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The structure of this document is organized as follows. In Section A, we provide the pseudo-code of
DualNet. Section B provides additional details of our experiments, including datasets, evaluation
metrics, baselines’ descriptions, additional results, and hyper-parameter settings. Lastly, we discuss
the potential impacts of DualNet in Section C.
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A Algorithm

We provide the pseudo-code to train DualNets in Algorithm 1.

Algorithm 1: Psuedo-code to train DualNets.
1 Algorithm TrainDualNet(θ,ϕ,Dtr

1:T )
Require: slow learner ϕ, fast learner θ, episodic memoryM, inner updates N , Look-ahead

inner updates K (for Look-ahead)
Init: θ,ϕ,M← ∅

2 for t← 1 to T do
3 for j ← 1 to nbatches do // Receive the dataset Dtr

t sequentially
4 Receive a mini batch of data Bj from Dtr

t
5 x∗, y∗ ← Random sampling from Bj // Sampling for the semantic memory
6 M←MemoryUpdate(M,Bj) // Update the episodic memory
7 for j ← 1 to∞ do // Train the slow learner synchronously
8 Train the slow learner using the Look-ahead procedure
9 for n← 1 to N do // Train the fast learner synchronously

10 Mn ← Sample(M)
11 Bn ←Mn ∪ Bj
12 SGD update the slow learner: ϕ← ϕ−∇ϕLtr(Bn)
13 SGD update the fast learner θ ← θ −∇θLtr(Bn)

14 Mem
t ←Mem

t ∪ {π(ŷ/τ)}
15 return θ,ϕ

1 Procedure Look-ahead(ϕ,M)
2 ϕ̃0 ← ϕ
3 for k ← 1 to K − 1 do
4 Mk ← Sample(M)
5 Obtains two views of Mk : MA

k ,MB
k

6 Calculate the Barlow Twins loss: LBT (ϕ̃k,M
A
k ,MB

k )

7 SGD update the slow learner: ˜ϕk+1 ← ϕk − ϵ∇ϕk
LBT

8 Look-ahead update the slow learner: ϕ← ϕ+ β(ϕ̃K − ϕ)
9 return phi

B Experiment Details

B.1 Datasets and Evaluation Metrics

We summary the datasets used in our experiments in Table 1.

Table 1: Summary of datasets used in our experiments, including number of classes, number of data,
dimension with and without data augmentation

Dataset Classes Train Test Dim. Dim. with Aug.

miniImageNet [11] 100 50,000 10,000 3×84×84 3×128×128
CORe50 [5] 50 119,894 44,971 3×84×84 3×128×128

We consider three standard metrics to evaluate the methods [8]: ACC [6] (higher is better), FM [2]
(lower is better), and LA [10] (higher is better). We define ai,j as the model’s accuracy evaluated
on the testing data of task j after it is trained on the last mini-batch of task i. The above metrics are
defined as:
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• Average Accuracy (ACC):

ACC =
1

T

T∑
i=1

aT,i. (1)

• Forgetting Measure (FM):

FM =
1

T − 1

T−1∑
j=1

max
l∈{1,...T−1}

al,j − aT,j . (2)

• Learning Accuracy (LA):

LA =
1

T

T∑
i=1

ai,i. (3)

We run each experiment five times with the same task-order but different initialization and report the
mean, standard deviation of each model.

B.2 Baselines

We provide a brief description of the baselines considered in this work as follows:

• ER [3]: a standard experience replay that interleaves the current mini-batch with a mini-
batch randomly sampled from the memory in each update.

• DER++ [1]: a variant of ER with an additional regularizer using the ℓ2 distance between
the current and past model’s logits.

• CTN [8]: a static architecture method that can model task-specific features via a light-weight
controller module.

• Offline: an upper bound model that performs multitask training on all data. Note that this
model does not follow the continual learning setting. We implement the offline model by
training the network three epochs over all data of all tasks.

