm always selects the lowest bitrate

to minimize rebuffering, completely avoiding such events remains

difficult. We also noticed that the outage reported by the Starlink

mobile app could lead to an extended rebuffering duration at the

application level. Figure 3 zooms in one particular rebuffering event.

As shown, there is a 1-second outage followed by a 2-seconds buffer

re-establishment, which ultimately leads to a rebuffering event

lasting for 1.4 seconds. Therefore, even if the buffer size marginally

exceeds the outage duration at the onset of the outage, users may

still encounter rebuffering events.

2.2 In-Depth Analysis of Network Outage
Numerous studies have confirmed that network outages in LSNs,

such as Starlink, are primarily due to satellite handovers [17, 24, 29,

41]. It also has been demonstrated through both end-to-end mea-

surements and signal analysis that Starlink schedules UE-satellite

link reallocation every 15 seconds, specifically occurring at the 12th,

27th, 42nd, and 57th seconds of each minute [3, 35]. However, the

exact satellite handover impact is still unknown as the handover

might succeed or fail, which depends on complex factors such as

the satellite load and the number of candidate satellites. To the

best of our knowledge, the precise handover impact is still under

exploration, and no unified pattern has been identified. Building

on this, we delve deeper into the distribution of outage events and

utilize statistical models to formalize the frequency and duration

of Starlink network outages.

Over three months, we recorded a total of 3, 755 outage events.

We consider each outage event as two separate statistical models:

one for the occurrence of outages and another for their duration.

Table 1: The top 3 distributions with the lowest SSE

Distribution SSE Mean Standard Deviation

Normal Inverse Gaussian 2.84 0.78 0.13

Weibull 3.45 0.80 0.27

Inverted Gamma 4.28 0.23 1.95
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Figure 4: Probability of the
first outage over time.
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distribution.
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Figure 6: Average number of outages within hours of a day.

We analyze the outage occurrence using a binomial distribution.

The Cumulative Density Function (CDF) is illustrated in Figure 4.

Our analysis indicates that there is an approximately 80% chance

of experiencing an outage within a 60-minute interval. For outage

duration distribution, we assess various distributions commonly

used for modelling event duration and compare their fitting accu-

racy based on the sum squared error (SSE), as presented in Table 1.

The Normal Inverse Gaussian (NIG) distribution shows the lowest

error, with an SSE of 2.84 and a standard deviation of 0.13. Figure 5

illustrates the probability distribution function of different outage

durations, comparing the actual outage data (represented by bars)

with the NIG distribution model (depicted as a line). The heavy-tail

property of the NIG distribution also corresponds well with our

observations: while 87.33% outage duration is less than 2 seconds,

they could extend beyond 5 seconds, up to a maximum of 31 sec-

onds, with a probability of 2.73%. While the majority of durations

are less than 2 seconds, given the connection re-establishment de-

lays discussed in Section 2.1, these short-duration outages can still

trigger rebuffering events in live streaming services.

Additionally, we notice a clear correlation between the occur-

rence and duration of outages and specific times of day. As illus-

trated in Figure 6, the frequency of outages experiences a dramatic

increase from 15:00 to 18:00, peaking at 20:00, which coincides with

the Internet rush hour
9
. The duration of these outages varies signif-

icantly throughout the day, with the standard deviation reaching its

highest at 8.03 around 00:00, then collapsing to 0.77 around 01:00.

Given that each Starlink satellite has a finite number of antennas

and shares communication channels among four users [29], the

likelihood of handover failure escalates due to the increased fre-

quency of handover operations required per satellite during these

9
https://en.wikipedia.org/wiki/Internet_rush_hour

3

https://en.wikipedia.org/wiki/Internet_rush_hour
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Figure 7: Overview of SARA.

peak times. Intriguingly, our findings show that the evening In-

ternet rush hour is more pronounced compared to the afternoon

which suggests that the majority of Starlink users are more likely

to engage in entertainment activities, such as live streaming.

