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Here, we first provide the proof of our main result, discuss more about top-r calibration and spline-
fitting, and then turn to additional experiments.

A PROOF OF PROPOSITION 4.1

We first restate our proposition below.

Proposition A.1. If h(t) = P (Y = k, fk(X) ≤ s(t)) as in (14) of the main paper where s(t) is the
t-th fractile score. Then h′(t) = P (Y = k | fk(X) = s(t)), where h′(t) = dh/dt.

Proof. The proof is using the fundamental relationship between the Probability Distribution Function
(PDF) and the Cumulative Distribution Function (CDF) and it is provided here for completeness.
Taking derivatives, we see (writing P (k) instead of P (Y = k)):

h′(t) = P (k, fk(X) = s(t)) . s′(t)

= P (k | fk(X) = s(t)) . P (fk(X) = s(t)) . s′(t)

= P (k | fk(X) = s(t)) .
d

dt

(
P (fk(X) ≤ s(t))

)
= P (k | fk(X) = s(t)) .

d

dt
(t)

= P (k | fk(X) = s(t)) .

(1)

The proof relies on the equality P (fk(X) ≤ s(t)) = t. In words: s(t) is the value that a fraction t of
the scores are less than or equal. This equality then says: the probability that a score is less than or
equal to the value that a fraction t of the scores lie below, is (obviously) equal to t.

B MORE ON TOP-r AND WITHIN-TOP-r CALIBRATION

In the main paper, definitions of top-r and within-top-r calibration are given in equations (4) and
(5). Here, a few more details are given of how to calibrate the classifier f for top-r and within-top-r
calibration.

The method of calibration using splines described in this paper consists of fitting a spline to the
cumulative accuracy, defined as hi in equation (11) in the main paper. For top-r classification, the
method is much the same as for the classification for class k. Equation (11) is replaced by sorting the
data according to the r-th top score, then defining

h̃0 = h0 = 0 ,

hi = hi−1 + 1(y(−r) = 1)/N ,

h̃i = h̃i−1 + f (−r)(xi)/N ,

(2)

where y(−r) and f (−r)(xi) are defined in the main paper, equation (3). These sequences may then
be used both as a metric for the correct top-r calibration and for calibration using spline-fitting as
described.
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For within-top-r calibration, one sorts the data according to the sum of the top r scores, namely∑r
s=1 f

(−s)(xi), then computes

h̃0 = h0 = 0 ,

hi = hi−1 + 1
( r∑

s=1

y(−s) = 1
)/

N ,

h̃i = h̃i−1 +

r∑
s=1

f (−s)(xi)/N ,

(3)

As before, this can be used as a metric, or as the starting point for within-top-r calibration by our
method. Examples of this type of calibration (graphs for uncalibrated networks in fig 5 and fig 7)
is given in the graphs provided in fig 6 and fig 8 for within-top-2 predictions and within-top-3
predictions respectively.

It is notable that if a classifier is calibrated in the sense of equation (1) in the main paper (also called
multi-class-calibrated), then it is also calibrated for top-r and within-top-r classification.

C LEAST SQUARE SPLINE FITTING

Least-square fitting using cubic splines is a known technique. However, details are given here for the
convenience of the reader. Our primary reference is (McKinley & Levine (1998)), which we adapt to
least-squares fitting. We consider the case where the knot-points are evenly spaced.

We change notation from that used in the main paper by denoting points by (x, y) instead of (u, v).
Thus, given knot points (x̂i, ŷi)

K
k=1 one is required to fit some points (xi, yi)

N
i=1. Given a point x,

the corresponding spline value is given by y = a(x)>Mŷ, where ŷ is the vector of values ŷi. The
form of the vector a(x) and the matrix M are given in the following.

The form of the matrix M is derived from equation (25) in McKinley & Levine (1998). Define the
matrices

A =



4 1
1 4 1

1 4 1
. . .

1 4 1
1 4

 ; B =
6

h2


1 −2 1

1 −2 1
. . .

1 −2 1

 ,

where h is the distance between the knot points. These matrices are of dimensions K − 2×K − 2
and K − 2×K respectively. Finally, let M be the matrix

M =

 0K
>

A−1B
0K
>

IK×K

 .

