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ABSTRACT

Understanding generalization of overparametrized neural networks remains a fun-
damental challenge in machine learning. Most of the literature mostly studies gen-
eralization from an interpolation point of view, taking convergence of parameters
towards a global minimum of the training loss for granted. While overparametrized
architectures indeed interpolated the data for typical classification tasks, this inter-
polation paradigm does not seem valid anymore for more complex tasks such as
in-context learning or diffusion. Instead for such tasks, it has been empirically ob-
served that the trained models goes from global minima to spurious local minima of
the training loss as the number of training samples becomes larger than some level
we call optimization threshold. While the former yields a poor generalization to the
true population loss, the latter was observed to actually correspond to the minimiser
of this true loss. This paper explores theoretically this phenomenon in the context
of two-layer ReLU networks. We demonstrate that, despite overparametrization,
networks often converge toward simpler solutions rather than interpolating the
training data, which can lead to a drastic improvement on the test loss with respect
to interpolating solutions. Our analysis relies on the so called early alignment
phase, during which neurons align towards specific directions. This directional
alignment, which occurs in the early stage of training, leads to a simplicity bias,
wherein the network approximates the ground truth model without converging to
the global minimum of the training loss. Our results suggest that this bias, resulting
in an optimization threshold from which interpolation is not reached anymore, is
beneficial and enhances the generalization of trained models.

1 INTRODUCTION

Understanding the generalization capabilities of neural networks remains a fundamental
open question in machine learning (Zhang et al., 2021; Neyshabur et al., 2017). Tra-
ditionally, research has focused on explaining why neural networks models can achieve
zero training loss while still generalizing well to unseen data in supervised learning
tasks (Chizat and Bach, 2018; Mei et al., 2018; Rotskoff and Vanden-Eijnden, 2022; Chizat and Bach, 2020; Boursier et al., 2022)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Chizat and Bach, 2018; Mei et al., 2018; Rotskoff and Vanden-Eijnden, 2022; Chizat and Bach, 2020; Boursier et al., 2022; Boursier and Flammarion, 2023)
. This phenomenon is often attributed to overparametrization enabling models to find solutions that
interpolate the training data yet avoid overfitting (Belkin et al., 2019; Bartlett et al., 2021).

However, the advent of generative AI paradigms—such as large language models (Vaswani et al.,
2017) and diffusion models (Dhariwal and Nichol, 2021)—has introduced a paradigm shift in our
understanding of generalization. In these settings, models can generate new data and perform novel
tasks without necessarily interpolating the training data, raising fresh questions about how and why
they generalize.

To illustrate this shift, we consider two seemingly unrelated examples: in-context learning with
transformers and generative modeling using diffusion methods.

Firstly, in-context learning (ICL) refers to the ability of large pretrained transformer models to learn
new tasks from just a few examples, without any parameter updates (Brown et al., 2020; Min et al.,
2022). A central question is whether ICL enables models to learn tasks significantly different from
those encountered during pretraining. While prior work suggests that ICL leverages mechanisms akin
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to Bayesian inference (Xie et al., 2022; Garg et al., 2022; Bai et al., 2023), the limited diversity of
tasks in pretraining datasets may constrain the model’s ability to generalize. Raventós et al. (2024)
investigated this effect by focusing on regression problems to quantify how increasing the variety of
tasks during pretraining affects ICL’s capacity to generalize to new, unseen tasks, in context.

Secondly, diffusion models have made remarkable strides in generating high-quality images from
high-dimensional datasets (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021). These
models learn to generate new samples by training denoisers to estimate the score function—the
gradient of the log probability density—of the noisy data distribution (Song and Ermon, 2019). A
significant challenge in this context is approximating a continuous density from a relatively small
training set without succumbing to the curse of dimensionality. Although deep neural networks may
tend to memorize training data when the dataset is small relative to the network’s capacity (Somepalli
et al., 2023; Carlini et al., 2023), Yoon et al. (2023); Kadkhodaie et al. (2023) observed they generalize
well when trained on sufficiently large datasets, rendering the model’s behavior nearly independent
of the specific training set.

The common thread connecting these examples is a fundamental change in how gradient descent
behaves in overparameterized models when the number of data points exceeds a certain threshold.
Rather than converging to the global minimum of the training loss, gradient descent converges to a
simpler solution closely related to the true loss minimizer. In learning scenarios involving noisy data,
the most effective solutions are often those that do not interpolate the data. Despite their capacity
to overfit, these models exhibit a simplicity bias, generalizing well to the underlying ground truth
instead of merely fitting the noise in the training data. While simplicity bias generally refers to the
tendency of models to learn features of increasing complexity, until reaching data interpolation (Arpit
et al., 2017; Rahaman et al., 2019; Kalimeris et al., 2019; Huh et al., 2021); this phenomenon seems
to stop before full interpolation in the case of in-context learning and diffusion models (even when
training for a very long time). This observation underscores a significant shift in our understanding
and approach to generalization in machine learning.

In this paper, we investigate this phenomenon in the setting of shallow ReLU networks —a
foundational architectural element

::::::
applied

::
to
::

a
:::::::::
regression

::::::::
problem.

::::::
While

:::::::::
multilayer

:::::::::
perceptrons

::
are

:::::::::::
foundational

::::::::
elements shared by the aforementioned models—applied to a regression problem.

:
,
:::::::
focusing

::
on

:::::::
shallow

::::::::
networks

:::::::
remains

:
a
:::::::::
significant

::::::::::::
simplification

::::
with

::::::
respect

::
to

:::
the

::::::::::
architectures

:::
and

:::::::::
algorithms

::::
used

:::
for

:::::::
training

::::::::::
transformers

::::
and

::::::::
diffusion

::::::
models.

:::::::
Despite

::::
this

::::::::::::
simplification,

::
we

:::
aim

::
to

::::
gain

:::::::::
theoretical

:::::::
insights

:::
that

:::::
could

::::
shed

::::
light

:::
on

::::::
similar

::::::::
behaviors

::::::::
observed

::
in

::::
more

::::::::
complex

::::::
models.

:

Some recent works argued that overparametrized networks do not necessarily converge to global
minima. In particular, Qiao et al. (2024) showed this effect for unidimensional data by illustrating the
instability of global minima. Boursier and Flammarion (2024) advanced a different reason for this
effect, given by the early alignment phenomenon: when initialized with sufficiently small weights,
neurons primarily adjust their directions rather than their magnitudes in the early phase of training,
aligning along specific directions determined by the stationary points of a certain function. This
function can be explicitly characterized in simple cases.

Contributions. Our first contribution is to show that this function driving the early alignment phase
concentrates around its expectation, which corresponds to the true loss function. For simple teacher
architectures, this expected function possesses only a few critical points. As a result, after the early
alignment phase, the neurons become concentrated in a few key directions associated with the ground
truth model. This behavior reveals a simplicity bias at the initial stages of training. Moreover, this
directional concentration is believed to contribute to the non-convergence to the global minimizer of
the training loss. However, this characterization only pertains to the initial stage of training. Therefore
we extend our analysis to provide, under a restricted data model, a comprehensive characterization of
the training dynamics, demonstrating that the simplicity bias persists until the end of training when
the number of training samples exceeds some optimization threshold.

2 PRELIMINARIES

::::
This

::::::
section

::::::::
introduces

:::
the

::::::
setting

:::
and

:::
the

:::::
early

::::::::
alignment

:::::::::::
phenomenon,

:::::::::
following

::
the

::::::::
notations

:::
and

::::::::
definitions

:::
of

::::::::::::::::::::::::::
Boursier and Flammarion (2024)

:
.
:
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2.1 NOTATIONS

In the following, we denote by Sd−1 the unit sphere of Rd
:::
and

:::::::
B(0, 1)

:::
the

::::
unit

::::
ball. We note

f(t) = Op (g(t)), if there exists a constant Cp, that only depends on p such that for any t in its
definition space, |f(t)| ≤ Cpg(t). We drop the p index, if the constant Cp is universal and does
not depend on any parameter. Similarly in the Appendix, we note f(t) = Ωp(g(t)), if there exists
a constant Cp, that only depends on p such that for any t, f(t) ≥ Cpg(t). Moreover, we note
f(t) = Θp(g(t)) if both f(t) = Op (g(t)) and f(t) = Ωp(g(t)). :::

For
:::
any

::::::::
bounded

:::
set

:::
A,

:::::
U(A)

::::::
denotes

:::
the

:::::::
uniform

:::::::::
probability

::::::::::
distribution

::
on

:::
the

:::
set

:::
A.

2.2 SETTING

We consider n data points (xk, yk)k∈[n] ∈ Rd+1 drawn i.i.d. from some
:
a
:
distribution µ ∈ P(Rd+1).

We also denote by X = [x1, . . . , xn]
⊤ ∈ Rn×d

::::::::::::::::::::::
X = [x⊤

1 , . . . , x
⊤
n ] ∈ Rd×n and y = (y1, . . . , yn) ∈

Rn respectively the matrix whose rows
:::::::
columns are given by the input vectors xk and the vector with

coordinates given by the labels yk.

A two layer ReLU network is parameterised by θ = (wj , aj)j∈[m] ∈ Rm×(d+1), corresponding to
the prediction function

hθ : x 7→
m∑
j=1

ajσ(w
⊤
j x),

where σ is the ReLU activation given by σ(z) = max(0, z). While training, we aim at minimizing
the empirical square loss over the training data, defined as

L(θ;X,y) =
1

2n

n∑
k=1

(hθ(xk)− yk)
2.

As the limiting dynamics of (stochastic) gradient descent with vanishing learning rates, we study a
subgradient flow of the training loss, which satisfies for almost any t ∈ R+,

dθ(t)

dt
∈ −∂θL(θ(t);X,y). (1)

2.3 EARLY ALIGNMENT DYNAMICS

Initialisation. In accordance to the feature learning regime (Chizat et al., 2019), we consider a
small initialisation scale, i.e., the m neurons of the neural network are initialised as

(aj(0), wj(0)) =
λ√
m
(ãj , w̃j), (2)

where λ > 0 is the scale of initialisation and (ãj , w̃j) are vectors drawn i.i.d. , which
::::
from

::::
some

::::::::::
distribution,

::::
such

:::
that

::::
they

:
also satisfy the following domination property:

|ãj | ≥ ∥w̃j∥ for any j ∈ [m] and
1

m

m∑
j=1

ã2j ≤ 1. (3)

:::
The

::::::::::
domination

:::::::
property

::
is

:::::::
common

::
in
:::
the

::::::::
literature

:::
and

::::::
allows

:::
for

:
a
:::::::
simpler

:::::::
analysis,

::
as

::
it
::::::
ensures

:::
that

:::
the

:::::
signs

::
of

:::
the

:::::
output

:::::::
neurons

:::::
aj(t) ::::::

remain
:::::::::
unchanged

::::::
during

::::::
training

::::::::::::::::::
(Boursier et al., 2022)

:
.

Neuron dynamics. In the case of two layer neural networks with square loss and ReLU activation,
Equation (1) can be written for each neuron i ∈ [m] as

dwi(t)

dt
∈ ai(t)Dn(wi(t), θ(t))

dai(t)

dt
= wi(t)

⊤Dn(wi(t), θ(t))⟩,
(4)

where the vector Dn(wi(t), θ(t)) and set Dn(wi(t), θ(t)) are derived from the subgradient
:::::::::::::
Dn(wi(t), θ(t)):::

and
:::
set

::::::::::::::
Dn(wi(t), θ(t)) :::

are
::::::
defined

:::
as

:::::::
follows,

::::
with

:::
∂σ

:::
the

::::::::::::
subdifferential

::
of

:::
the

3
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::::::::
activation

::
σ,

:

Dn(
:::

w
:
,θ) =

1

n

n∑
k=1

1x⊤
k w>0(yk − hθ(

:::::::::::::::::::::::

x
:k))xk,
:::::

Dn(w, θ) =
{ 1

n

n∑
k=1

ηk(yk − hθ(t)(xk))xk

∣∣ ηk ∈ ∂σ(

:::::::::::::::::::::::::::::::::::::::::::

x
:

⊤
k
:
w
:
)
}
.

::

:::::
These

:::::::::
derivations

:::::::
directly

:::::
follow

:::::
from

:::
the

::::::::::::
subdifferential of the training objective as

Dn(wi(t), θ(t)) =
1

n

n∑
k=1

1x⊤
k wi(t)>0(yk − hθ(t)(xk))xk,

Dn(w, θ) =

{
1

n

n∑
k=1

ηk(yk − hθ(t)(xk))xk

∣∣ ηk

= 0 if x⊤

k w < 0,

= 1 if x⊤
k w > 0,

∈ [0, 1] otherwise

}
.

::::
loss. In particular, Dn(w, θ) ∈ Dn(w, θ)::::::::

Dn(w, θ) ::::::::::
corresponds

::
to

:
a
:::::::
specific

:::::
vector

:::::::::::
(subgradient)

::
in

::
the

:::::::::::::
subdifferential

::::::::
Dn(w, θ). Also observe that the set Dn(w, θ) depends on w

:::::::
Dn(w, θ):::::::

depends
::
on

::
w only through its activations An(w)::::::

An(w), defined as

An :
Sd−1 → {−1, 0, 1}n
w 7→ sign(w⊤xk)k∈[n]

.

Furthermore, Dn(w, θ) ::::::::
Dn(w, θ) depends on θ only through the prediction function hθ::

hθ, evaluated
on the training inputs. This observation is crucial to the early alignment phenomenon. Notably, two
neurons with the same activations follow similar dynamics.

Early alignment. In the small initialization regime described by Equation (2), numerous works
highlight an early alignment phase in the initial stage of training (Maennel et al., 2018; Boursier
and Flammarion, 2024; Kumar and Haupt, 2024; Tsoy and Konstantinov, 2024). During this phase,
the neurons exhibit minimal changes in norm, while undergoing significant changes in direction.
::::
This

::::::::::
phenomenon

::
is
::::
due

::
to

:
a
::::::::::
discrepancy

::
in

:::
the

:::::::::
derivatives

::
of

:::
the

:::::::
neurons’

::::::
norms

::::::
(which

::::
scale

::::
with

::
λ)

:::
and

:::
of

::::
their

::::::::
directions

::::::
(which

:::::
scale

::
in

::::::
Θ(1)).