3 SYSTEM MECHANISM
3.1 SARA Overview
From our measurement and analysis, we develop SARA, a versatile

middleware that can be easily integrated with a variety of exist-

ing ABR algorithms, whether they are buffer based, throughput

based, or learning based. SARA’s principal aim is to optimize user

QoE by effectively minimizing rebuffering events caused by satel-

lite handover and maintaining reasonably good video quality and

smoothness. SARA achieves this by dynamically adjusting video

playback speed and assisting ABR algorithms in selecting the ideal

bitrate. The overall structure of an ABR system incorporating SARA

is depicted in Figure 7. Upon the current playback status and outage

event detected by the outage predictor, SARA optimizer returns

three values: buffer scalar, throughput scalar, and playback speed.

The scalars are forwarded to the ABR algorithm and act as factors

influencing the final bitrate decision of the target ABR algorithm but

leaving the core bitrate selection mechanism unchanged. This de-

sign enables target ABR to be aware of the influence of LSN outage

events and requires minimal modifications to existing algorithms.

Figure 8 illustrates an example of how SARA operates along-

side other ABR algorithms. When there is an outage event which

happens at time 160 with a duration of 2 seconds. In the case of Ro-

bustMPC, its throughput predictor failed to anticipate the upcoming

network disruption. Consequently, the buffer is entirely depleted

after the network outage. In comparison, when SARA is integrated

with RobustMPC, it detects the impending outage event in advance

and reacts by banking more video content both by slowing down

the video playback speed and informing RobustMPC to lower the

bitrate. Before the network outage that lasted for 2 seconds, it had

already stored more than 3 seconds of video data, which allowed

the system to withstand the network outage. Subsequently, SARA

carefully increases the playback speed after the outage to reduce

the LtB back to the desired level, thus maintaining a low-latency

viewing experience.

3.2 Problem Formulation
In a typical adaptive video streaming system, video content is di-

vided into 𝐾 chunks with a fixed duration of 𝛼 seconds. Each chunk

is further encoded into multiple bitrate levels of different bitrates,

denoted by B = {𝑏1, 𝑏2, . . . , 𝑏𝑀 } where𝑀 represents the total num-

ber of bitrate levels. Let 𝑏𝑘,𝑚 represent the bitrate selected for the

k-th chunk, and 𝑞(𝑏𝑘,𝑚) represent the quality received by the user
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Figure 8: buffer occupation during a network outage.
for the selected bitrate using any video quality metric (e.g., PSNR

and VMAF [30]). Let 𝜉𝑘 represent the average throughput, 𝐶𝑘 rep-

resent the current buffer occupation in seconds, and 𝐿𝑡𝐵𝑘 signify

the current LtB in seconds. We denote the predicted outage event at

chunk 𝑘 as a 2-tuple 𝑜𝑘 = (𝑜𝑡
𝑘
, 𝑜𝑑
𝑘
), where 𝑜𝑡

𝑘
is the time remaining

until the outage occurs, and 𝑜𝑑
𝑘
is the duration of the outage.

For each decision round, our control variables consist of the

buffer scalar 𝑠𝑏
𝑘
, the throughput scalar 𝑠𝑟

𝑘
, and the playback speed

𝛽𝑘 . The buffer scalar and the throughput scalar range between 0

and 1 aimed to bias the ABR algorithms to select the appropriate

bitrate. In addition, the range of 𝛽𝑘 is constrained between 0.95 and

1.03 to ensure that changes in playback speed remain imperceptible

to the viewers, as corroborated by prior research [7]. We denote

𝜓𝑥 (·) as the generalized optimization target where the inputs are

buffer occupancy𝐶𝑘 and/or throughput 𝜉𝑘 , and the output is bitrate

𝑏𝑘,𝑚 . Thus, the selected bitrate can be represented as:

𝑏𝑘,𝑚 =


𝜓𝑏 (𝑠𝑏𝑘𝐶𝑘 ), if𝜓𝑥 (·) is buffer based
𝜓𝑟 (𝑠𝑟𝑘𝜉𝑘 ), if𝜓𝑥 (·) is throughput based
𝜓ℎ (𝑠𝑏𝑘𝐶𝑘 , 𝑠

𝑟
𝑘
𝜉𝑘 ), if𝜓𝑥 (·) is hybrid or learning network based

Prior to the onset of outage 𝑜𝑘 , we have a duration of 𝑜𝑘𝑡 video

content on the fly that can be downloaded. The maximum num-

ber of downloadable chunks prior to this outage is denoted as 𝜃𝑘 .