Here, 0K is a vector of zeros of length K, and IK×K is the identity matrix. The matrix M has
dimension 2K ×K.

Next, let the point x lie between the knots j and j + 1 and let u = x− x̂j . Then define the vector
v = a(x) by values

vj = −u3/(6h) + u2/2− hu/3 ,

vj+1 = u3/(6h)− hu/6 ,

vj+K = −u/h+ 1 ,

vj+1+K = u/h ,

with other entries equal to 0.
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Dataset Image Size # class Calibration set Test set

CIFAR-10 32× 32 10 5000 10000
CIFAR-100 32× 32 100 5000 10000
SVHN 32× 32 10 6000 26032
ImageNet 224× 224 1000 25000 25000

Table 1: Dataset splits used for all the calibration experiments. Note, “calibration” set is used for spline fitting
in our method and calibration for the baseline methods and then different methods are evaluated on “test” set.

Dataset Model Uncalibrated Temp. Scaling Vector Scaling MS-ODIR Dir-ODIR Ours (Spline)

CIFAR-10

Resnet-110 1.805 0.097 0.176 0.140 0.195 0.277
Resnet-110-SD 1.423 0.111 0.089 0.082 0.073 0.104
DenseNet-40 2.256 0.435 0.409 0.395 0.348 0.571
Wide Resnet-32 1.812 0.145 0.105 0.124 0.139 0.537
Lenet-5 3.545 0.832 0.831 0.631 0.804 0.670

CIFAR-100

Resnet-110 14.270 0.885 0.649 1.425 1.190 0.503
Resnet-110-SD 12.404 0.762 1.311 2.120 1.588 0.684
DenseNet-40 15.901 0.437 0.368 2.205 0.518 0.724
Wide Resnet-32 14.078 0.414 0.548 1.915 1.099 1.017
Lenet-5 14.713 0.787 1.249 0.643 2.682 0.518

ImageNet Densenet-161 4.266 1.051 0.868 3.372 2.536 0.408
Resnet-152 4.851 1.167 0.776 4.093 2.839 0.247

SVHN Resnet-152-SD 0.485 0.388 0.410 0.407 0.388 0.158

Table 2: Within-top-2 predictions. KS Error (in %) within-top-2 prediction (with lowest in bold and second
lowest underlined) on various image classification datasets and models with different calibration methods. Note,
for this experiment we use 14 knots for spline fitting.

Then the value of the spline is given by

y = a(x)>Mŷ ,

as required. This allows us to fit the spline (varying the values of ŷ) to points (xi, yi) by least-squares
fit, as described in the main paper.

The above description is for so-called natural (linear-runout) splines. For quadratic-runout or cubic-
runout splines the only difference is that the first and last rows of matrix A are changed – see McKinley
& Levine (1998) for details.

As described in the main paper, it is also possible to add linear constraints to this least-squares
problem, such as constraints on derivatives of the spline. This results in a linearly-constrained
quadratic programming problem.

D ADDITIONAL EXPERIMENTS

We first provide the experimental setup for different datasets in Table 1. Note, the calibration set is
used for spline fitting in our method and then final evaluation is based on an unseen test set.

We also provide comparisons of our method against baseline methods for within-top-2 predictions
(equation 5 of the main paper) in Table 2 using KS error. Our method achieves comparable or
better results for within-top-2 predictions. It should be noted that the scores for top-3 (f (−3)(x)) or
even top-4, top-5, etc., are very close to zero for majority of the samples (due to overconfidence of
top-1 predictions). Therefore the calibration error for top-r with r > 2 predictions is very close to
zero and comparing different methods with respect to it is of little value. Furthermore, for visual
illustration, we provide calibration graphs of top-2 predictions in fig 1 and fig 2 for uncalibrated and
calibrated network respectively. Similar graphs for top-3, within-top-2, and within-top-3 predictions
are presented in figures 3 – 8.