For each method, we also include a complementary variant trained using data augmentation for a fair
comparison with our DualNet. We use the same transformations from [12] includes: random cropping,
resizing to 84× 84, horizontal flip, color jittering, converting to greyscale, Gaussian blurring. The
augmentation parameters are kept the same as [12, 4]. However, in the task-free setting, we observed
that such this data augmentation was too aggressive in the supervised learning phase, which made
training unstable, and often diverged across many runs. Therefore, we only use the random cropping
and resize transformations for the baselines. For simplicity, we do not apply data augmentation to
DualNet’s supervised training.

B.3 Additional Experiment Results in The Batch Setting

We develop DualNet with a focus on the online continual learning setting [6]. In this experiment, we
explore DualNet’s behaviors in the batch continual learning setting [9] where a learner is allowed to
revisit the current task’s data for many epochs before moving to the next task. We compare DualNet
with DER++ [1] trained in the batch setting of 20 epochs per task with early stopping. Table 2
reports the results of this experiment. We observe that batch training allows the both methods to
learn individual tasks well, results in a better LA. At the same time, batch training is also prone to
catastrophic forgetting and results in higher FM values. However, the improvement in LA is greater
than FM, which results in better overall performance (ACC). We also observe that the gap between
DualNet and DER++ is not as significant as the online settings. The reason is that DualNet’s slow
representation facilitates fast knowledge acquisition on data streams, where the model is not allowed
to revisit past samples. However, this condition is much relaxed in the batch setting because the
model is allowed to train for more epochs to solve the current task.
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Table 2: Comparison between DualNet and DER++ trained in the batch setting

Method Split miniImageNet-TA Split miniImageNet-TF

ACC FM LA ACC FM LA

DER++ 71.96±1.36 7.26±1.50 78.23±0.85 27.50±1.83 37.52±2.83 62.30±0.43
DualNet 75.20±0.09 6.08±0.23 78.99±0.10 38.26±1.10 31.83±0.93 66.63±0.61

Table 3: Performance of the Offline model under different configuration on the Split miniImageNet-
TA benchmark, * denotes the method is trained in the continual learning setting - for reference

Architecture Method Loss Data Aug ACC

Fast+Slow nets

DualNet* SL+SSL Yes 73.20±0.68
Offline SL No 75.83±1.07
Offline SL Yes 77.63±0.48
Offline SL+SSL Yes 77.98±0.16

Slow net Offline SL No 71.15±2.95
Offline SL Yes 75.46±0.97

B.4 DualNet’s Upper Bound

In our work, there are three factors affecting DualNet’s upper bound model: (i) model architecture:
slow net (standard backbone) versus fast and slow nets (DualNet); (ii) training loss: supervised
learning loss (SL) or supervised and self-suppervised learning losses (SL+SSL); and (iii) data
augmentation. As a result, we believe that an upper bound of DualNet is a model having all
three factors as DualNet (has fast and slow learners, optimized both SL and SSL losses with data
augmentation) and is trained offline. The offline model has access to all tasks’ data to simultaneously
optimizes both the SL and SSL losses, which are backpropagated through both learners. Here we
consider the offline model trained up to five epochs.

We explore different combinations of the aforementioned factors to train an Offline model on the Split
miniImageNet-TA benchmark and report the result in Table 3. Note that the configuration of Slow
Net + Offline + SL + no data augmentation is the previous result reported in [8]. Our argued upper
bound for DualNet has the following configuration: Fast + Slow nets + Offline + SL + SSL + data
augmentation. The result confirms the upper bound of DualNet. Moreover, in the offline training with
all data, the SSL only contributes a minor improvement to the SL. However, in continual learning,
SSL is more beneficial because its representation does not depend on the class label, and therefore
more resistant to catastrophic forgetting when old task data is limited.

B.5 Hyper-parameter Setting

We implement all experiments in this work using the Pytorch [7] framework on a single K80 GPU.
We provide the hyper-parameters values of each method we considered. For consistency, we use the
same notations with respect to the original papers.