The actual 𝜃𝑘 is affected by our current throughput 𝜉𝑘 and the

selected bitrate 𝑏𝑘,𝑚 . Additionally, 𝜃𝑘 is constrained by the number

of chunks produced by the broadcaster within the time period 𝑜𝑘𝑡 .

Thus, we can formulate the number of chunks that can be down-

loaded as:

𝜃𝑘 = min

{ ⌊
𝜉𝑘𝑜

𝑘
𝑡

𝑏𝑘𝛼

⌋
,

⌊
𝑜𝑘𝑡

𝛼

⌋ }
,∀𝑘 ∈ K, (1)

Given the operational constraint that a video chunk can only be

decoded once the entire chunk is fully downloaded, it is necessary to

round down the 𝜃𝑘 value to account for incomplete chunks. Taking

into account the predicted outage events during each interval, we

apply the following constraint to ensure that the buffer remains

healthy after an outage:

1

𝛽𝑘
(𝐶𝑘 + 𝜃𝑘𝛼) − 𝑜𝑡𝑘 − 𝑜

𝑑
𝑘
≥ 𝛾 ,∀𝑘 ∈ K, (2)

The first term encapsulates the total available video content for

playback before an outage 𝑜𝑘 occurs. This is calculated by adding

the already buffered video content to the video content that can be

downloaded, adjusted by the playback speed. After subtracting 𝑜𝑡
𝑘

and 𝑜𝑑
𝑘
, we get the size of the remaining available buffer. This value

4
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Algorithm 1 Video Adaption Process using SARA

1: for 𝑘 = 1 to K do
2: 𝐶𝑘 ← current buffer state

3: 𝜉𝑘 ← throughput measured when downloading chunk 𝑘−1
4: (𝑜𝑡

𝑘
, 𝑜𝑑
𝑘
) ← 𝑂𝑢𝑡𝑎𝑔𝑒_𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 ()

5: (𝑠𝑏
𝑘
, 𝑠𝑟
𝑏
, 𝛽) ← 𝑆𝐴𝑅𝐴_𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 (𝑜𝑡

𝑘
, 𝑜𝑑
𝑘
)

6: if 𝑜𝑡
𝑘
> 0 then

7: 𝐶𝑘 ← 𝑠𝑏
𝑘
·𝐶𝑘

8: 𝜉𝑘 ← 𝑠𝑟
𝑘
· 𝜉𝑘

9: end if
10: set playback speed to 𝛽

11: 𝑏𝑘,𝑚 ← 𝐴𝐵𝑅_𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚(𝐶𝑘 , 𝜉𝑘 )
12: download chunk 𝑘 with bitrate𝑚, wait until finished

13: end for

must be equal to or exceed a predefined safety buffer level threshold

𝛾 to avoid playback interruptions. The necessity for a larger buffer

becomes apparent in practical scenarios where outages can result

in prolonged re-establishment times at the application level, as

highlighted in Section 2.1. Drawing insight from our measurements,

we configure 𝛾 to be 2 seconds.

If Eq. (2) cannot be satisfied for any possible values of 𝛽𝑘 and

𝑏𝑘,𝑚 and the buffer runs dry. This means SARA has insufficient

time to prepare for the outage. In this case, the rebuffering duration

can be defined as:

𝑇𝑘 = max{𝑜𝑡
𝑘
+ 𝑜𝑑

𝑘
+ 𝛾 − 1

𝛽𝑘
(𝐶𝑘 + 𝜃𝑘𝛼), 0} (3)

In light of previouswork [1, 10, 11, 33, 38], we adopt the following

linear-based QoE metric:

𝑄𝑘 = 𝑞(𝑏𝑘,𝑚)−𝜔𝑇𝑘 −𝜌 |𝑏𝑘 −𝑏𝑘−1 |−𝜂 |𝛽𝑘 −𝛽𝑘−1 |−𝜄𝐿𝑘 ,∀𝑘 ∈ K, (4)
where |𝑏𝑘 −𝑏𝑘−1 | represents the video bitrate smoothess and |𝛽𝑘 −
𝛽𝑘−1 | represents the playback speed smoothness. The 𝐿𝑘 is live

latency, which will be applied when 𝐿𝑡𝐵𝑘 is greater than the target

latency 𝐿𝑡𝐵0. In our experiment, the 𝐿𝑡𝐵0 is configured to 3 seconds,

as per the Low-Latency live guideline [9]. The expression for 𝐿𝑘 is

as follows:

𝐿𝑘 = max{𝐿𝑡𝐵𝑘 − 𝐿𝑡𝐵0, 0}, (5)

𝜌, 𝜂, 𝜔 and 𝜄 are adjustment factors to trade-off the quality benefits

and penalties. The objective of the system is to find the appropriate

buffer scalar 𝑠𝑘
𝑏
, the throughput scalar 𝑠𝑘𝑟 , and the playback speed

𝛽𝑘 for each chunk 𝑘 based on the above constraints, with the aim

of maximizing total user QoE, represented as:

max

𝑠𝑘
𝑏
,𝑠𝑘𝑟 ,𝛽𝑘

𝐾∑︁
𝑘=1

𝑄𝑘 (6)

𝑠 .𝑡 . (2) − (5)
Algorithm 1 delineates the operational methodology of SARA

when it is integrated with any ABR algorithm. The process be-

gins with SARA conducting a preliminary assessment via the Out-

age_Predictor module to predict upcoming network outages. Fol-

lowing this prediction, SARA utilizes the outage forecasts to adjust

the values of several key parameters: the buffer scalar, throughput

scalar, and playback speed. These scalars are strategically applied to

the current state of the buffer and the estimated throughput, thereby

Algorithm 2 SARA Optimizer

1: N ← number of iterations

2: R ← number of particles

3: A ← aggressiveness

4: 𝑤1,𝑤2,𝑤3 ← initialize weights

5: if 𝐶𝑘 < 𝑜𝑡
𝑘
then

6: O ←𝑚𝑎𝑥{𝐶𝑘 − 𝑜𝑡𝑘/𝐶𝑘 ,−0.2}
7: end if
8: for 𝑖 = 1 to R do
9: (𝑠𝑏

𝑘,𝑖
, 𝑠𝑟
𝑘,𝑖
, 𝛽𝑘,𝑖 ) ← randomly generate within bounds

10: 𝑣
𝑠𝑏
𝑘

𝑖
, 𝑣
𝑠𝑟
𝑘

𝑖
, 𝑣
𝛽𝑘
𝑖
← randomly generate between 0 and A

11: (𝑝𝑠
𝑏
𝑘

𝑖
, 𝑝
𝑠𝑟
𝑘

𝑖
, 𝑝
𝛽𝑘
𝑖
) ← (𝑠𝑏

𝑘,𝑖
, 𝑠𝑟
𝑘,𝑖
, 𝛽𝑘,𝑖 )

12: 𝑄𝑜𝐸𝑖 = 𝑄𝑜𝐸 (𝑠𝑏𝑘,𝑖 , 𝑠
𝑟
𝑘,𝑖
, 𝛽𝑘,𝑖 ) ← calculate using Equation 6

13: end for
14: 𝐺𝑠

𝑏
𝑘 ,𝐺𝑠

𝑟
𝑘 ,𝐺𝛽𝑘 ← argmax{𝑄𝑜𝐸𝑖 , . . . , 𝑄𝑜𝐸𝑛}

15: for 𝑛 = 1 to N do
16: for 𝑖 = 1 to R do
17: 𝑟1, 𝑟2 ← randomly generate between 0 and 1

18: 𝑣
𝑠𝑏
𝑘

𝑖
← 𝑤1 ·𝑣

𝑠𝑏
𝑘

𝑖
+𝑤2 ·𝑟1 · (𝑝

𝑠𝑏
𝑘

𝑖
−𝑠𝑏𝑖
𝑘
) +𝑤3 ·𝑟2 · (𝐺𝑠

𝑏
𝑘 −𝑠𝑏𝑖

𝑘
)