We also provide classification accuracy comparisons for different post-hoc calibration methods against
our method if we apply calibration for all top-1, 2, 3, . . . ,K predictions for K-class classification
problem in Table 3. We would like to point out that there is negligible change in accuracy between
the calibrated networks (using our method) and the uncalibrated ones.
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Test Class[-2] | Uncalibrated
KS-error =  3.343%, Probability= 5.080%

Figure 1: Top-2 predictions, Uncalibrated. Calibration graphs for an uncalibrated DenseNet-40 (Huang
et al. (2017)) trained on CIFAR-10 for top-2 class with a KS error of 3.343% on the test set. Here (a) shows
the plot of cumulative score and probability versus the fractile of the test set, (b) shows the same information
with the horizontal axis warped so that the cumulative-score graph is a straight line. This is created as scatter
plots of cumulative (score, score): blue and (score, probability): orange. If the network is perfectly calibrated,
the probability line will be a straight line coincident with the (score, score) line. This shows that the network is
substantially overestimating (score) the probability of the computation. (c) and (d) show plots of (non-cumulative)
score and probability plotted against fractile, or score. How these plots are produced is described in Section 4 of
main paper.
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Calib Class[-2] | Calibrated
KS-error =  0.243%, Probability= 4.220%
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Figure 2: Top-2 predictions, Calibrated. The result of the spline calibration method, on the example given in
fig 1 for top-2 calibration. A recalibration function γ : IR→ IR is used to adjust the scores, replacing fk(x)
with γ(fk(x)) (see Section 4 of main paper). As is seen, the network is now almost perfectly calibrated when
tested on the “calibration” set (top row) used to calibrate it. In bottom row, the recalibration function is tested
on a further set “test”. It is seen that the result is not perfect, but much better than the original results in fig 1d.
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Figure 3: Top-3 predictions, Uncalibrated. Calibration graphs for an uncalibrated DenseNet-40 trained on
CIFAR-10 for top-3 class with a KS error of 1.277% on the test set. Here (a) shows the plot of cumulative
score and probability versus the fractile of the test set, (b) shows the same information with the horizontal axis
warped so that the cumulative-score graph is a straight line. (c) and (d) show plots of (non-cumulative) score
and probability plotted against fractile, or score.
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Calib Class[-3] | Calibrated
KS-error =  0.270%, Probability= 1.240%
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Figure 4: Top-3 predictions, Calibrated. The result of the spline calibration method, on the example given in
fig 3 for top-3 calibration. A recalibration function γ : IR→ IR is used to adjust the scores, replacing fk(x)
with γ(fk(x)). As is seen, the network is now almost perfectly calibrated when tested on the “calibration” set
(top row) used to calibrate it. In bottom row, the recalibration function is tested on a further set “test”. It is
seen that the result is not perfect, but much better than the original results in fig 3d.
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Figure 5: Within-top-2 predictions, Uncalibrated. Calibration graphs for an uncalibrated DenseNet-40
trained on CIFAR-10 for within-top-2 predictions with a KS error of 2.256% on the test set. Here (a) shows
the plot of cumulative score and probability versus the fractile of the test set, (b) shows the same information
with the horizontal axis warped so that the cumulative-score graph is a straight line. (c) and (d) show plots of
(non-cumulative) score and probability plotted against fractile, or score.
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Figure 6: Within-top-2 predictions, Calibrated. The result of the spline calibration method, on the example
given in fig 5 for within-top-2 calibration. A recalibration function γ : IR → IR is used to adjust the scores,
replacing fk(x) with γ(fk(x)). As is seen, the network is now almost perfectly calibrated when tested on the

“calibration” set (top row) used to calibrate it. In bottom row, the recalibration function is tested on a further set
“test”. It is seen that the result is not perfect, but much better than the original results in fig 5d.
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Figure 7: Within-top-3 predictions, Uncalibrated. Calibration graphs for an uncalibrated DenseNet-40
trained on CIFAR-10 for within-top-3 predictions with a KS error of 0.983% on the test set. Here (a) shows
the plot of cumulative score and probability versus the fractile of the test set, (b) shows the same information
with the horizontal axis warped so that the cumulative-score graph is a straight line. (c) and (d) show plots of
(non-cumulative) score and probability plotted against fractile, or score.
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Figure 8: Within-top-3 predictions, Calibrated. The result of the spline calibration method, on the example
given in fig 7 for within-top-3 calibration. A recalibration function γ : IR → IR is used to adjust the scores,
replacing fk(x) with γ(fk(x)). As is seen, the network is now almost perfectly calibrated when tested on the