:
Specifically, for a sufficiently small initialisation

scale λ, the neurons align towards the critical directions of the following function Gn defined on the
d-dimensional sphere

Gn :
Sd−1 → R
w 7→ ⟨w,Dn(w,0)⟩ . (5)

Note that Gn is a continuous, piecewise linear function which can be interpreted as the correlation be-
tween the gradient information around the origin and the neuron w

:::::
(given

:::
by

::::::::
Dn(w,0)). The

:::::::
network

::::::
neurons

::::
thus

:::::
align

::::
with

::
the

:
critical directions of Gn towards which the network neurons align during

the early training dynamics
:
.
:::::
These

::::::
critical

:::::::::
directions are called extremal vectors, defined as follows.

Definition 1. A vector D ∈ Rd is said extremal
::::
with

::::::
respect

::
to

:::
Gn:

if there exists w ∈ Sd−1 such
that both simultaneously hold

1. D ∈ Dn(w,0); 2. D = 0 or An(D) ∈ {An(w),−An(w)}.

::::
This

::::::::
definition

:::::::
directly

::::::
follows

:::::
from

:::
the

:::::
KKT

:::::::::
conditions

:::
of

:::
the

:::::::::::
maximization

::::
(or

::::::::::::
minimization)

:::::::
problem,

::::::::::
constrained

::
on

:::
the

:::::::
sphere,

::
of

:::
the

:::::::
function

:::
Gn.

:

Implications of early alignment. By the end of the early alignment, most if not all neurons are
nearly aligned with some extremal vector D. Maennel et al. (2018); Boursier and Flammarion (2024)
argue that only a few extremal vectors exist in typical learning models. We further explore this claim in
Section 3. As a consequence, only a few directions are represented by the network’s weights at the end
of the early dynamics, even though the neurons cover all possible directions at initialization. Boursier
and Flammarion (2024) even show that this quantization of directions can prevent the network from
interpolating the training set at convergence despite the overparametrization of the network.

4
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Although this failure of interpolation has been considered a drawback by Boursier and Flammarion
(2024), we show in Section 4 that it can also lead to a beneficial phenomenon of simplicity bias.
Specifically, Section 4 illustrates on a simple linear example that for a large number of training
samples, the model does not converge to interpolation. Instead, it converges towards the ordinary
least square (OLS) estimator of the data. As a consequence, the model fits the true signal of the
data, while effectively ignoring label noise. Before studying this example, we must first understand
how extremal vectors behave as the number of training samples increases.

3 GEOMETRY OF ALIGNMENT IN THE LARGE SAMPLE REGIME

In this section, we aim to describe the geometry of the function Gn, with a specific focus on the
extremal vectors, as the number of training samples n becomes large. These vectors are key in driving
the early alignment phase of the training, making them essential to understanding the initial dynamics
of the parameters. Our approach involves first analyzing the concentration of gradient information Dn

of the train loss and then refining the analysis to focus on the extremal vectors.

Despite non-smoothness of the loss (due to ReLU activations), we can leverage the piecewise constant
structure of the vector function Dn(w), along with typical Rademacher complexity arguments, to
derive uniform concentration bounds on the random function w 7→ Dn(w).

Theorem 1. If the marginal law of x is continuous with respect to the Lebesgue measure, then for
any n ∈ N,

EX,y

[
sup

w∈Sd−1

sup
Dn∈Dn(w,0)

∥Dn −D(w)∥2
]
= O

(√
d log n

n
Eµ[∥yx∥22]

)
,

where for any w ∈ Sd−1, D(w) = Eµ[1w⊤x>0yx].

Theorem 1 indicates that as n grows large, the sets Dn(w,0) converge to the corresponding vectors

for the true loss, given by D(w), at a rate
√

d logn
n . Moreover this rate holds uniformly across all

possible directions of Rd in expectation. A probability tail bound version of Theorem 1, which
bounds this deviation with high probability, can also be derived (see Theorem 3 in Appendix C). A
complete proof of Theorem 1 is provided in Appendix B.

When n → ∞, the alignment dynamics are thus driven by vectors Dn which are close to their
expected value D(w). Furthermore, when n → ∞, the activations of a weight An(w) exactly
determine the direction of this weight, as every possible direction is then covered by the training
inputs xk. Specifically, for an infinite dataset with dense support indexed by N, and defining the
infinite activation function A as

A :
Sd−1 → {−1, 0, 1}N
w 7→ sign(w⊤xk)k∈N

;

then A is injective. As a consequence, in
::
In

:
this infinite data limit,

::
the

::::::::
functions

::::
Gn :::::::

converge
::
to

::
the

::::::::::::
differentiable

:::::::
function

::::::::::::::::
G : w 7→ w⊤D(w)

:::
and

:
a vector D ∈ Rd is extremal

::::
with

::::::
respect

::
to

::
G if

there exists w ∈ Sd−1 such that both

1. D = D(w) 2. D = 0 or
D

∥D∥2
∈ {w,−w}. (6)

When n becomes large, the extremal vectors of the data then concentrate toward the vectors satisfying
Equation (6). This is precisely quantified by Proposition 1 below.

Proposition 1. Assume the marginal law of x is continuous with respect to the Lebesgue measure
and that E[∥xy∥4] < ∞.

Then for any ε > 0, there is n⋆(ε) = Oε,µ (d log d) such that for any n ≥ n⋆(ε), with probability at
least 1−Oµ

(
1
n

)
: for any extremal vector Dn of the finite data (X,y) ∈ Rn×(d+1), there exists a

vector D⋆ ∈ Rd satisfying Equation (6), such that

∥Dn −D⋆∥2 ≤ ε.

5
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Proposition 1 states that for large n, the extremal vectors concentrate towards the vectors satisfying
Equation (6). The proof of Proposition 1 relies on the tail bound version of Theorem 1 and continuity
arguments. A complete proof is given in Appendix D.

Early alignment towards a few directions. Besides laying the ground for Theorem 2, Proposition 1
aims at describing the geometry of the early alignment when the number of training samples grows
large. In particular, Proposition 1 shows that all extremal vectors concentrate towards the directions
satisfying Equation (6). Although such a description remains abstract, we believe it is satisfied by
only a few directions for many data distributions. As an example, for symmetric data distributions, it
is respectively satisfied by a single or two directions, when considering a one neuron or linear teacher.
More generally, we conjecture it should be satisfied by a small number of directions as soon as the
labels are given by a small teacher network. Proving such a result is yet left for future work.

The early alignment phenomenon has been described in many works, to show that after the early
training dynamics, only a few directions (given by the extremal vectors) are represented by the
neurons (Bui Thi Mai and Lampert, 2021; Lyu et al., 2021; Boursier et al., 2022; Chistikov et al.,
2023; Min et al., 2024; Boursier and Flammarion, 2024; Tsoy and Konstantinov, 2024). However,
these works all rely on specific data examples, where extremal vectors can be easily expressed for a
finite number of samples. Proposition 1 aims at providing a more general result, showing that for
large n, it is sufficient to consider the directions satisfying Equation (6), which is easier to characterize
from a statistical perspective. We thus believe that Proposition 1 advances our understanding of how
sparse is the network representation (in directions) at the end of early alignment.

Proposition 1 implies that for large values of n (≳ d), the early alignment phase results in the
formation of a small number of neuron clusters, effectively making the neural network equivalent
to a small-width network. Empirically, these clusters appear to be mostly1 preserved throughout
training. The neural network then remains equivalent to a small-width network along its entire
training trajectory.

In contrast, when the number of data is limited (n ≲ d), this guarantee no longer holds and a large
number of extremal vectors may exist. For example in the case of orthogonal data (which only holds
for n ≤ d), there are Θ(2n) extremal vectors (Boursier et al., 2022). In such cases, there would still be
a large number of neuron clusters at the end of the early alignment phase, maintaining a large effective
width of the network. Studying how this effective width is maintained until the end of training in
the orthogonal case remains an open problem. We conjecture that for a mild overparametrization
(n ≲ m ≪ 2n),1 we would still have a relatively large effective width (of order

::::::::
increasing

::::
with

:
n) at

the end of training.

4 OPTIMISATION THRESHOLD AND SIMPLICITY BIAS

The goal of this section is to illustrate the transition from interpolating the training data to a nearly
optimal estimator (with respect to the true loss) that can arise when increasing the size of training
data. Toward this end, this section proves on a simple data example, that for a large enough number of
training samples, an overparametrized network will not converge to a global minimum of the training
loss, but will instead be close to the minimizer of the true loss.

More precisely, we consider the specific case of a linear data model:

yk = x⊤
k β

⋆ + ηk for any k ∈ [n], (7)

where ηk is some noise, drawn i.i.d. from a centered distribution. We also introduce a specific set of
assumptions regarding the data distribution.

Assumption 1. The samples xk and the noise ηk are drawn i.i.d. from distributions µX , and µη

satisfying, for some c > 0:

1. µX is symmetric, i.e., xk and −xk follow the same distribution;
1A cluster can sometimes be split into several clusters while training. However, we only observed this in a

limited fashion, such that only a very small number of clusters were added to the weights’ representation while
learning.

1
::::::::::::::::
Boursier et al. (2022)

:::::
proved

::
an

:::::::
effective

::::
width

::
of
::
2

:
at
:::
the

:::
end

::
of

::::::
training

::::
when

:::::::
m ≳ 2n.

6
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2. µ is continuous with respect to the Lebesgue measure;

3. Px∼µX

(
|x⊤β⋆| ≤ c∥x∥2√

d

)
= 0;

4. ∥Ex∼µX
[xx⊤]− Id∥op < min

(
c

2
√
d∥β⋆∥2

, 3
5

)
;

5. The random vector xk is 1 sub-Gaussian and the noise satisfies Eη[η
4] < ∞.

Conditions 1, 2 and 5 in Assumption 1 are relatively mild. However, item 3 is quite restrictive: it is
needed to ensure that the volume of the activation cone containing β⋆ does not vanish when n → ∞.
A similar assumption is considered by Chistikov et al. (2023); Tsoy and Konstantinov (2024), for
similar reasons. Additionally, Condition 4 ensures that Ex[xx

⊤]β⋆ and β⋆ are in the same activation
cone. This assumption allows the training dynamics to remain within a single cone after the early
alignment phase, significantly simplifying our analysis.

As an example, note that if the samples xk are distributed i.i.d. as

xk = sk
β⋆

∥β⋆∥ +
√
d− 1vk with

sk ∼ U ([−1− ε,−1 + ε] ∪ [1− ε, 1 + ε]) and vk ∼ U(Sd−1 ∩ {β⋆}⊥),
for a small enough ε > 0 and µη a standard Gaussian distribution, then Assumption 1 is satisfied. In
this section, we also consider the following specific initialisation scheme for any i ∈ [m]:

wi(0) ∼
λ

2
√
m
U(B(00

:
, 1)) and ai(0) ∼

λ√
m
U({−1, 1}). (8)

In addition to the regime considered in Equations (2) and (3), this initialization introduces a stronger
domination condition, as |ai(0)| ≥ 2∥wi(0)∥. This condition reinforces the early alignment phase,
ensuring that all neurons are nearly aligned with extremal vectors by the end of this phase. Assump-
tion 1 and Equation (8) are primarily introduced to enable a tractable analysis and are discussed
further in Section 4.2.

In particular, this
::::
This set of assumptions allows to study the training dynamics separately on the

following partition of the data:

S+ = {k ∈ [n] | x⊤
k β

⋆ ≥ 0} and S− = {k ∈ [n] | x⊤
k β

⋆ < 0}.
Hereafter, we denote by X+ ∈ Rd×|S+| (resp. X−), the matrix with rows given by the vectors xk

for k ∈ S+ (resp. k ∈ S+ ::::::
k ∈ S−). Similarly, we denote by Y+ ∈ R|S+| (resp. Y−) the vector with

coordinates given by the labels yk for k ∈ S+ (resp. k ∈ S−).

Studying separately the positive (ai > 0) and negative (ai < 0) neurons, we can prove Theorem 2
below, which states that at convergence and for a large enough number of training samples, the sum
of the positive (resp. negative) neurons will correspond to the OLS estimator on the data subset S+

(resp. S−).

Theorem 2. If Assumption 1 holds
:::
and

:::
the

::::::::::
initialisation

:::::::
scheme

::::::
follows

:
Equation (8), then there

exists λ⋆ = Θ( 1d ) and n⋆ = Θ(d3 log d) such that for any λ ≤ λ⋆, any m ∈ N and n ≥ n⋆, with

probability 1−O
(

d2

n + 1
2m

)
, the parameters θ(t) converge to some θ∞ such that

hθ∞(x) = (β⊤
n,+x)+ − (−β⊤

n,−x)+ for any x ∈ Supp(µX),

where Supp(µX) is the support of the distribution µX , βn,+ = (X+X
⊤
+)

−1X+Y+ and βn,− =

(X−X
⊤
−)

−1X−Y− are the OLS estimator respectively on the data in S+ and S− .

Precisely, the estimator learnt at convergence for a large enough n behaves µX -everywhere as the
difference of two ReLU neurons, with nearly opposite directions (thanks to the distribution symmetry),
resulting in a nearly linear estimator. These directions correspond to the OLS estimator of the data in
S+ and in S−, respectively.

The complete proof of Theorem 2 is deferred to Appendix E. We provide a detailed sketch in
Section 4.1 below

:::
and

::::::
discuss

::::::
further Theorem 2

:
in

:
Section 4.2.
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4.1
:::::::
SKETCH

:::
OF

::::::
PROOF

:::
OF THEOREM 2

:::
The

:::::
proof

::
of

:
Theorem 2

::::::::
examines

:::
the

::::::::
complete

:::::::
training

::::::::
dynamics

::
of

:::::::
positive

:::::::
neurons

::::::::::
(ai(0) > 0)

:::
and

:::::::
negative

::::
ones

::::::::::
(ai(0) < 0)

:::::::::
separately.