19: 𝑠𝑏
𝑘,𝑖
← min{0, 𝑠𝑏

𝑘,𝑖
+ 𝑣𝑠

𝑏
𝑘

𝑖
+ O}

20: repeat steps 17-19 for 𝑠𝑟
𝑘,𝑖

and 𝛽𝑘,𝑖

21: if 𝑄𝑜𝐸 (𝑠𝑏
𝑘,𝑖
, 𝑠𝑟
𝑘,𝑖
, 𝛽𝑘,𝑖 ) > 𝑄𝑜𝐸 (𝑝

𝑠𝑏
𝑘

𝑖
, 𝑝
𝑠𝑟
𝑘

𝑖
, 𝑝
𝛽𝑘
𝑖
) then

22: (𝑝𝑠
𝑏
𝑘

𝑖
, 𝑝
𝑠𝑟
𝑘

𝑖
, 𝑝
𝛽𝑘
𝑖
) ← (𝑠𝑏

𝑘,𝑖
, 𝑠𝑟
𝑘,𝑖
, 𝛽𝑘,𝑖 )

23: end if
24: end for
25: 𝐺𝑠

𝑏
𝑘 ,𝐺𝑠

𝑟
𝑘 ,𝐺𝛽𝑘 ← argmax{𝑄𝑜𝐸𝑖 , . . . , 𝑄𝑜𝐸𝑛}

26: end for
27: return 𝐺𝑠

𝑏
𝑘 ,𝐺𝑠

𝑟
𝑘 ,𝐺𝛽𝑘

modulating the inputs to the ABR algorithm. This modulation is

designed to decisively influence the ABR’s bitrate selection. In sce-

narios where no outage is anticipated, and the LtB metric is within

optimal ranges, these scalars default to a value of 1. This means

that the ABR algorithm operates without external adjustments,

maintaining full autonomy over bitrate decisions.

Since both buffer and throughput scalars, as well as playback

speed, are continuous variables, identifying the optimal solution

can be computationally intensive, rendering it impractical for live

streaming contexts. To address this, we have employed a heuristics-

based strategy using Particle Swarm Optimization (PSO) [4], as de-

tailed in Algorithm 2. In this algorithm, we spawn R particles, each

representing a potential state vector (𝑠𝑏
𝑘,𝑖
, 𝑠𝑟
𝑘,𝑖
, 𝛽𝑘,𝑖 ) with random ini-

tial values. Each particle is assigned a velocity vector (𝑣𝑠
𝑏
𝑘

𝑖
, 𝑣
𝑠𝑟
𝑘

𝑖
, 𝑣
𝛽𝑘
𝑖
)

between 0 and A, which dictates the magnitude of exploration

within the solution space. The exploration aggressive, denoted by

A, determines how aggressively the particles explore the solution

space. Furthermore, every particle maintains a record of its optimal

state encountered thus far, represented as (𝑝𝑠
𝑏
𝑘

𝑖
, 𝑝
𝑠𝑟
𝑘

𝑖
, 𝑝
𝛽𝑘
𝑖
). Addition-

ally, a global vector denoted as 𝐺𝑠
𝑏
𝑘 ,𝐺𝑠

𝑟
𝑘 ,𝐺𝛽𝑘 is kept to track the

state vector with the highest 𝑄𝑜𝐸 observed across all particles so

far. During the optimization phase, we update the velocity of each

5
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particle based on its relative displacement from both its local best

state and the global best state. This update is moderated by weight

factors𝑤1,𝑤𝑤 and𝑤3 to balance exploration and exploitation dy-

namics and is randomized through coefficients 𝑟1 and 𝑟2 (uniformly

distributed between 0 and 1) to introduce variability in the search

process. To further the algorithm’s performance, we introduce a

variable O, which assesses the buffer health relative to upcoming

predicted network outages. A higher O value encourages explo-

ration towards lower state values, facilitating faster convergence

to more advantageous states. This exploratory process is iterated

N times to ascertain the final configurations for the buffer scalar,

throughput scalar, and playback speed.

4 EVALUATION
4.1 Experimental Setup
Considering the dynamics of LSNs and the fact that the exact time

and duration of network outages caused by satellite handover are

not accessible ahead of time, we conduct evaluations in a simulated

environment as widely used in [10, 11, 15, 25, 32] to ensure a fair

assessment of SARA in a live streaming environment under LSNs.