“calibration” set (top row) used to calibrate it. In bottom row, the recalibration function is tested on a further set
“test”. It is seen that the result is not perfect, but much better than the original results in fig 7d.
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Dataset Model Uncalibrated Temp. Scaling Vector Scaling MS-ODIR Dir-ODIR Ours (Spline)

CIFAR-10

Resnet-110 93.56 93.56 93.50 93.53 93.52 93.55
Resnet-110-SD 94.04 94.04 94.04 94.18 94.20 94.05
DenseNet-40 92.42 92.42 92.50 92.52 92.47 92.31
Wide Resnet-32 93.93 93.93 94.21 94.22 94.22 93.76
Lenet-5 72.74 72.74 74.48 74.44 74.52 72.64

CIFAR-100

Resnet-110 71.48 71.48 71.58 71.55 71.62 71.50
Resnet-110-SD 72.83 72.83 73.60 73.53 73.14 72.81
DenseNet-40 70.00 70.00 70.13 70.40 70.24 70.17
Wide Resnet-32 73.82 73.82 73.87 74.05 73.99 73.74
Lenet-5 33.59 33.59 36.42 37.58 37.52 33.55

ImageNet Densenet-161 77.05 77.05 76.72 77.15 77.19 77.05
Resnet-152 76.20 76.20 75.87 76.12 76.24 76.07

SVHN Resnet-152-SD 98.15 98.15 98.13 98.12 98.19 98.17

Table 3: Classification (top-1) accuracy (with highest in bold and second highest underlined) post calibration
on various image classification datasets and models with different calibration methods. Note, only a negligible
change in accuracy is observed in our method compared to the uncalibrated networks.

Dataset Model Uncalibrated Temp. Scaling Vector Scaling MS-ODIR Dir-ODIR Ours (Spline)

CIFAR-10

Resnet-110 4.750 1.224 1.092 1.276 1.240 1.011
Resnet-110-SD 4.135 0.777 0.752 0.684 0.859 0.992
DenseNet-40 5.507 1.006 1.207 1.250 1.268 1.389
Wide Resnet-32 4.512 0.905 0.852 0.941 0.965 1.003
Lenet-5 5.188 1.999 1.462 1.504 1.300 1.333

CIFAR-100

Resnet-110 18.480 2.428 2.722 3.011 2.806 1.868
Resnet-110-SD 15.861 1.335 2.067 2.277 2.046 1.766
DenseNet-40 21.159 1.255 1.598 2.855 1.410 2.114
Wide Resnet-32 18.784 1.667 1.785 2.870 2.128 1.672
Lenet-5 12.117 1.535 1.350 1.696 2.159 1.029

ImageNet Densenet-161 5.720 2.059 2.637 4.337 3.989 0.798
Resnet-152 6.545 2.166 2.641 5.377 4.556 0.913

SVHN Resnet-152-SD 0.877 0.675 0.630 0.646 0.651 0.832

Table 4: ECE for top-1 predictions (in %) using 25 bins (with lowest in bold and second lowest underlined) on
various image classification datasets and models with different calibration methods. Note, for this experiment
we use 13 knots for spline fitting.

For the sake of completeness, we present calibration results using the existing calibration metric,
Expected Calibration Error (ECE) (Naeini et al. (2015)) in Table 4. We would like to reiterate the fact
that ECE metric is highly dependent on the chosen number of bins and thus does not really reflect true
calibration performance. To reflect the efficacy of our proposed calibration method, we also present
calibration results using other calibration metrics such as recently proposed binning free measure
KDE-ECE (Zhang et al. (2020)), MCE (Maximum Calibration Error) (Guo et al. (2017)) and Brier
Scores for top-1 predictions on ImageNet dataset in Table 5. Since, the original formulation of Brier
Score for multi-class predictions is highly biased on the accuracy and is approximately similar for all
calibration methods, we hereby use top-1 Brier Score which is the mean squared error between top-1
scores and ground truths for the top-1 predictions (1 if the prediction is correct and 0 otherwise).
It can be clearly observed that our approach consistently outperforms all the baselines on different
calibration measures.
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