:::::
This

:::::::::
decoupling

::
is

:::::::
possible

::
at

:::
the

:::
end

:::
of

:::
the

::::
early

::::::
phase,

:::
due

::
to Assumption 1,

:::
and

::
is
:::::::
handled

::::::
thanks

::
to Lemma 4

:
in

:::
the

:::::::::
Appendix.

:

::::
First

::::
note

:::
that

:::
for

:::
the

:::::
given

::::::
model,

::::
there

:::
are

::::
only

:::
two

:::::::
vectors

::::::::
satisfying Equation (6)

:
,
:::::::::::
corresponding

::
to

:::::

1
2Σβ

⋆
:::
and

:::::::
− 1

2Σβ
⋆
::::::::::
respectively,

:::
for

::::::::::::::::
Σ = Ex∼µX

[xx⊤].
:::::
From

::::
then

:::
and

::::::
thanks

::
to

:::
the

::::
third

::::
point

::
of

Assumption 1,
:::
the

::::::
results

::::
from

:
Section 3

::::
imply

::::
that,

:::
for

::
a

::::
large

:::::
value

::
of

::
n

:::
and

::::
with

::::
high

::::::::::
probability,

::::
there

:::
are

::::
only

:::
two

::::::::
extremal

:::::::
vectors,

::::
both

::
of

:::::
which

:::
are

:::::
close

::
to

:::
the

:::::::
expected

::::
ones

:::::::::
mentioned

::::::
above.

::
By

::::::::
analysing

:::
the

:::::
early

::::::::
alignment

:::::
phase

::::::::
similarly

::
to

:::::::::::::::::::::::::::
Boursier and Flammarion (2024)

:
,
::
we

:::::
show

:::
that

::
by

:::
the

:::
end

::
of

::::
this

::::
early

::::::
phase,

::
(i)

::
all

:::::::
neurons

::::
have

:::::
small

::::::
norms;

:::
(ii)

:::::::
positive

:::::
(resp.

::::::::
negative)

::::::
neurons

::
are

:::::::
aligned

::::
with

::::
Σβ⋆

::::::
(resp.

:::::::
−Σβ⋆).

:::::
More

::::::::::
specifically,

:::
at

::::
time

::
τ ,

:::::::
defined

::
as

:::
the

::::
end

::
of

:::
the

:::::
early

::::::::
alignment

::::::
phase,

::
we

:::::
show

::::
that

∀i ∈ [m],
wi(τ)

ai(τ)

⊤
Σβ⋆ = ∥Σβ⋆∥ − O

(
λε +

√
d2 log n

n

)
.

:::::::::::::::::::::::::::::::::::::::::::::::::

::::
From

::::
that

:::::
point

:::::::
onward,

::
all

:::::::
positive

:::::::
neurons

:::
are

:::::
nearly

:::::::
aligned

:::
and

::::::
behave

::
as

::
a
:::::
single

::::::
neuron

::::
until

::
the

::::
end

::
of

::::::::
training.

:::::::::
Moreover,

::::
they

:::::::
remain

::
in

:::
the

:::::
same

::::::::
activation

:::::
cone

::::
until

:::
the

::::
end

::
of

::::::::
training.

::::::
Namely

:::
for

::::
any

::::::
i ∈ [m]

:::
and

::::::
t ≥ τ ,

sign(ai(t))⟨wi(t), xk⟩ > 0 for any k ∈ S+,
::::::::::::::::::::::::::::::::::::

sign(ai(t))⟨wi(t), xk⟩ < 0 for any k ∈ S−.
::::::::::::::::::::::::::::::::::::

:::
We

::::
then

:::::
show

::::
that

::::::
during

:
a
:::::::

second
::::::
phase,

:::
all

:::::::
positive

:::::::
neurons

:::::
grow

::::
until

::::
they

::::::
reach

:::
the

::::
OLS

:::::::
estimator

:::
on

:::
the

::::
data

::
in

:::
S+.

::::::::::::::
Mathematically,

:::
for

::::
some

::::
time

:::::::::
τ2,+ > τ ,∑

i,ai(0)>0

ai(τ2,+)wi(τ2,+) ≈ βn,+.

:::::::::::::::::::::::::::

::::::::
Similarly,

:::::::
negative

:::::::
neurons

::::
end

::
up

:::::
close

::
to
:::::
βn,−::::

after
::

a
:::::::
different

:::::
time

::::
τ2,−.

::::::::
Proving

:::
this

::::::
second

:::::
phase

::
is

::::
quite

::::::::
technical

::::
and

::
is
:::::::
actually

:::::::::::
decomposed

::::
into

::
a

::::
slow

::::::
growth

::::
and

::::
fast

::::::
growth

:::::::
phases,

::::::::
following

:
a
::::::
similar

::::::::
approach

::
to

:::::::::::::::::::::::::::::::::::::::
Lyu et al. (2021); Tsoy and Konstantinov (2024)

:
.

::
At

:::
the

::::
end

::
of

:::
the

:::::::
second

:::::
phase,

::::
the

:::::::::
estimation

:::::::
function

::
is
:::::::
already

:::::
close

::
to

:::
the

::::
one

::::::::
described

::
in

Theorem 2
:
.
:::::
From

:::::
then,

:::
we

::::::
control

:::
the

:::::::
neurons

:::::
using

::
a
::::
local

:::::::::::::::::
Polyak-Łojasiewicz

:::::::::
inequality

:::
(see

:::::::
Equation

::::
45)

::
to

:::::
show

::::
that

::::
they

::::::
remain

:::::
close

::
to
:::::

their
:::::
value

::
at

:::
the

::::
end

::
of

::::
the

::::::
second

::::::
phase,

:::
and

::::::
actually

::::::::
converge

::
to
::

a
:::::
local

::::::::
minimum

::::::::::::
corresponding

::
to

:::
the

:::::::::
estimation

::::::::
function

::::
hθ∞::::::::

described
::
in

Theorem 2.
:

4.2 DISCUSSION

This section discusses in details Theorem 2 and its limitations.

Absence of interpolation. For many years, the literature has argued in favor of the fact that, if
overparametrized enough, neural networks do converge towards interpolation of the training set,
i.e., to a global minimum of the loss (Jacot et al., 2018; Du et al., 2019; Chizat and Bach, 2018;
Wojtowytsch, 2020).

Yet, some recent works argued in the opposite direction that convergence towards global minima might
not be achieved for regression tasks, even with infinitely overparametrized networks (Qiao et al., 2024;
Boursier and Flammarion, 2024). Indeed, Theorem 2 still holds as m → ∞: although interpolation
of the data is possible from a statistical aspect, interpolation does not occur for optimization reasons.
In this direction, Qiao et al. (2024) claim that for large values of n and univariate data, interpolation
cannot happen because of the large (i.e., finite) stepsizes used for gradient descent. Following
Boursier and Flammarion (2024)

:
, we here provide a complementary reason, which is due to the

early alignment phenomenon and loss of omnidirectionality of the weights (i.e., the fact that the

8
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weights represent all directions in Rd). Note that this loss of omnidirectionality is specific to the
::::::
(leaky) ReLU activation and does not hold for smooth activations (see e.g. Chizat and Bach, 2018,
Lemma C.10). We experimentally confirm in Appendix A.5 that both visions are complementary, as
interpolation still does not happen for arbitrarily small learning rates.

Simplicity bias. Simplicity bias has been extensively studied in the literature (Arpit et al., 2017;
Rahaman et al., 2019; Kalimeris et al., 2019; Huh et al., 2021). It is often described as the fact that
networks learn features of increasing complexity while learning. In other words, simpler features are
first learnt (e.g., a linear estimator), and more complex features might be learnt later. This has been
observed in many empirical studies, leading to improved performance in generalization, except from
a few nuanced cases (Shah et al., 2020). Yet in all these studies, the network interpolate

:::::::::
interpolates

the training set after being trained for a long enough time. In consequence, simplicity bias has been
characterized by a first feature learning phase; and is then followed by an interpolating phase, where
the remaining noise is fitted (Kalimeris et al., 2019).

We here go further by showing that this last interpolating phase does not even happen in some cases.
Theorem 2 indeed claims that after the first feature learning phase, where the network learns a linear
estimator, nothing happens in training. The interpolating phase never starts, no matter how long we
wait for. While interpolation is often observed for classification problems in practice, it is generally
much harder to reach for regression problems (Stewart et al., 2022; Yoon et al., 2023; Kadkhodaie
et al., 2023; Raventós et al., 2024). Theorem 2 confirms this tendency by illustrating a regression
example where interpolation does not happen at convergence.

Although implicit bias and simplicity bias often refer to the same behavior in the literature, we here
distinguish the two terms: implicit bias is generally considered in the regime of interpolation (Soudry
et al., 2018; Lyu and Li, 2019; Chizat and Bach, 2020; Ji and Telgarsky, 2019), while simplicity bias
still exists in absence of interpolation.

Improved test loss, due to overparametrization threshold. Theorem 2 states that for a large
enough number of training samples, the interpolating phase does not happen during training, and
the estimator then resembles the OLS estimator of the training set. In that regime, the excess risk
scales as O

(
d
n

)
(Hsu et al., 2011) and thus quickly decreases to 0 as the number of training samples

grows. In contrast when interpolation happens, we either observe a tempered overfitting, where the
excess risk does not go down to 0 as the number of samples grows (Mallinar et al., 2022); or even a
catastrophic overfittingcan happen, where the excess risk instead diverges to infinity as the size of
the training set increases (Joshi et al., 2023).

The fact that the excess risk goes down to 0 as n grows in our example of Section 4 could not be
due to a benign overfitting (Belkin et al., 2018; Bartlett et al., 2020), as benign overfitting occurs
when the dimension d also grows to infinity. We here consider a fixed dimension instead, and this
reduced risk is then solely due to the optimization threshold, i.e., the fact that for a large enough n,
the interpolating phase does not happen anymore. While some works rely on early stopping before
this interpolating phase to guarantee such an improved excess risk (Ji et al., 2021; Mallinar et al.,
2022; Frei et al., 2023), it can be guaranteed without any early stopping after this optimization
threshold. A similar threshold has been empirically observed in diffusion and in-context learning
(Yoon et al., 2023; Kadkhodaie et al., 2023; Raventós et al., 2024), where the trained model goes
from interpolation to generalization as the number of training samples increases.

Limitations and generality. While Theorem 2 considers a very specific setting, it describes a more
general behavior. Although condition 3 of Assumption 1 and the initialization

::::::
scheme

:
of Equation (8)

are quite artificial, they are merely required to allow a tractable analysis. The experiments of Section 5
are indeed run without these conditions and yield results similar to the predictions of Theorem 2 for
large enough n.

More particularly, condition 3 of Assumption 1 is required to ensure that only two extremal vectors
exist. Without this condition, there could be additional extremal vectors, but all concentrated around
these two main extremal ones. On the other hand, Equation (8) is required to enforce the early
alignment phase, so that all neurons are aligned towards extremal vectors at its end. With a more
general initialization, some neurons could move arbitrarily slowly in the early alignment dynamics,
ending unaligned at the end of early phase. Yet, such neurons would be very rare. Relaxing these
two assumptions would make the final convergence point slightly more complex than the one in

9
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Theorem 2. Besides the two main ReLU components described in Theorem 2, a few small components
could also be added to the final estimator, without significantly changing the reached excess risk, as
observed in Section 5. This is observed in Figure 1, where the training loss is only slightly smaller
than the training loss of OLS, with a comparable test loss.

From a higher level, Theorem 2 is restricted to a linear teacher .
:::
and

::
a

:::::
simple

:::::::
network

:::::::::::
architecture.

:
It
:::::::
remains

:::::
hard

::
to

:::::
assess

:::::
how

::::
well

:::
the

:::::::::
considered

::::::
setting

:::::::
reflects

:::
the

::::::::
behavior

::
of

:::::
more

::::::::
complex

::::::::::
architectures

::::::::::
encountered

:::
in

:::::::
practice. We believe that the different conclusions of our work remain

valid in more complex setups. In particular, additional experiments in Appendix A run with a 5
ReLUs teacheryields

::::
more

::::::::
complex

::::::
teacher,

::::::
GeLU

:::::::::
activations

::
or

::::
with

:::::
Adam

::::::::
optimizer

:::::
yield similar

behaviors: the obtained estimator does not interpolate for a large number of training samples, but
instead accurately approximates the teacher network

::::::::
minimizer

::
of

:::
the

::::
test

::::
loss. Similar behaviors

have also been observed on more complex tasks as generative modeling or in-context learning (Yoon
et al., 2023; Kadkhodaie et al., 2023; Raventós et al., 2024). Despite overparametrization, the trained
model goes from perfect interpolation to generalization, as it fails at interpolating for a large number
of training samples. In these works as well, this absence of interpolation does not seem due to an early
stopping, but rather to convergence to a local minimum (see e.g., Raventós et al., 2024, Figure 4).

Lastly, Theorem 2 requires a very large number of samples with respect to the dimension, i.e.,
n ≳ d3 log d. Our experiments suggest

:::::::
confirm that the optimization threshold only appears for a

very large number of training samples with respect to the dimension. However, similar behaviors
seem to occur for smaller orders of magnitude for n in more complex learning problems, such as the
training of diffusion models (Yoon et al., 2023; Kadkhodaie et al., 2023).

4.3 SKETCH OF PROOF OF

The proof of examines the complete training dynamics of positive neurons (ai(0) > 0) and negative
ones (ai(0) < 0) separately. This decoupling is possible at the end of the early phase, due to , and is
handled thanks to in the Appendix.