The simulated network conditions, such as ping and bandwidth,

were based on the real-world data we gathered from our measure-

ments on Starlink. The outage 𝑜𝑘 = (𝑜𝑡
𝑘
, 𝑜𝑑
𝑘
) sampled from Section

2.2 will be embedded into the network trace to emulate the realistic

Starlink outages. The video trace utilized in our experiment fea-

tured a ten-minute movie from Big Buck Bunny
10
. The movie was

processed using the same standard definition encoding as [33], with

four bitrates B = {1000, 2500, 5000, 8000} Kbps and a segment du-

ration of 500ms. For the QoE metric in Eq. (4), we adopt two widely

used settings as in [14, 25, 33, 38]. The linear quality metric 𝑄𝑜𝐸𝑙𝑖𝑛
with 𝑞(𝑏𝑘 ) = 𝑏𝑘/1000, 𝜔 = 4.33, 𝜌 = 1, and the log-form quality

metric 𝑄𝑜𝐸𝑙𝑜𝑔 with 𝑞(𝑏𝑘 ) = 𝑙𝑜𝑔(𝑏𝑘/𝑚𝑖𝑛(B)), 𝜔 = 2.66, 𝜌 = 1. 𝜂

and 𝜄 are set to𝑚𝑖𝑛(B) and 1 respectively inspired by [1].

4.2 Baseline Algorithms
To evaluate the versatility of SARA, we selected a variety of well-

known ABR algorithms. These algorithms represent a broad cross-

section of different approaches to adaptive bitrate control, and their

diverse strategies and performance characteristics make them an

ideal testing ground for SARA’s performance and compatibility. We

have further modified these ABR algorithms to better align with

live streaming scenarios. The chosen ABRs are as follows:

• RobustMPC [38]: Enhances user QoE by using the predic-

tion of future network throughput with the harmonic mean

of past throughput.

• Pensieve [25]: Employs reinforcement learning, allowing

for adaptation to various environments and QoE metrics.

• BOLA (Buffer Occupancy based Lyapunov Algorithm) [33]:

Utilizes Lyapunov optimization to minimize rebuffering

and maximize video quality.

• BBA [12]: Decides bitrates based on current buffer capacity

and reservoir estimation.

10
https://peach.blender.org/
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Figure 9: Average rebuffering time of different ABR algo-
rithms and their integration with SARA.

• DynamicDash [31]: The default ABR algorithm used by the

current standard DASH reference player (4.7.3)
11

which

switches between throughput based and buffer based ABR.

• Merina [14]: Utilizes meta reinforcement learning to rapidly

adjust its control policy in response to the dynamic changes

in network throughput.

4.3 SARA Performance Evaluation
We integrate SARA into six previously mentioned ABR algorithms

and evaluate their performance. The results, illustrated in Figure 9,

highlight SARA’s impact in terms of rebuffering times. On average,

rebuffering time is reduced by 39.41%, with the BBA achieving an

average reduction of 52.26%. It is worth noting that there is a signifi-

cant standard deviation observed in average rebuffering times. This

variability is attributed to the broad range of outage durations in the

Starlink network, as discussed in Section 2.2. With network outages

lasting anywhere from 0.2 seconds to 23.57 seconds, such a wide

spectrum of durations inevitably results in significant fluctuations

in average rebuffering times. Moreover, our network traces include

a few instances without any network outages, further adding to the

observed variance. Figure 10 further shows the impact of SARA on

three other metrics across the selected ABR algorithms and their

SARA-enhanced versions. SARA results in a slight improvement

in LtB of 0.65% and only incurs a negligible reduction in bitrate by

0.13%. Although it leads to a 23.36% increase in the amount of time

where the playback speed differs from 1x, compared to the original

ABR algorithms, SARA only alters the playback speed within a

narrow range from 0.95x to 1.03x, which is typically imperceptible

to viewers in practice [1].

We also notice that Pensieve appears worse compared to other

ABR algorithms. Further analysis reveals that Pensieve tends to

respond slowly to outage events. It often reduces the bitrates with

a delay, by which time the bandwidth may have already recov-

ered, resulting in reduced bandwidth efficiency and an increase in

rebuffering time. Although Pensieve does not perform optimally

under LSN conditions, the integration of SARA still improves its

performance, resulting in an average of 33% less rebuffering time.