• ER
- Learning rate: 0.03 (all benchmarks)
- Replay batch size: 10 (all benchmarks)
- Number of gradient updates: 2 (all TA experiments), 3 (all TF experiments)

• DER++
- Learning rate: 0.03 (all benchmarks)
- Replay batch size: 10 (all benchmarks)
- Trade-off strength between soft and hard labels: 0.1 (all experiments)
- Number of gradient updates: 2 (all TA experiments), 3 (all TF experiments)

• CTN
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- Inner learning rate α: 0.01 (all benchmarks)
- Outer learning rate β: 0.05 (all benchmarks)
- Regularization strength λ: 100 (all benchmarks)
- Temperature τ : 5 (all benchmarks)
- Replay batch size: 64 (all benchmarks)
- Number of inner and outer updates: 2 (all benchmarks)
- Semantic memory size in percentage of total memory: 20% (all benchmarks)

• DualNet
- Slow learner’s SGD learning rate: 3e − 4 (Split miniImageNet bencharks), 1e − 4

(CORE50 benchmarks)
- Slow learner’s Look-ahead learning rate: 0.5 (all benchmarks)
- Fast learner’s learning rate: 0.03 (all benchmarks)
- Barlow Twins’s trade-off term λBT : 2e− 3 (all benchmarks)
- Fast learner’s trade-off term λtrain : 2.0 (all benchmarks)
- Soft label loss temperature τ : 2.0 (all TA benchmarks), 10.0 (all TF benchmarks)
- Replay batch size: 10 (Split miniImageNet bencharks), 32 (CORE50 benchmarks)

We perform grid search for hyper-parameter cross-validation on the three validation tasks. The grid
for each hyper-parameter is:

• Learning rate, including inner, outer (CTN) and DualNet fast and learners learning rates:
[0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.05, 0.1, 0.3, 0.5]

• Replay batch size: [10, 32, 64, 128]
• Temperature τ : [1, 2, 5, 10]
• Regularization strength

- λ (CTN): [0.1, 0.5, 1, 2, 10, 100]
• Semantic memory size in percentage of total memory (CTN): [10%, 20%, 30%, 40%]

C Discussion

This section discusses DualNet’s broader impacts, its limitations and potentials.

Broader Impact Our research advances continual learning that learn continuously from a stream
of tasks and data, which is a hallmark challenge in Artificial Intelligence. Enabling continual learning
with neural networks has a large impact on a wide range of applications. It may advance our
understanding of the human brain in neuroscience because human is a continual natural learner.
Despite extensive efforts and recent success, existing continual methods are still far from practical
usage and lack the ability to tackle the challenges during deployment. Our research proposes a novel
continual learning framework suitable for deployment. Particularly, real-world deployment can often
encounter scenarios where labeled data are delayed or mixed with unlabeled data. Our work have
demonstrated that DualNet is readily applicable to such settings while existing works cannot.

Limitations and Potentials Because the DualNet’s slow learner can always be trained in the
background, it incurs computational costs that need to be properly managed. For large-scale systems,
such additional computations can increase infrastructural costs substantially. Therefore, it is important
to manage the slow learner to balance between performance and computational overheads. In addition,
implementing DualNet to specific applications requires additional considerations to address its
inherent challenges. For example, medical image analysis applications may require paying attention
to specific regions in the image or considering the data imbalance. However, since we demonstrate
the efficacy of DualNet in general settings, such properties are not considered. In practice, it would
be more beneficial to capture such domain-specific information to achieve better results. For general
applications of DualNet, we also expect that a more suitable objective to train the slow learner can
further improve the results.
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Conclusion Overall, inspired by neuroscience, our research proposes DualNet, a novel continual
learning method suitable for practical deployment. We wish our work can encourage more research
on continual learning to better understand machine intelligence and human intelligence.
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