First note that for the given model, there are only two vectors satisfying , corresponding to 1
2Σβ

⋆

::::
This

::::::::::
dependency

::
in

:
d
:::::
might

::::::
indeed

::
be

::::::::
different

::
for

:::::
more

:::::::
complex

:::::::::::
architectures

::::
(e.g.,

:::::
with

::::::::
attention)

and − 1
2Σβ

⋆ respectively, for Σ = Ex∼µX
[xx⊤].From then and thanks to the third point of , we

apply the results from to show that, for a large value of n and with high probability, there are
only two extremal vectors, both of which are close to the expected ones mentioned above.

:
is
:::::
worth

::::::::::
investigating

:::
for

:::::
future

:::::
work.

:

By analysing the early alignment phase similarly to Boursier and Flammarion (2024), we show that
by the end of this phase, (i) all neurons have small norms; (ii) positive (resp. negative) neurons
are aligned with Σβ⋆ (resp. −Σβ⋆) . More specifically, at time τ , defined as the end of the early
alignment phase, we show that

∀i ∈ [m],

〈
wi(τ)

ai(τ)
,Σβ⋆

〉
= ∥Σβ⋆∥ − O

(
λε +

√
d2 log n

n

)
.

From that point onward, all positive neurons are nearly aligned and behave as a single neuron until
the end of training. Moreover, they remain in the same activation cone until the end of training.
Namely for any i ∈ [m] and t ≥ τ ,

sign(ai(t))⟨wi(t), xk⟩ > 0 for any k ∈ S+,

sign(ai(t))⟨wi(t), xk⟩ < 0 for any k ∈ S−.

We then show that during a second phase, all positive neurons grow until they reach the OLS
estimator on the data in S+. Mathematically, for some time τ2,+ > τ ,∑

i,ai(0)>0

ai(τ2,+)wi(τ2,+) ≈ βn,+.

10
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Similarly, negative neurons end up close to βn,− after a different time τ2,−. Proving this second
phase is quite technical and is actually decomposed into a slow growth and fast growth phases,
following a similar approach to Tsoy and Konstantinov (2024).

At the end of the second phase, the estimation function is already close to the one described in .
From then, we control the neurons using a local Polyak-Łojasiewicz inequality (see Equation 45) to
show that they remain close to their value at the end of the second phase, and actually converge to a
local minimum corresponding to the estimation function hθ∞ described in .

5 EXPERIMENTS

This section illustrates our results on experiments on a toy model close to the setting of Section 4.
More precisely, we train overparametrized two-layer neural networks

:::::::::::
(m = 10 000)

:
until convergence,

on data from the linear model of Equation (7). The network is trained via stochastic gradient descent
and the dimension is here fixed to d = 5 to allow reasonable running times. The setup here is more
general as in

::::
than Section 4, since i) the data input xk are drawn from a standard Gaussian distribution

(which does not satisfy Assumption 1); ii) the neurons are initialized as centered Gaussian of variance
10−5

m (which does not satisfy Equations (3) and (8)). We refer to for additional Appendix A
::
for details

on the considered experiments
:::
and

::::::::
additional

::::::::::
experiments.

Figure 1 illustrates the behavior of both train loss and test loss at convergence, when the size of the
training set n varies. As predicted by Theorem 2, when n exceeds some optimization threshold, the
estimator at convergence does not interpolate the training set. Instead, it resembles the optimal OLS
estimator, which yields a test loss close to the noise level E[η2]. In contrast for smaller training sets,
the final estimator interpolates the data at convergence, which yields a much larger test loss than OLS,
corresponding to the tempered overfitting regime (Mallinar et al., 2022).
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(a) Evolution of train loss.
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(b) Evolution of test loss.

Figure 1: Evolution of both train and test losses at convergence with respect to the number of training
samples. σ2 corresponds to the noise variance E[η2].

This optimization threshold is here located around n⋆ = 3000, which suggests that the large depen-
dency of this threshold in the dimension (which is here 5) in Theorem 2 seems necessary.2

We still observe a few differences here with the predictions of Theorem 2, which are due to the two
differences in the setups mentioned above. Indeed, even after this optimization threshold, the test
loss of the obtained network is slightly larger than the one of OLS, while Theorem 2 predicts they
should coincide. This is because in the experimental setup, a few neurons remain disaligned with the
extremal ones at the end of the early alignment phase. These neurons will then later in training grow
in norm, trying to fit a few data points. However there are only a few of such neurons, whose impact
thus becomes limited. As a consequence, they only manage to slightly improve the train loss, and
thus only slightly degrade the test loss.

2Running similar
:::
See Appendix A.6

::
for

:
experiments with dimension d = 10, we indeed observe a similar

threshold around n = 25000, confirming the cubic dependency
:::::
larger

::::::::
dimensions.Yet, we did not run extensive

experiments in this setting, as they are much longer.
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6 CONCLUSION

This work illustrates on a simple linear example the phenomenon of non-convergence of the parame-
ters towards a global minimum of the training loss, despite overparametrisation. This non-convergence
actually yields a simplicity bias on the final estimator, which can lead to an optimal fit of the true
data distribution. A similar phenomenon has been observed on more complex and realistic settings
(Yoon et al., 2023; Kadkhodaie et al., 2023; Raventós et al., 2024), for which a theoretical analysis
remains intractable.

This result is proven via the description of the early alignment phase. Besides the specific data example
considered in Section 4, we also provide concentration bounds on the extremal vectors driving this
early alignment. We believe this result can be used in subsequent works to better understand this
early phase of the training dynamics, and how it yields biases towards simple estimators.

12
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A ADDITIONAL EXPERIMENTS

A.1 EXPERIMENTAL DETAILS

In the experiments of Figure 1, we initialised two-layer ReLU networks (without bias term) with
m = 10 000 neurons, initialized i.i.d. for each component as a Gaussian of variance 10−5

√
m

. We then
generated training samples as

yk = β⋆⊤xk + ηk,

where ηk are drawn i.i.d. as centered Gaussian of variance σ2 = 0.09, xk are drawn i.i.d. as centered
Gaussian variables and β⋆ is fixed, without loss of generality, to β⋆ = (1, 0, . . . , 0). The dimension
is fixed to d = 5. We then train these networks on training datasets of different sizes (each dataset is
resampled from scratch).

The neural networks are trained via stochastic gradient descent (SGD), with batch size 32 and learning
rate 0.01. To ensure that we reached convergence of the parameters, we train the networks for 8×106

iterations of SGD, where the training seems stabilized.

:::
All

::
the

:::::::::::
experiments

::::
were

:::
run

::
on

::
a
:::::::
personal

::::::::
MacBook

::::
Pro,

:::
for

:
a
::::
total

:::::::
compute

::::
time

:::
of

::::::::::::
approximately

:::
100

:::::
hours.

:

A.2
:::::::
COSINE

:::::::::::
SIMILARITY

:::::
WITH

::::
OLS

:::::::::::
ESTIMATOR

::
To

::::::::
illustrate Theorem 2

:::
and

:::
the

:::
fact

::::
that

:::::::
neurons

:::
end

:::
up

::::::
aligned

::::
with

:::
the

::::
OLS

::::::::
estimator

:::::::
beyond

::
the

::::::::::
optimization

::::::::
threshold

:::
n⋆,

:
Figure 2

:::::
shows

:::::::::
histograms

::
of

:::
the

::::::
cosine

:::::::::
similarities3

:::::::
between

:::
the

:::
all

::
the

::::::
neurons

:::
wi::

of
:::
the

:::::::
network

::
at

:::
the

:::
end

::
of

:::::::
training

:::
and

:::
the

::::
true

::::
OLS

::::::::
estimator

:::::::::::::::::
β̂ = (XX⊤)−1XY,

:::
for

3
:::
The

:::::
cosine

:::::::
similarity

:::::::
between

:::
two

::::::
vectors

:::::::
u, v ∈ Rd

::
is
::::::
defined

::
as

::::::::::::::::
cos(u, v) = u⊤v

∥u∥ ∥v∥ .
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:::::::
different

::::::
sample

:::::::::::
complexities.

::::
This

::::::::::
experiment

::::::
follows

:::
the

:::::
exact

::::
same

:::::
setup

::
as

:::
the

:::
one

::::::::
described

::
in

Appendix A.1
:
.

::
In

::::::::
particular,

:
Figure 2a

:::::
shows

::::
this

::::::::
histogram

:::
for

::::::::
n = 500,

::::::
where

:::::::::::
interpolation

::
of

:::
the

:::::::
training

:::
data

:::::::
happens

:::
(see

:
Figure 1a

:
);

:::
and

:
Figure 2b

:::::
shows

:::
this

:::::::::
histogram

:::
for

:::::::::
n = 5 000,

::::::
where

::::::::::
interpolation

::
of

::
the

:::::::
training

::::
data

::::
does

:::
not

::::::
happen

::::::::
anymore,

:::
but

:::
the

:::::::
network

::::::::::
generalizes

::::
well

::
to

::::::
unseen

::::
data.

:

:::::
While

:
a
::::::::
majority

::
of

:::
the

:::::::
neurons

:
is
:::::::
already

:::::
nicely

:::::::
aligned

::::
with

:::
the

:::
true

:::::
OLS

::::::::
estimator

::
in

:::
the

::::::
former

:::
case

:::::::
(having

::
a

:::::
cosine

::::::::
similarity

:::::
close

::
to

:::::
either

::
1
::
or

::::
−1),

:::
we

:::
see

::::
that

::::::
nearly

::
all

:::::::
neurons

:::
are

::::::
aligned

::::
with

:::
this

::::
true

:::::::
estimator

:::
as

:
n
::::::
grows

:::::
larger,

:::::::::
confirming

:::
the

::::::::::
predictions

::
of Theorem 2.

:::
As

::::::::
explained

::
in

Section 5
:
,
::::
there

:::
are

::::
still

:
a
::::
few

::::::
vectors

:::
that

:::
are

:::::::::
disaligned

::::
with

:::
the

::::
OLS

::::::::
estimator

::::
here,

:::
but

::::
they

::::
have

:::::
almost

:::
no

::::::
impact

::
on

:::
the

::::::::
estimated

::::::::
function.

:
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Figure 2:
:::::::::
Histogram

::
of

:::
the

::::::
cosine

:::::::::
similarities

::
of

:::
the

:::::::
neurons

::::
with

:::
the

::::
true

::::
OLS

::::::::
estimator

::
β̂,

::
at
:::

the
:::
end

::
of

:::::::
training.

A.3
::::::
GELU

:::::::::::
ACTIVATION

:::
Our

:::::::::
theoretical

::::::
results

:::
can

:::
be

::::::
directly

::::::::
extended

::
to

::::
any

:::::::::::
homogeneous

::::::::
activation

::::::::
function,

::::
i.e.,

:::::
leaky

:::::
ReLU

:::::::::
activation.

:::
Yet,

:::
the

::::::
theory

:::::
draws

::::::::
different

:::::::::
conclusions

:::
for

::::::::::::
differentiable

:::::::::
activations

:::::::
functions

:::
and

::::::
claims

::::
that

:::
for

::::::::
infinitely

:::::
wide

::::::
neural

::::::::
networks,

::::
the

:::::::::
parameters

:::::::
should

:::::::::
interpolate

:::
the

::::
data

:
at
:::::::::::

convergence
::::::::::::::::::::
(Chizat and Bach, 2018)

:
.
:::::

This
:::::
result

:::
yet

::::
only

::::::
holds

:::
for

::::::::
infinitely

::::
wide

:::::::::
networks,

:::
and

::
it

:::::::
remains

::::::::
unknown

::::
how

::::
wide

::
a
:::::::
network

::::::
should

::
be

:::
to

:::::::
actually

:::::
reach

::::
such

::
an

:::::::::::
interpolation

::
in

:::::::
practice.

:
Figure 3

:::::
below

:::::::
presents

:::::::::::
experiments

::::::
similar

::
to Section 5

:
,
::::::::
replacing

:::
the

:::::
ReLU

::::::::
activation

::
by

:::
the

:::::::::::
differentiable

::::::
GeLU

::::::::
activation

:::::::::::::::::::::::::
(Hendrycks and Gimpel, 2016)

:
.
::::
This

::::::::
activation

::
is
:::::::
standard

::
in

::::::
modern

:::::
large

:::::::
language

:::::::
models.

::::::::
Notably,

:
it
::
is
::::
used

::
in
:::
the

::::::
GPT2

::::::::::
architecture,

::::::
which

:::
was

::::
used

:::
in

::
the

::::::::::
experiments

::
of

::::::::::::::::::
Raventós et al. (2024)

:
.
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Figure 3:
:::::::
Evolution

:::
of

::::
both

::::
train

:::
and

:::
test

:::::
losses

::
at

::::::::::
convergence

::::
with

::::::
respect

::
to
:::
the

:::::::
number

::
of

::::::
training

:::::::
samples,

::::
with

:::::
GeLU

:::::::::
activation.

:::::
While

::::::::
infinitely

::::
wide

::::::
GeLU

::::::::
networks

::::::
should

::::::
overfit,

:::::
even

::::
very

::::
wide

::::::::
networks

::::::::::::
(m = 10 000)

:::
are

::
far

:::::
from

:::
this

::::::::
behavior

::
in

:::::::
practice.

:::
In

:::::::::
particular,

:::
we

::::::
observe

::
a
:::::::::::
phenomenon

::::::
similar

::
to

:
Section 5

:
in

Figure 3.
:::::::::::

Surprisingly,
::

it
::::
even

::::::
seems

:::
that

:::::::::::
interpolation

::
is

::::::
harder

::
to

:::::
reach

::::
with

:::::
GeLU

:::::::::
activation,

::
as
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::
the

::::::::
network

::
is

::::::
already

::::::
unable

::
to

::::::::::
interpolate

::
for

::::::::
n = 500

:::::::
training

:::::::
samples.

::::
We

::::::
believe

::::
this

::
is

:::
due

::
to

:::
the

:::
fact

::::
that

::::::
GeLU

::
is

:::::
close

::
to

:
a
::::::

linear
:::::::
function

::::::
around

::::
the

:::::
origin

:::::::::::::
(corresponding

::
to

:::
our

:::::
small

::::::::::
initialization

:::::::
regime),

:::::::
making

:
it
::::::
harder

::
to

::::::
overfit

:::::
noisy

:::::
labels.