Figure 11 and Figure 12 present the performance evaluation in

the form of CDFs for each ABR algorithm and their integration

with SARA among two QoE metrics. The results show that SARA

either matches or surpasses the performance of the base ABR al-

gorithm that it is incorporated into. For example, for Merina, 75%

of 𝑄𝑜𝐸𝑙𝑜𝑔 values are above 0.8, while when SARA is integrated

with it, 80% of QoE values exceed 0.97. In essence, SARA’s ability

11
https://reference.dashif .org/dash.js/
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Figure 10: QoE metrics of different ABR algorithms and their integration with SARA.
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Figure 11: CDF of 𝑄𝑜𝐸𝑙𝑖𝑛 metrics of different ABR algorithms and their integration with SARA.
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Figure 12: CDF of 𝑄𝑜𝐸𝑙𝑜𝑔 metrics of different ABR algorithms and their integration with SARA.

Table 2: Performance of the outage predictor with various
configurations

Input Length Prediction Length MSE MAE

300

30

60

120

0.519

0.521

0.542

0.107

0.113

0.121

600
30

60

120

0.517

0.523

0.563

0.107

0.116

0.119

900

30

60

120

0.524

0.567

0.619

0.109

0.120

0.129

to predict outages, dynamically adjust playback speed, and assist

ABRs in selecting the ideal bitrate forms an efficient strategy that

significantly enhances these ABR algorithms’ performance, thereby

improving the live streaming experiences in LSN environments.

5 FURTHER DISCUSSION: OUTAGE
PREDICTOR

A key component of SARA is the "Outage Predictor " which can

forecast upcoming network outages from satellite handovers. How-

ever, predicting network outages presents a significant challenge

due to the black box design of satellite operators’ system architec-

ture, such as Starlink [20, 24]. Essential details such as the strategies

for satellite handovers, network routing, and satellite system load

remain proprietary to the general public [29, 35, 41]. Fortunately,

the orbital positions of Starlink satellites are accessible publicly

in the Two-Line Element (TLE) format from various sources. This

accessibility enables the calculation of the satellites’ positions rela-

tive to the UE at any moment. Moreover, the orbital paths of the

satellites exhibit consistent, timed characteristics, recurring at fixed

intervals. This regularity positions the problem well for analysis

using time-sequenced modelling techniques. Furthermore, recent

advancements in transformers offer promising solutions for an-

alyzing and predicting time-sequenced data [36]. Therefore, one

possible further enhancement on SARA is to utilize Informer, a
state-of-the-art transformer-based approach designed for efficient

long-sequence time-series forecasting in the design of the outage

predictor [42]. In this section, we further discuss our initial efforts

in this direction.

In our informer based design, the training data incorporates the

measurement data outlined in Section 2 and TLEs from CelesTrak
12
.

Since we do not know which satellite Starlink will switch to after

each handover period, all satellites that have an angle of elevation

higher than 25
◦
, along with their distance to the UE, are included

in the training data. To further improve the accuracy of outage

predictor, we also integrate weather data sourced from theWeather
API provided by OpenWeather

13
, acknowledging the impact of

weather conditions on the performance of the Starlink network, as

highlighted in previous studies [24, 27, 41].

We train the Informer network under a range of configurations,

varying both the input length and the prediction length. For in-

stance, an input length of 300 and a prediction length of 30 means

the model will analyze the latest 5 minutes of data to forecast net-

work outages in the upcoming 30 seconds. An extended prediction

12
https://celestrak.org/NORAD/Elements/table.php?GROUP=starlink

13
https://openweathermap.org/current
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Figure 13: CDF of 𝑄𝑜𝐸𝑙𝑖𝑛 with BBA_SARA under various lev-
els of false positive and false negative outage predictions.

length equips SARA with a longer preparation window ahead of

network outages, potentially enhancing its resilience to prolonged

disruptions. On the other hand, augmenting the input length tends

to improve performance due to the richer contextual data provided

to the model, albeit at the cost of increased inference times. The

impact of these variations on the model’s accuracy is summarized

in Table 2, which presents the results in terms of Mean Squared

Error (MSE) and Maximum Absolute Error (MAE).