:

A.4
:::::::::::
MOMENTUM

::::::
BASED

:::::::::::
OPTIMIZERS

:::
Our

:::::::::
theoretical

:::::::
results

::::
hold

:::
for

::::::::
Gradient

:::::
Flow,

::::::
which

::
is
::

a
::::
first

:::::
order

:::::::::::::
approximation

::
of

::::::
typical

:::::::
gradient

::::::::
methods

:::::
such

:::
as

::::::::
Gradient

::::::::
Descent

:::::
(GD)

:::
or

::::::::::
Stochastic

::::::::
Gradient

::::::::
Descent

:::::::
(SGD)

::::::::::::
(Li et al., 2019)

:
.
:::::

Yet,
::::::

recent
:::::
large

::::::
models

:::::::::::::::
implementations

::::::::
typically

:::
use

::::::::
different,

::::::::::
momentum

:::::
based

:::::::::
algorithms,

:::::
such

::
as

:::::
Adam

::::::::::::::
(Kingma, 2014)

::
or

:::::::
AdamW

::::::::::::::::
(Loshchilov, 2017)

:
.
:::
To

:::::::
illustrate

:::
the

::::::::
generality

::
of

:::
the

:::::::::::
optimization

::::::::
threshold

:::
we

::::::
proved

::
in

::
a
::::::
specific

::::::::::
theoretical

::::::
setting,

:::
we

:::::::
consider

::
in

Figure 4
:::::
below

:::
the

:::::
same

::::::::::
experiments

::
as

:::
in Section 5

:
,
::::
with

:::
the

:::::::::
exception

:::
that

::
i)
:::

we
:::::

used
:::::
GeLU

::::::::
activation

::::::::
functions

:::
(as

::
in Appendix A.3)

::::
and

::
ii)

:::
we

:::::::::
minimized

:::
the

:::::::
training

:::
loss

:::::::
through

:::
the

:::::
Adam

::::::::
optimizer,

::::
with

:::::::
pytorch

::::::
default

::::::::::::::
hyperparameters.

:

:::
We

::::::
focus

:::
on

:::::::
Adam

::::::
rather

:::::
than

:::::::::
AdamW

:::::
here

:::
to

:::::::
follow

::::
the

::::::::::::
experimental

::::::
setup

:::
of

::::::::::::::::::
Raventós et al. (2024)

:::
and

:::::::
because

::::
our

:::::
focus

::
is

:::
on

:::::::
implicit

::::::::::::
regularization,

::::
thus

::::::::
avoiding

::::::
explicit

:::::::::::
regularization

::::::::::
techniques.
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Figure 4:
:::::::
Evolution

:::
of

::::
both

::::
train

:::
and

:::
test

:::::
losses

::
at

::::::::::
convergence

::::
with

::::::
respect

::
to
:::
the

:::::::
number

::
of

::::::
training

:::::::
samples,

::::
with

:::::
GeLU

:::::::::
activation

:::
and

::::::
Adam

::::::::
optimizer.

:::
The

::::::::
observed

::::::
results

:::
are

::::
very

::::::
similar

::
to
::::

the
::::
ones

::
of

:
Figure 3,

:::::::
leading

::
to

::::::
similar

::::::::::
conclusions

::::
than

Appendix A.3
:::
and

:::
the

::::
fact

:::
that

::::::::::
considering

:::::
Adam

::::::
rather

:::
than

:::::
SGD

::::
does

:::
not

::::::::::
significantly

:::::::
change

::
the

::::
final

::::::
results.

A.5 STABILITY OF MINIMA

Qiao et al. (2024) argue that the non-convergence of the estimator towards interpolation is due to the
instability of global minima. More precisely they claim that for large stepsizes, gradient descent (GD)
cannot stabilize around global minima of the loss for large values of n. We present an additional
experiment in this section, illustrating that this non-convergence is not due to an instability of the
convergence point of (S)GD, but to it being a stationary point of the loss as predicted by our theory.

For that, we consider a neural network initialized from the final point (warm restart) of training for
8 000 samples in the experiment of Figure 1.4 We then continue training this network on the same
training dataset, with a decaying learning rate schedule. Precisely, we start with a learning rate of
0.01 as in the main experiment, and multiply the learning rate by 0.85 every 50 000 iterations of
SGD, so that after 4× 106 iterations, the final learning rate is of order 10−8.

We observe on Figure 5 that the training loss does not change much from the point reached at the
end of training with the large learning rate 0.01. Indeed, the training loss was around 0.082 at the
end of this initial training, which is slightly less than the noise level (0.09). While there seems to be
some stabilization happening at the beginning of this decaying schedule, the training loss seems to

4
::::::
Another

::::::
relevant

:::::::::
experiment

::
is

:
to
::::

train
::::
from

::::::
scratch

:::
(no

::::
warm

::::::
restart)

:::
with

::
a
::::::
smaller

::::::
learning

::::
rate.

::::
When

::::::
running

:::
the

:::::::::
experiment

::
of

:
Appendix A.1

:::
with

::
a
::::::
smaller

:::::::
learning

:::
rate

::::::
0.001,

:::
we

::::::
observe

:::::
again

:::
that

:::
the

::::::::
parameters

::
at

:::::::::
convergence

:::::::::
correspond

:
to
:::
the

::::
OLS

:::::::
estimator.
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Figure 5: Evolution of training loss from warm restart with a decaying learning rate schedule
(n = 8000, d = 5).

converge to slightly more than 0.0815, confirming that the absence of interpolation is not due to an
instability reason, but rather to a convergence towards a spurious stationary point of the loss

:
.
:

A.6
::::::::::
INFLUENCE

:::
OF

:::::::::::::::
DIMENSIONALITY

Theorem 2
:::::::
predicted

:::
an

::::::::::
optimization

::::::::
threshold

:::::::
scaling

::
in

::::::::::
O
(
d3 log d

)
.
:::::::::

However,
:::
the

::::::::::
experiments

::
of Section 5

:::::::
consider

::
a

::::
fixed

:::::::::
dimension

::::::::
(d = 5),

::::::
making

::
it
:::::::

unclear
::::
how

:::::
tight

::
is

:::
this

:::::::::
theoretical

::::::::::
optimization

::::::::
threshold

::::
and

:::::::
whether

:
a
::::::
similar

::::::::::
dependency

:::
in

:::
the

:::::::::
dimension

:
is
::::::::

observed
::
in
::::::::

practice.
::
To

:::::::::
investigate

::::::
further

::::
this

::::::::::
dependency

::
in

:::
the

::::::::::
dimension,

:::
we

::::::
present

::
in

::::
this

::::::
section

::::::::::
experiments

::
in

::
the

:::::
same

:::::
setup

::::::::
described

::
in Appendix A.1

:
,
::::
with

:::
the

:::
sole

:::::::::
exception

:::
that

:::
the

:::::::::
dimension

::
is

:::::
larger,

::::
fixed

::
to

::::::
d = 10.

:

Figure 6
::::::::
illustrates

:::
the

::::::::
evolution

::
of

::::
both

:::
the

:::::
train

:::
and

:::
test

::::::
losses

::
as

:::
the

:::::::
number

::
of

:::::::
training

::::::
samples

:::::::
increases

:::
in

:::
this

::::::
larger

:::::::::
dimension

:::::::
setting.

:::
In

:::
that

:::::
case,

:::
the

:::::::::::
optimization

:::::::::
threshold

:::::
seems

:::::
much

:::::
larger:

:::::::::::
interpolation

:::::
stops

:::::::::
happening

::::::
around

::::::::::
n = 10 000

::::::::
samples,

::::
and

::
an

:::::::::
estimation

:::::
close

::
to
:::

the
::::
OLS

::::::::
estimator

:::::
really

::::
starts

:::::::::
happening

::
at
:::::
much

:::::
larger

::::::
values

::
of

::
n,

::::::
around

:::::::::::
n = 80 000.

0 10000 20000 30000 40000 50000 60000 70000 80000

n

0.00

0.02

0.04

0.06

0.08

0.10

T
ra

in
L

os
s

σ2

hθ
OLS

(a)
:::::::
Evolution

::
of

::::
train

:::
loss.

0 10000 20000 30000 40000 50000 60000 70000 80000

n

0.10

0.12

0.14

0.16

0.18

0.20

0.22

T
es

t
L

os
s

σ2

hθ
OLS

(b)
:::::::
Evolution

::
of
:::
test

::::
loss.

Figure 6:
:::::::
Evolution

:::
of

::::
both

::::
train

:::
and

:::
test

:::::
losses

::
at

::::::::::
convergence

::::
with

::::::
respect

::
to
:::
the

:::::::
number

::
of

::::::
training

:::::::
samples,

::::
with

:::::::::
dimension

:::::::
d = 10.

:::::::::
Comparing

::::
with

:::
the

::::::
d = 5

:::::
case,

:
it
:::::

thus
:::::
seems

::::
that

:::
the

:::::
point

::
at

::::::
which

:::::::::::
interpolation

::::
stops

::::::
indeed

:::::
seems

::
to

:::::::
roughly

:::::
scale

::
in

::::
d3.

:::::::::
However,

:::
this

:::::::
scaling

:::::
seems

:::::
even

:::::
larger

:::
for

::::
the

:::::
point

:::::
where

:::
the

:::::::
estimator

:::::::::::
corresponds

::
to

:::
the

:::::
OLS

::::
one.

:::
We

:::::::
believe

:::
that

::::
this

::::::::::
discrepancy

::
is

::::
due

::
to

:::
the

:::::::::
differences

:::::::
between

:::
our

::::::::::
theoretical

::::
and

:::::::::::
experimental

:::::::
setups,

::::
and

:::
in

::::::::
particular

:::
to

::::
the

::::
fact

::::
that

:::::::
multiple

::::::::::
intermediate

:::::::
neurons

:::
can

:::::
grow

::
in

:::
our

:::::::::::
experimental

:::::
setup

:::
(see

::::::::::
Limitations

:::
and

:::::::::
generality

:::::::
paragraph

::
in Section 4.2

:
).

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A.7 5 RELU TEACHER NETWORK

This section presents an additional experiment with a more complex data model. More precisely, we
consider the exact same setup than Section 5 (described in Appendix A.1), with the difference that
the labels yk are given by

yk = f⋆(xk) + ηk,

where f⋆ is a 5 ReLU network:

f⋆(xk) =
1

5

5∑
i=1

(x⊤
k β

⋆
i )+.

The parameters β⋆
i are drawn i.i.d. at random following a standard Gaussian distribution. We use the

exact same β⋆
i across all the runs for different values of n. Also, xk and ηk are generated in the same

way as described in in Appendix A.1.

Figure 7 also presents the evolution of the train and test losses as the number of training samples
varies. We observe a behavior similar to Figure 1, where interpolation is reached for small values of
n, and is not reached anymore after some threshold n⋆. While the test loss is far from the optimal
noise variance before this threshold, it then becomes close to it afterwards.

Yet, this transition from interpolation to generalization is slower in the 5 ReLU teacher case than
in the linear one. Indeed, while interpolation does not happen anymore around n = 2000 in both
cases, much more samples (around n⋆ = 17000) are needed to have a simultaneously a training and
testing loss close to the noise variance. These experiments suggest that the behavior predicted by
Theorem 2 for a linear model also applies in more complex models such as the 5 ReLU teacher, but
that the transition from interpolation to generalization can happen more slowly or with more training
samples depending on the setting.
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Figure 7: Evolution of both train and test losses at convergence with respect to the number of training
samples with a 5 ReLU teacher. σ2 corresponds to the noise variance E[η2].

The slight difference with Figure 1 is that this optimization threshold here seems to appear for larger
values of n.

B PROOF OF THEOREM 1

We recall Theorem 1 below.

Theorem 1. If the marginal law of x is continuous with respect to the Lebesgue measure, then for
any n ∈ N,

EX,y

[
sup

w∈Sd−1

sup
Dn∈Dn(w,0)

∥Dn −D(w)∥2
]
= O

(√
d log n

n
Eµ[∥yx∥22]

)
,

where for any w ∈ Sd−1, D(w) = Eµ[1w⊤x>0yx].
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Proof. We first show a similar result on the following expectation

EX,y

[
sup

w∈Sd−1

∥Dn(w)−D(w)∥2
]
= O

(√
d log n

n
Eµ[∥yx∥22]

)
, (9)

where we recall Dn(w) =
1
n

∑n
k=1 1w⊤xk>0ykxk. We bound this expectation using typical uniform

bound techniques for empirical processes.

A symmetrization argument allows to show, for i.i.d. Rademacher random variables εk ∈ {−1, 1}
(see Van Der Vaart and Wellner, 2023, Lemma 2.3.1.):

EX,y

[
sup

w∈Sd−1

∥Dn(w)−D(w)∥2
]
≤ 2 EX,y

[
Eεεε

[
sup

w∈Sd−1

∥∥∥∥∥ 1n
n∑

k=1

1w⊤xk>0εkykxk

∥∥∥∥∥
2

∣∣ X,y

]]
.

(10)

From there, it remains to bound for any value of X,y the conditioned expectation Eεεε[· | X,y]. We
consider in the following a fixed value of X,y. Note that the vector

∑n
k=1 1w⊤xk>0εkykxk, actually

only depends on w in the value of the vector (1w⊤xk>0)k∈[n]. Define

A(X,y) =
{
(1w⊤xk>0)k∈[n] | w ∈ Rd

}
. (11)

We thus have the equality:

sup
w∈Sd−1

∥∥∥∥∥ 1n
n∑

k=1

1w⊤xk>0εkykxk

∥∥∥∥∥
2

= sup
u∈A(X,y)

∥∥∥∥∥ 1n
n∑

k=1

ukεkykxk

∥∥∥∥∥
2

.

Moreover, classical geometric arguments (see e.g. Cover, 1965, Theorem 1) allow to bound
card (A(X,y)) for any X,y:

card (A(X,y)) ≤ 2

d−1∑
k=0

(
n− 1

k

)
= O

(
nd
)
. (12)

From there, we will bound individually for each u ∈ A(X,y) the norm of 1
n

∑n
k=1 ukεkykxk and

use a union bound argument.

Let u ∈ A(X,y). Define Z ∈ Rd×n the matrix whose column k is given by Z(k) = 1
nukykxk. Then

note that 1
n

∑n
k=1 ukεkykxk = Zεεε. Hanson-Wright inequality then allows to bound the following

probability (see Rudelson and Vershynin, 2013, Theorem 2.1) for some universal constant c > 0 and
any t ≥ 0:

Pεεε

(∣∣∥Zεεε∥2 − ∥Z∥F
∣∣ > t

∣∣ X,y
)
≤ 2e

− ct2

∥Z∥2op ,

where ∥Z∥F and ∥Z∥op respectively denote the Frobenius and operator norm of Z. In particular,
noting that ∥Z∥op ≤ ∥Z∥F, this last equation implies that for any t > 0

Pεεε

(
∥Zεεε∥2 > (1 + t)∥Z∥F

∣∣ X,y
)
≤ 2e−ct2 . (13)

Moreover, note that

∥Z∥F =

√√√√ n∑
k=1

∥Z(k)∥22

=

√√√√ n∑
k=1

1

n2
∥ukykxk∥22 ≤

√
1

n
C(Z),

where C(Z) = 1
n

∑n
k=1 ∥ykxk∥22 does not depend on u.
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Rewriting Equation (13) with this last inequality, and with δ = 2e−ct2 , we finally have for each
u ∈ A(X,y):

Pεεε

(
∥Zεεε∥2 > (1 +

√
1

c
ln(2/δ))

√
C(Z)

n

∣∣ X,y

)
≤ δ.

Considering a union bound over all the u ∈ A(X,y), we have for some universal constant c′ > 0,
thanks to Equation (12):

Pεεε

(
∃u ∈ A(X,y), ∥Zεεε∥2 >

(
1 +

√
c′(log(2/δ) + d log(n) + 1)

)√C(Z)

n

∣∣ X,y

)
≤ δ. (14)

Moreover, conditioned on X,y, ∥Zεεε∥2 is almost surely bounded by
√
n∥Z∥op, and so by

√
C(Z).

A direct bound on the expectation can then be derived using Equation (14) with δ = n−d:

Eεεε

[
sup

u∈A(X,y)

∥∥∥∥∥ 1n
n∑

k=1

ukεkykxk

∥∥∥∥∥
2

]
= O

(√
d log n

n
+ n−d

)√
C(Z).

Wrapping up with Equation (11) and Equation (10) then allows to derive Equation (9),

EX,y

[
sup

w∈Sd−1

∥Dn(w)−D(w)∥2
]
= O

(√
d log n

n

)
EX,y

[√
C(Z)

]
≤ O

(√
d log n

n

)√
EX,y [C(Z)]

= O
(√

d log n

n

)√
Eµ [∥yx∥22].

Lemma 1 below then allows to conclude.

Lemma 1. If the marginal law of x is continuous with respect to the Lebesgue measure, then almost
surely:

sup
w∈Sd−1

sup
Dn∈Dn(w)

∥Dn −D(w)∥2 ≤ sup
w∈Sd−1

∥Dn(w)−D(w)∥2,

where Dn(w) =
1
n

∑n
k=1 1w⊤xk>0ykxk.

B.1 PROOF OF LEMMA 1

First observe that if the marginal law of x is continuous, then D is continuous with respect to w.

Consider any w ∈ Sd−1. We recall that the set Dn(w) is defined as

Dn(w) =
{
− 1

n

n∑
k=1

ηkykxk

∣∣∣ ∀k ∈ [n], ηk


∈ [0, 1] if ⟨wt

j , xk⟩ = 0

= 1 if ⟨wt
j , xk⟩ > 0

= 0 otherwise

}
.

If all the values w⊤xk are non-zero, then Dn(w) is the singleton given by Dn(w) and thus

sup
Dn∈Dn(w)

∥Dn −D(w)∥2 = ∥Dn(w)−D(w)∥2.

Otherwise, if w⊤xk = 0 for at least one k, observe that5

Dn(w) = lim inf
ε→0
ε>0

Conv({Dn(w
′) | w′ ∈ S and ∥w − w′∥2 ≤ ε}),

where
S = {w′ ∈ Sd−1 | w′⊤xk ̸= 0 for all k}.

5This observation directly follows from the definition of the Clarke subdifferential.
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In other words, for any Dn ∈ Dn(w), w can be approached arbitrarily closed by vectors wi ∈ S
such that for some convex combination ηηη,

Dn =
∑
i

ηiDn(wi).

From then, it comes that

∥Dn −D(w)∥ ≤
∑
i

ηi∥Dn(wi)−D(w)∥

≤
∑
i

ηi(∥Dn(wi)−D(wi)∥+ ∥D(wi)−D(w)∥)

≤ sup
w′∈S

∥Dn(w
′)−D(w′)∥+

∑
i

ηi∥D(wi)−D(w)∥.

Since D is continuous and the wi can be chosen arbitrarily close to w, the right sum can be chosen
arbitrarily close to 0.

In particular, we have shown that for any Dn ∈ Dn(w),

∥Dn −D(w)∥ ≤ sup
w′∈S

∥Dn(w
′)−D(w′)∥.

This concludes the proof of Lemma 1.

C PROBABILITY TAIL BOUND VERSION OF THEOREM 1

While Theorem 1 bounds the maximal deviation of Dn −D(w) in expectation, a high probability
tail bound is also possible, as given by Theorem 3 below.

Theorem 3. If the marginal law of x is continuous with respect to the Lebesgue measure, then for
any n ∈ N and M ≥ Eµ

[
∥yx∥2

]
,

PX,y

[
sup

w∈Sd−1

sup
Dn∈Dn(w)

∥Dn −D(w)∥2 > 4
(
1 +

√
c′(log(2/δ) + d log(n) + 1)

)√M

n

]

≤ 4

3
δ +

4

3
PX,y

[
1

n

n∑
k=1

∥ykxk∥2 > M

]
.

Proof. The proof follows the same lines as the proof of Theorem 1 in Appendix B. In particular, we
first want to bound in probability the term supw∈Sd−1

∥Dn(w)−D(w)∥2. In this goal, a probabilistic
symmetrization argument (Van Der Vaart and Wellner, 2023, Lemma 2.3.7.) yields for any t > 0

βn(y)PX,y

[
sup

w∈Sd−1

∥Dn(w)−D(w)∥2 > t

]
≤ 2PX,y

[
Pεεε

[
sup

w∈Sd−1

∥∥∥∥∥ 1n
n∑

k=1

εk1w⊤xk>0ykxk

∥∥∥∥∥ >
t

4

∣∣ X,y

]]
,

(15)
where βn(t) = 1 − 4n

t2 supw,w′∈Sd−1
Varµ(1w⊤x>0yw

′⊤x). In particular here, βn(t) ≥ 1 −
4n
t2 Eµ

[
∥yx∥2

]
. Moreover, we already showed Equation (14) in the proof of Theorem 1, which

states

Pεεε

(
sup

w∈Sd−1

∥∥∥∥∥ 1n
n∑

k=1

εk1w⊤xk>0ykxk

∥∥∥∥∥ >
(
1 +

√
c′(log(2/δ) + d log(n) + 1)

)√C(X,y)

n

∣∣ X,y

)
≤ δ,

where C(X,y) = 1
n

∑n
k=1 ∥ykxk∥2.
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Equation (15) then rewrites for any M > 0:

PX,y

[
sup

w∈Sd−1

∥Dn(w)−D(w)∥2 > 4
(
1 +

√
c′(log(2/δ) + d log(n) + 1)

)√M

n

]

≤ βn(t)
−1

(
δ + PX,y

[
1

n

n∑
k=1

∥ykxk∥2 > M

])
,

with

t = 4
(
1 +

√
c′(log(2/δ) + d log(n) + 1)

)√M

n
.

Note that for any M ≥ Eµ

[
∥yx∥2

]
, βn(t) ≥ 3

4 , which implies

PX,y

[
sup

w∈Sd−1

∥Dn(w)−D(w)∥2 > 4
(
1 +

√
c′(log(2/δ) + d log(n) + 1)

)√M

n

]

≤ 4

3
δ +

4

3
PX,y

[
1

n

n∑
k=1

∥ykxk∥2 > M

]
.

Theorem 3 then follows, thanks to Lemma 1.

Corollary 1 below provides a simpler tail bound, directly applying Lemma 1 with Chebyshev’s
inequality to bound PX,y

[
1
n

∑n
k=1 ∥ykxk∥2 > M

]
. Stronger tail bounds can be provided with

specific conditions on the random variables xk and yk, but the one of Corollary 1 is enough for our
use in Section 4.

Corollary 1. Assume the marginal law of x is continuous with respect to the Lebesgue measure.
Moreover, assume ∥xy∥ admits a fourth moment. Then

PX,y

[
sup

w∈Sd−1

sup
Dn∈Dn(w)

∥Dn −D(w)∥2 > 4
(
1 +

√
c′(log(2/δ) + d log(n) + 1)

)√2E[∥yx∥2]
n

]

≤ 4

3
δ +

4

3

Eµ[∥yx∥4]
nEµ[∥yx∥2]2

.

Proof. This is a direct consequence of Theorem 3, using Chebyshev’s inequality to bound
PX,y

[
1
n

∑n
k=1 ∥ykxk∥2 > M

]
.

D PROOF OF PROPOSITION 1

In the following proof, we define the following subsets of the unit sphere in dimension d for any
δ > 0:

H = {w ∈ Sd−1 | D(w) satisfies Equation (6)},

H(δ) = D−1

( ⋃
w∈H

B(D(w), δ)

)
∩ Sd−1,

∆(δ) = min(1, inf
w∈Sd−1\H(δ)

min

(
∥ D(w)

∥D(w)∥ − w∥, ∥ D(w)

∥D(w)∥ + w∥, ∥D(w)∥
)
).

Here, B(D(w), δ) denotes the open ball of radius δ, centered in D(w).

Proof. Since the marginal distribution of X is continuous, the function D : w 7→ D(w) is continuous.
In particular for any δ > 0, the infimum defining ∆(δ) is reached, so that ∆(δ) > 0 by definition
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of H. In the following, we let δ = ε
2 . Thanks to Corollary 1, with probability at least 1−Oµ

(
1
n

)
,

sup
w∈Sd−1

sup
Dn∈Dn(w)

∥Dn −D(w)∥2 = Oµ

(√
d log n

n

)
.

In particular, we can choose n⋆(ε) = Oµ

d log

(
d

min(∆( ε
2
)4,ε2)

)
min (∆( ε2 )

2, ε)

 large enough so that

for any n ≥ n⋆(ε), with probability at least 1−Oµ

(
1
n

)
:

sup
w∈Sd−1

sup
Dn∈Dn(w)

∥Dn −D(w)∥2 ≤ 1

2
min

(
∆(

ε

2
)2, ε

)
. (16)

We assume in the following of the proof that Equation (16) holds.

Consider an extremal vector Dn of the finite data (X,y). By definition, there is some w ∈ Sd−1 such
that D ∈ Dn(w) and either

1. Dn = 0,

2. or An(Dn) = An(w),

3. or An(Dn) = −An(w).

In the first case, Equation (16) yields that ∥D(w)∥2 < ∆( ε2 ). Necessarily, by definition of ∆( ε2 ),
w ∈ H( ε2 ). This means by definition of H( ε2 ) that there exists D⋆ ∈ Rd satisfying Equation (6),
such that

∥D(w)−D⋆∥2 ≤ ε

2
.

In particular, using Equation (16) again yields ∥Dn −D⋆∥2 ≤ ε.

In the second case (An(Dn) = An(w)), we can assume Dn ̸= 0. In that case, as Dn

∥Dn∥ have the same

activations, Dn(w) = Dn(
Dn

∥Dn∥ ), i.e., we can assume without loss of generality that w = Dn

∥Dn∥ here.
Similarly to the first case, if w ∈ H( ε2 ), then there exists D⋆ ∈ Rd satisfying Equation (6), such that
∥Dn −D⋆∥2 ≤ ε.

Let us show by contradiction that indeed w ∈ H( ε2 ). Assume w ̸∈ H( ε2 ). In particular, ∥D(w)∥2 ≥
∆( ε2 ). We can now bound the norm of D(w)

∥D(w)∥ − w:∥∥∥∥ D(w)

∥D(w)∥ − w

∥∥∥∥
2

=

∥∥∥∥ D(w)

∥D(w)∥ − Dn

∥Dn∥

∥∥∥∥
2

=

∥∥∥∥D(w)−Dn

∥D(w)∥ +
Dn

∥Dn∥

(∥Dn∥ − ∥D(w)∥
∥D(w)∥

)∥∥∥∥
2

≤ ∥D(w)−Dn∥
∥D(w)∥ +

∣∣∥Dn∥ − ∥D(w)∥
∣∣

∥D(w)∥

≤ 2
∥D(w)−Dn∥

∥D(w)∥

≤ 2
∆( ε2 )

2

2∆( ε2 )
= ∆(

ε

2
).

By definition of ∆( ε2 ), this actually implies that w ∈ H( ε2 ), which contradicts the initial assumption.
We thus indeed have w ∈ H( ε2 ), leading to the existence of a D⋆ with the wanted properties such
that ∥Dn −D⋆∥2 ≤ ε. In the third case (An(Dn) = −An(w)), symmetric arguments lead to the
same conclusion, which concludes the proof of Proposition 1.
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E PROOF OF THEOREM 2

E.1 NOTATIONS AND FIRST CLASSICAL RESULTS

In the whole Appendix E, we define Σ = E[xx⊤] and

Σn,+ =
1

n

∑
k∈S+

xkx
⊤
k , Σn,− =

1

n

∑
k∈S−

xkx
⊤
k

and the following set of neurons:

I+ = {i ∈ [m] | ai(0) ≥ 0} and I− = {i ∈ [m] | ai(0) < 0}.