We further performed subsequent analysis focusing on evalu-

ating how the accuracy of outage predictions influences overall

user QoE. Figure 13 delineates the comparative performance be-

tween BBA and BBA_SARA under various scenarios characterized

by differing rates of false positives and false negatives in outage

predictions. The results indicate that false negative predictions ex-

ert a more significant detrimental effect on user QoE. This observed

impact is directly linked to false negatives precipitating unfore-

seen video rebuffering events, which significantly compromise the

viewing experience. Conversely, a temporary reduction in bitrate,

if only for a brief duration, tends to affect the overall QoE for view-

ers minimally. In response to these insights, we adjust our outage

predictor’s loss function during training to impose a higher penalty

for false negatives, enhancing its sensitivity to potential outages.

After fine-tuning, the optimal configuration for the model was de-

termined to be an input length of 600 seconds and a prediction

length of 120 seconds. The outage predictor achieved an overall

accuracy and recall rate of 79.43% and 38.23%, respectively. It is

important to note that this model was developed with a constrained

dataset. In practice, satellite operators such as SpaceX Starlink and

Amazon Kuiper have access to more comprehensive data, enabling

the development of predictors with even superior performance

metrics. Nevertheless, our model still offers a versatile solution

that is simultaneously applicable across various satellite operators,

including SpaceX Starlink and Amazon Kuiper and future LSN op-

erators. Despite the limited data, our model still effectively reduces

rebuffering events, as illustrated in Figure 14.

6 RELATEDWORKS
The domain of LSNs has been extensively explored in recent re-

search, with a significant focus on the Starlink network, empha-

sizing comprehensive end-to-end network performance evalua-

tions. These studies have delved into environmental influences

on network performance, such as terrain and weather conditions

[17, 24, 27, 41], affirming Starlink’s applicability across a spectrum

of applications while underscoring the challenges inherent to LSNs,
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Figure 14: Average rebuffering time of different ABR algo-
rithms and their integration with SARA using a transformer
based outage predictor.
notably the frequency of satellite handovers. Further investigations

into satellite handovers within LSNs have unveiled the deployment

of a global scheduler by Starlink, which executes handover deci-

sions at 15-second intervals [29, 35]. Concurrently, advancements

in simulation tools have deepened our understanding of LSN op-

erational conditions [18, 19], enhancing the fidelity of network

models. Efforts to improve lower-level TCP protocols have also

been pursued, aiming to enhance overall LSN performance [5].

In the context of video streaming services, significant advance-

ments have been made in the development of ABR algorithms that

adeptly respond to fluctuating network conditions. These include

buffer based approaches [12, 33], throughput based approaches

[13, 34] and a hybrid of both [31, 38], which are simple yet effective.

Additionally, innovative learning-based ABR algorithms, notably

Pensieve and Comyco, are capable of directly optimizing QoE with-

out the necessity for iterative computation [8, 14, 15, 20, 25, 37, 39].

ABR algorithms such as LoL and LoL+ have been tailored specifi-

cally for low latency in live streaming platforms [1, 6, 16, 21, 26],

integrating bitrate adaptation with heuristic based playback speed

control. In parallel, various studies have focused on minimizing

hardware load and enhancing power efficiency, marking significant

strides towards more sustainable streaming technology [23, 43].

7 CONCLUSION AND FUTUREWORKS
In this paper, we examined the challenges of live streaming over

LSNs, notably the impact of frequent satellite handovers on live

streaming services. Our investigation revealed that existing ABR al-

gorithms, which perform well in terrestrial network environments,

struggle to maintain consistent streaming quality in the dynamic

conditions characteristic of LSNs. We introduced SARA, a versa-

tile and lightweight middleware solution designed to enhance the

adaptability of existing ABR algorithms in LSN contexts by feed-

ing ABR algorithms with specific network characteristics unique

to LSNs. Our evaluation shows that SARA significantly reduced

rebuffering times by approximately 39.41% while only incurring a

neglectable loss in an average bitrate of 0.65%, demonstrating its

efficacy in optimizing live streaming services in satellite networks.

LSN services are rapidly evolving and continue to present many

fascinating and challenging areas in need of exploration. An area

of particular interest is the realm of realtime communication and

asynchronous interaction, which has not yet been extensively inves-

tigated. Our future work will delve into these uncharted territories,

seeking to optimize the performance of LSNs in facilitating seam-

less, realtime interactions.
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