We first start by stating the following, known balancedness lemma (see, e.g., Arora et al., 2019;
Boursier et al., 2022).

Lemma 2. For any i ∈ [m] and t ∈ R+, ai(t)2 − ∥wi(t)∥2 = ai(0)
2 − ∥wi(0)∥2.

Lemma 2 can be simply proved by a direct computation of the derivative of ai(t)2 − ∥wi(t)∥2.
Thanks to Equation (8), this yields that the sign ai(t) is constant over time, and thus partitioned by
the sets of neurons I+ and I−.

Also, note that with probability 1− 1
2m−1 , the sets I+ and I− are both non empty, which is assumed

to hold in the following of the section.

In this section, all the O,Θ and Ω notations hide constants depending on the fourth moment of η, the
norm of β⋆ and the constant c of Assumption 1. Note that due to the sub-Gaussian property of x, its
k-th moment can be bounded as E[∥x∥k]O

(
d

k
2

)
for any k.

E.2 PHASE 1: EARLY ALIGNMENT

Lemma 3. If Assumption 1 holds, there exists λ⋆ = Θ( 1d ) and n⋆ = Θ(d3 log d) such that for any
λ ≤ λ⋆ and ε ∈ (0, 1

4 ), n ≥ n⋆ and for τ = ε ln(1/λ)
∥Σβ⋆∥ , with probability 1−O

(
1
n

)
:

1. output weights do not change until τ :

∀t ≤ τ,∀j ∈ [m], |aj(0)|λ2ε ≤ |aj(t)| ≤ |aj(0)|λ−2ε;

2. all neurons align with ±Σβ⋆:

∀i ∈ [m], ⟨wi(τ)

ai(τ)
,Σβ⋆⟩ = ∥Σβ⋆∥ − O

(
λε +

√
d2 log n

n

)
.

Proof. We start the proof by computing D(w) for any w ∈ Sd−1:

D(w) = E[1w⊤x>0yx]

= E[1w⊤x>0xx
⊤β⋆]

=
1

2

(
E[1w⊤x>0xx

⊤] + E[1w⊤x<0xx
⊤]
)
β⋆

=
Σβ⋆

2
.

The second inequality comes from the independence between x and η, the third one comes from the
symmetry of the distribution of x and the last one by continuity of this distribution.

Corollary 1 additionally implies that for some n⋆ = Θ(d3 log d) and any n ≥ n⋆, with probability at
least 1−O

(
1
n

)
,

sup
w∈Sd−1

sup
Dn∈Dn(w)

∥Dn −D(w)∥2 ≤ O
(√

d2 log n

n

)
≤ α√

d
, (17)
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with α = 1
4 min(c −

√
d∥Σβ⋆ − β⋆∥, ∥Σβ⋆∥). Note6 that α > 0 thanks to the fourth point of

Assumption 1. Moreover, using typical concentration inequality for sub-Gaussian vectors, we also
have with probability 1−O

(
1
n

)
:∑n
k=1 ∥xk∥2

n
≤ 2EµX

[∥x∥2] = O(d) . (18)

We assume in the following of the proof that both Equations (17) and (18) hold.

Since D(w) = Σβ⋆

2 for any w, we have for any w ∈ Sd−1, Dn ∈ Dn(w) and k ∈ S+:

x⊤
k Dn = x⊤

k (Dn −D(w)) +
1

2
x⊤
k (Σβ

⋆ − β⋆) +
1

2
x⊤
k β

⋆

≥ ∥xk∥
(
−∥Dn −D(w)∥ − 1

2
∥Σβ⋆ − β⋆∥+ c

2
√
d

)
≥ α√

d
∥xk∥ > 0.

Similarly for any k ∈ S−, x⊤
k Dn < 0. This directly implies here that there are only two extremal

vectors here:

Dn(β
⋆) = Σn,+β

⋆ +
1

n

∑
k∈S+

ηkxk,

Dn(−β⋆) = Σn,−β
⋆ +

1

n

∑
k∈S−

ηkxk. (19)

We can now show, similarly to Boursier and Flammarion (2024), the early alignment phenomenon in
the first phase.7

1. First note that Equation (17) and the definition of α imply that for any w:

∥Dn(w)∥ ≤ ∥Σβ⋆∥. (20)
We define t1 = min{t ≥ 0 |∑m

j=1 aj(t)
2 ≥ λ2−4ε}.

For any i ∈ [m] and t ∈ [0, t1], Equation (4) rewrites:∣∣∣∣dai(t)dt

∣∣∣∣ = ∣∣wi(t)
⊤Di

n(t)
∣∣

≤ |ai(t)|
(

max
w∈Sd−1

∥Dn(w)∥+
∑n

k=1 ∥xk∥2
n

λ2−4ε

)
≤ |ai(t)|

(
∥Σβ⋆∥+ 2E[∥x∥2]λ2−4ε

)
.

As a consequence, a simple Grönwall argument yields that for any t ∈ [0, t1]:

|ai(t)| ≤ |ai(0)| exp(t∥Σβ⋆∥+ 2tE[∥x∥2]λ2−4ε).

In particular, for our choice of τ , for a small enough λ⋆ = O
(
d−

1
2−4ε

)
, for any t ≤ min(τ, t1):

|ai(t)| < |ai(0)|λ−ε. (21)
Note that this implies that t < t1, i.e., τ < t1. As a consequence. Moreover, we can also show that
|ai(t)| > |ai(0)|λε for any t ≤ τ , which implies the first point of Lemma 3.

2. For the second point, let i ∈ I+ and denote wi(t) =
wi(t)
ai(t)

. Thanks to Lemma 2, wi(t) ∈ B(0, 1)

and ai(t) is of constant sign. Also, for almost any t ∈ [0, τ ]:

dwi(t)

dt
∈ Dn(wi(t), θ(t))− ⟨wi(t),Dn(wi(t), θ(t))⟩wi(t).

6The additional d dependence comes from the expectation of ∥yx∥2 in the square root. Additionally, the

probability bound comes from the fact that Eµ[∥yx∥4]
Eµ[∥yx∥2]2 = O(1) here.

7We could directly reuse Theorem 1 from Boursier and Flammarion (2024) here, but it would not allow us to
choose an initialisation scale λ⋆ that does not depend on n.
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Since ai(t) > 0 for i ∈ I+,

d⟨wi(t),Σβ
⋆⟩

dt
∈ ⟨Dn(wi(t), θ(t)),Σβ

⋆⟩ − ⟨wi(t),Dn(wi(t), θ(t))⟩⟨wi(t),Σβ
⋆⟩

≥ inf
Dn∈Dn(wi(t),θ(t))

⟨Dn,Σβ
⋆⟩ − ⟨wi(t), Dn⟩⟨wi(t),Σβ

⋆⟩

≥ inf
Dn∈Dn(wi(t))

⟨Dn,Σβ
⋆⟩ − ⟨wi(t), Dn⟩⟨wi(t),Σβ

⋆⟩ − 2∥Σβ⋆∥λ2−4ε

≥ ⟨D(wi(t)),Σβ
⋆⟩ − ⟨wi(t), D(wi(t))⟩⟨wi(t),Σβ

⋆⟩

− 2∥Σβ⋆∥
(
λ2−4ε + sup

Dn∈Dn(wi(t)

∥Dn −D(wi(t))∥
)

≥ 1

2

(
∥Σβ⋆∥2 − ⟨wi(t),Σβ

⋆⟩2
)
−O

(
λ2−4ε +

√
d2 log n

n

)
.

Solutions of the ODE f ′(t) = a2 − f(t)2 with f(0) ∈ (−a, a) are of the form f(t) = a tanh(a(t+
t0)) for some t0 ∈ R. By Grönwall comparison, we thus have

⟨wi(t),Σβ
⋆⟩ ≥ a tanh(

a

2
(t+ tj)), (22)

where a = ∥Σβ⋆∥ − O
(
λ2−4ε +

√
d2 log n

n

)
and ⟨wi(0),Σβ

⋆⟩ = a tanh(
a

2
tj).

Thanks to the choice of initialisation given by Equation (8), ∥wi(0)∥ ≤ 1
2 and so ⟨wi(0),Σβ

⋆⟩ ≥
− 1

2∥Σβ⋆∥2. Moreover, tanh(x) ≤ −1 + 2e2x, so that

−1

2
∥Σβ⋆∥ ≤ a(−1 + 2eatj ).

Since a = ∥Σβ⋆∥ − O
(
λ2−4ε +

√
d2 logn

n

)
, this yields

2aeatj ≥ 1

2
∥Σβ⋆∥+O

(
λ2−4ε +

√
d2 log n

n

)
.

The previous inequality can be rewritten as

−2ae−tj ≥ −4a2

1
2∥Σβ⋆∥+O

(
λ2−4ε +

√
d2 logn

n

)
≥ −8a2

∥Σβ⋆∥ (1 +O
(
λ2−4ε +

√
d2 log n

n

)
)

≥ 8∥Σβ⋆∥+O
(
λ2−4ε +

√
d2 log n

n

)
.
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Using that tanh(x) ≥ 1− 2e−2x, Equation (22) becomes at time τ and n
log(n) = Ω(d2),

⟨wi(τ),Σβ
⋆⟩ ≥ a− 2ae−atje−aτ

≥ ∥Σβ⋆∥ − ∥Σβ⋆∥(8∥Σβ⋆∥+O
(
λ2−4ε +

√
d2 log n

n

)
)e

aε log λ
∥Σβ⋆∥

−O
(
λ2−4ε +

√
d2 log n

n

)

≥ ∥Σβ⋆∥ − O
(
λε +

√
d2 log n

n

)
.

3. The same arguments can be done with negative neurons.

E.3 DECOUPLED AUTONOMOUS SYSTEMS

In the remaining of the proof, we will focus on an alternative solution (w, a), which is solution of the
following differential equations for any t ≥ τ

dwi(t)

dt
= ai(t)D+(t) and

dai(t)

dt
= ⟨wi(t), D+(t)⟩ for any i ∈ I+,

dwi(t)

dt
= ai(t)D−(t) and

dai(t)

dt
= ⟨wi(t), D−(t)⟩ for any i ∈ I−,

(23)

where

D+(t) =
1

n

∑
k∈S+

∑
i∈I+

ai(t)⟨wi(t), xk⟩ − yk

xk,

D−(t) =
1

n

∑
k∈S−

∑
i∈I−

ai(t)⟨wi(t), xk⟩ − yk

xk

and with the initial condition wi(τ), ai(τ) = wi(τ), ai(τ) for any i ∈ [m]. We also note in the
following wi =

wi

ai
and the estimations of the training data xk for any k ∈ [n]I as:

hϑ(xk) =

{∑
i∈I+

ai⟨wi, xk⟩ if k ∈ S+∑
i∈I−

ai⟨wi, xk⟩ if k ∈ S−
.

This construction allows to study separately the dynamics of both sets of neurons I+ and I−, without
any interaction between each other. As precised by Lemma 4 below, wi, ai coincide with wi, ai as
long as the neurons all remain in the sector they are at the end of the early alignment phase.

Lemma 4. Define T+ = inf{t ≥ τ | ∃(i, k) ∈ I+ × [n], sign(x⊤
k wi(t)) ̸= sign(x⊤

k β
⋆)}

and T− = inf{t ≥ τ | ∃(i, k) ∈ I− × [n], sign(x⊤
k wi(t)) ̸= −sign(x⊤

k β
⋆)}.

Then for any i ∈ [m] and any t ∈ [τ,min(T+, T−)]: (wi(t), ai(t)) = (wi(t, ai(t)). Moreover, for
any t ∈ [τ,min(T+, T−)] and k ∈ [n], hϑ(t)(xk) = hθ(t)(xk).

While analysing the complete dynamics of (w, a), we will see that both T+ and T− are infinite in the
considered range of parameters, thus leading to a complete description of the dynamics of (w, a).

Proof. Thanks to the definition of T+ and T−, the evolution of (wi(t), ai(t)) given by 4 coincides
with the evolution of (wi(t), ai(t)) given by Equation (23) for t ∈ [τ,min(T+, T−)]. The associated
ODE is Lipschitz on the considered time interval and thus admits a unique solution, hence leading to
(wi(t), ai(t)) = (wi(t, ai(t)) on the considered interval. The equality hϑ(t)(xk) = hθ(t)(xk) directly
derives from the ReLU activations and definitions of T+ and T−.
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E.4 PHASE 2: NEURONS SLOW GROWTH

For some ε2 > 0, we define the following stopping time for any ◦ ∈ {+,−}:

τ2,◦ = inf{t ≥ τ |
∑
i∈I◦

ai(t)
2 ≥ ε2}.

Lemma 5. If Assumption 1 holds, for any ε ∈ (0, 1
4 ), there exist λ⋆ = Θ( 1d ), ε

⋆
2 = Θ(d−

3
2 ) and

n⋆ = Θ(d3 log d) such that for any λ ≤ λ⋆, n ≥ n⋆, ◦ ∈ {+,−}, ε2 ∈ [λ2−4ε, ε⋆2], with probability
1−O

(
1
n + 1

2m

)
, τ2,◦ < +∞ and at this time,

1. neurons in I◦ are aligned with each other

∀i, j ∈ I◦, ⟨wj(τ2,◦),wi(τ2,◦)⟩ = 1−O
(
λ

1
2

ε2

)
;

2. neurons in I◦ are in the same cone as ◦β⋆ for any t ∈ [τ, τ2,◦]:

∀i ∈ I◦, min
k∈S◦

⟨wi(τ2,◦),
xk

∥xk∥
⟩ = Ω(

1√
d
) and max

k∈S−◦
⟨wi(τ2,◦◦),

xk

∥xk∥
⟩ = −Ω(

1√
d
).

Proof. In the following, we assume without loss of generality that ◦ = +. Additionally, we assume
that the random event I+ ̸= ∅ and Equations (17) and (18) hold. First, by definition of τ2,+, for any
t ∈ [τ, τ2,+]:

∥D+(t)−Dn(β
⋆)∥2 ≤ 1

n

∑
i∈I+

ai(t)
2

 ∑
k∈S+

∥xk∥2

≤ 2ε2EµX
[∥x∥2].

This also implies with Equation (20) that ∥D+(t)∥ ≤ ∥Σβ⋆∥ + 2ε2EµX
[∥x∥2]. Additionally, we

have with Equation (17) that

∥D+(t)−
Σβ⋆

2
∥2 ≤ ∥D+(t)−Dn(β

⋆)∥2 + ∥Dn(β
⋆)−D(β⋆)∥2

≤ O
(
dε2 +

√
d2 log n

n

)
. (24)

Then for any k ∈ S+, i ∈ I+ and t ∈ [τ, τ2,+], as long as ⟨wi(t), xk⟩ ≥ 0,

d⟨wi(t),
xk

∥xk∥ ⟩
dt

= ⟨D+(t),
xk

∥xk∥
⟩ − ⟨D+(t),wi(t)⟩⟨wi(t),

xk

∥xk∥
⟩

≥ ⟨Dn(β
⋆),

xk

∥xk∥
⟩ − 2ε2EµX

[∥x∥2]− ∥D+(t)∥⟨wi(t),
xk

∥xk∥
⟩

≥ ⟨Dn(β
⋆),

xk

∥xk∥
⟩ − 2ε2EµX

[∥x∥2]− (∥Dn(β
⋆)∥+ 2ε2EµX

[∥x∥2])⟨wi(t),
xk

∥xk∥
⟩.

(25)

As ⟨Dn(β
⋆), xk

∥xk∥ ⟩ ≥
α√
d

(Equation 19), thanks to Lemma 3 and the third point in Assumption 1,

and ∥Dn(β
⋆)∥ = O(1), for a small enough ε⋆2 = Θ(d−

3
2 ), mink∈S+

⟨wi(τ),
xk

∥xk∥ ⟩ = Ω( 1√
d
).

Equation (27) then implies for a small enough choice of ε⋆2 = Θ(d−
3
2 ) and ε2 ≤ ε⋆2:

min
t∈[τ,τ2,+

min
k∈S+

⟨wi(τ),
xk

∥xk∥
⟩ = Ω(

1√
d
). (26)

Similarly, we can also show

max
t∈[τ,τ2,+

max
k∈S−

⟨wi(τ),
xk

∥xk∥
⟩ = −Ω(

1√
d
),
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which implies the second point of Lemma 5. Actually, we even have for this choice of parameters the
more precise inequality (for the same reasons) that for any k ∈ S+, i ∈ I+ and t ∈ [τ, τ2,+],

⟨wi(τ),
xk

∥xk∥
⟩ ≥ ⟨ Dn(β

⋆)

∥Dn(β⋆)∥ ,
xk

∥xk∥
⟩ − O(dε2) . (27)

We now simultaneously lower and upper bound the duration of the second phase τ2,+ − τ2. For any
t ∈ [τ, τ2,+]:

1

2

d
∑

i∈I+
ai(t)

2

dt
=
∑
i∈I+

ai(t)
2⟨wi(t), D+(t)⟩

=
1

n

∑
i∈I+

ai(t)
2
∑
k∈S+

(yk − hϑ(t)(xk))⟨wi(t), xk⟩ (28)

≥
∑
i∈I+

ai(t)
2

(∑
k∈S+

yk∥xk∥⟨wi(t),
xk

∥xk∥ ⟩
n

−
ε2
∑

k∈S+
∥xk∥2

n

)
.

Note that E[1k∈S+
yk∥xk∥] ≥ cE[∥x∥2]

2
√
d

. Using Chebyshev inequality, we thus have for a small enough

choice of ε⋆2 = Θ(d−
3
2 ), for any t ∈ [τ, τ2,+]:

d
∑

i∈I+
ai(t)

2

dt
≥ Ω(1)

∑
i∈I+

ai(t)
2.

A Grönwall comparison then directly yields τ2,+ < ∞.

We now want to show that the neurons wi are almost aligned at the end of the second phase. For that,
we first need to lower bound the duration of the phase. Note that Equation (28), with Equation (26),
also leads for any t ∈ [τ, τ2,+] to

1

2

d
∑

i∈I+
ai(t)

2

dt
≤ 1

n

∑
i∈I+

ai(t)
2
∑
k∈S+

yk⟨wi(t), xk⟩

=
∑
i∈I+

ai(t)
2⟨wi(t), Dn(β

⋆)⟩

≤
∑
i∈I+

ai(t)
2∥Dn(β

⋆)∥.

Note that by continuity,
∑

i∈I+
ai(τ2,+)

2 = ε2. As
∑

i∈I+
ai(τ)

2 ≤ λ2−4ε, thanks to Lemma 3, a
Grönwall inequality argument leads to the following as ε2 ≥ λ2−4ε,

τ2,+ − τ ≥ 1

2∥Dn(β⋆)∥ ln
( ε2
λ2−4ε

)
. (29)

For any pair of neurons i, j ∈ I+, we consider the evolution of the mutual alignment:

d⟨wi(t),wj(t)⟩
dt

= ⟨D+(t),wi(t) + wj(t)⟩(1− ⟨wi(t),wj(t)⟩)
= (⟨Dn(β

⋆),wi(t) + wj(t)⟩ − O(ε2)) (1− ⟨wi(t),wj(t)⟩). (30)
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Moreover, Equation (27) leads to the following alignment between wi(t) and Dn(β
⋆) for any

t ∈ [τ, τ2,+]:

⟨Dn(β
⋆),wi(t)⟩ =

1

n

∑
k∈S+

yk⟨xk,wi(t)⟩

=
1

n

∑
k∈S+

yk⟨xk,
Dn(β

⋆)

∥Dn(β⋆)∥⟩ − ∥xk∥O(dε2)

= ⟨Dn(β
⋆),

Dn(β
⋆)

∥Dn(β⋆)∥⟩ − O(dε2)

= ∥Dn(β
⋆)∥ − O(dε2) .

Equation (30) then rewrites for any t ∈ [τ, τ2,+] as

d⟨wi(t),wj(t)⟩
dt

≥ (2∥Dn(β
⋆)∥ − O(dε2)) (1− ⟨wi(t),wj(t)⟩).

Moreover, thanks to Lemma 3, a simple algebraic manipulation yields8 ⟨wi(τ),wj(τ)⟩ ≥ 1 −
O
(
λε +

√
d2 logn

n

)
. Grönwall inequality then yields, for the considered range of parameters,

⟨wi(τ2,+),wj(τ2,+)⟩ ≥ 1− (1− ⟨wi(τ),wj(τ)⟩) e−(2∥Dn(β
⋆)∥−O(dε2))(τ2,+−τ)

≥ 1−O
(
λε +

√
d2 log n

n

)
λ2−4ε

ε2
eO (dε2 ln(

ε2
λ2−4ε ))

≥ 1−O
(

λ

ε2

)
λ−(2−4ε)O(dε2).

The second inequality comes from the bound on τ2,+ − τ in Equation (29). The third one comes
from the fact that ε ≤ 1

3 and ε2 ln(ε2) = O(1). Noticing that 2− 4ε ≥ 1 finally yields the first item
of Lemma 5 for a small enough ε⋆2 = Θ(d−

3
2 ).

E.5 PHASE 3: NEURONS FAST GROWTH

The third phase is defined for some ε3 > 0 and δ3 by the following stopping time, for any ◦ ∈ {+,−}:

τ3,◦ = inf{t ≥ τ2,◦ | ∥β̂◦(t)− βn,◦∥Σn,◦ ≤ ε3 or ∃i ∈ I◦, k ∈ S◦, ⟨wi(t),
xk

∥xk∥
⟩ ≤ δ3},

where β̂◦(t) =
∑
i∈I◦

ai(t)wi(t).

Lemma 6. If Assumption 1 holds, for any ε ∈ (0, 1
4 ), there exist λ⋆ = Θ( 1d ), ε

⋆
2 = Θ(d−

3
2 ),

n⋆ = Θ(d3 log d), α0 = Θ(1), δ3 = Θ( 1√
d
) and ε⋆3 = Θ(1) such that for any λ ≤ λ⋆, n ≥ n⋆,

◦ ∈ {+,−}, ε2 ∈ [λ2−4ε, ε⋆2] and ε3 ∈ [λα0εε2 , ε⋆3], with probability 1−O
(

d2

n + 1
2m

)
, τ3,◦ < +∞

and

1. neurons in I◦ are in the same cone as ◦β⋆ for any t ∈ [τ, τ2,◦]:

∀i ∈ I◦, min
k∈S◦

⟨wi(t),
xk

∥xk∥
⟩ ≥ 2δ3 and max

k∈S−◦
⟨wi(t),

xk

∥xk∥
⟩ ≤ −2δ3.

In particular, ∥β̂◦(τ3,◦)− βn,◦∥Σn,◦ = ε3 by continuity.

Proof. Similarly to the proof of Lemma 5, we assume that ◦ = +, that the random event I+ ̸= ∅,
Equations (17) and (18) and the first and second items states in Lemma 5 all hold. We can first show

8A similar manipulation can be found in (Boursier and Flammarion, 2024, proof of Lemma 5).
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that for any t ∈ [τ2,+, τ3,+], ∑
i∈I+

ai(t)
2 ≥ ε2.

Indeed, recall that the output weights ai evolve for any t ∈ [τ2,+, τ3,+] as

dai(t)

dt
= ⟨wi(t), D+(t)⟩

= ⟨wi(t), Dn(β
⋆)⟩ − 1

n

∑
k∈S+

hϑ(t)(xk)⟨wi(t), xk⟩

≥ ai(t)

 1

n

∑
k∈S+

⟨wi(t), xk⟩⟨β⋆, xk⟩+
1

n

∑
k∈S+

⟨wi(t), ηkxk⟩ − O

d
∑
i∈I+

ai(t)
2

 .

(31)

The last inequality comes from the fact that
∑

k∈S+
∥xk∥2

n = O(d). From then, note that
1
n

∑
k∈S+

⟨wi(t), xk⟩⟨β⋆, xk⟩ ≥ Ω(δ3
√
d) during this phase. Moreover, using Chebyshev inequality,

we can show for any z > 0 that with probability at least 1−O
(

d
z2n

)
1

n

∥∥∥∥∥∥
∑
k∈S+

ηkxk

∥∥∥∥∥∥
2

≤ z. (32)

Taking a small enough z = Θ(δ3), Equation (32) holds with probability 1 − O
(

d
δ23n

)
and, along

Equation (31), this implies that for any t ∈ [τ2,+, τ3,+] and i ∈ I+:

dai(t)

dt
≥ ai(t)

Ω(δ3)−O

d
∑
i∈I+

ai(t)
2

 .

In particular, there exists r = Θ( δ3d ) such that if
∑

i∈I+
ai(t)

2 ≤ r, all the ai(t) are increasing.

Moreover thanks to Lemma 5,
∑

i∈I+
ai(τ2,+)

2 = ε2. As δ3 = Θ( 1√
d
), we can choose ε⋆2 = Θ(d−

3
2 )

small enough so that during the third phase,∑
i∈I+

ai(t)
2 ≥ ε2. (33)

Now note that by definition of βn,+,

D+(t) = − 1

n

∑
k∈S+

xkx
⊤
k β̂+(t)− xkyk

= −Σn,+(β̂+(t)− βn,+) (34)

As a consequence, β̂+(t) evolves as follows:

dβ̂+(t)

dt
=
∑
i∈I+

(
ai(t)

2Id + wi(t)wi(t)
⊤)D+(t)

= −

∑
i∈I+

ai(t)
2Id +

∑
i∈I+

wi(t)wi(t)
⊤

Σn,+(β̂+(t)− βn,+)

34
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In particular, this implies:

1

2

d∥β̂+(t)− βn,+∥2Σn,+

dt
=

〈
dβ̂+(t)

dt
,Σn,+(β̂+(t)− βn,+)

〉
(35)

= −(β̂+(t)− βn,+)
⊤Σn,+

∑
i∈I+

ai(t)
2Id +

∑
i∈I+

wi(t)wi(t)
⊤

Σn,+(β̂+(t)− βn,+).

(36)

The matrix Σ
1/2
n,+

(∑
I+

ai(t)
2Id +

∑
I+

wi(t)wi(t)
⊤
)
Σ

1/2
n,+ is symmetric, positive definite. Thanks

to Equation (33), its smallest eigenvalue is larger than ε2λmin(Σn,+), where λmin(·) denotes the
smallest eigenvalue of a matrix. Using typical concentration inequalities on the empirical covariance

(see e.g. Vershynin, 2018, Section 4.7), with probability 1−O
(
1
n

)
, ∥Σn,+− Σ

2 ∥op = O
(√

d+logn
n

)
.

With the fourth point in Assumption 1, we then have for a large enough n⋆ = Θ(d3 log d) and with
probability 1−O

(
1
n

)
,

O(1) ≥ λmax(Σn,+) ≥ λmin(Σn,+) ≥ Ω(1)

and
λmax(Σn,+)

λmin(Σn,+)
=

λmax(Σ)

λmin(Σ)
+O

(√
d+ log n

n

)
,

(37)

where λmax(·) denotes the largest eigenvalue.

Assume Equation (37) holds in the following, so that the smallest eigenvalue of
Σ

1/2
n,+

(∑
I+

ai(t)
2Id +

∑
I+

wi(t)wi(t)
⊤
)
Σ

1/2
n,+ is larger than a term of order ε2. As a consequence,

Equation (36) yields

1

2

d∥β̂+(t)− βn,+∥2Σn,+

dt
≤ −Ω(ε2)∥β̂+(t)− βn,+∥2Σn,+

.

Since the third phase ends if ∥β̂+(t)− βn,+∥2Σn,+
becomes smaller than ε23, this yields:

τ3,+ − τ2,+ = O
(

1

ε2
ln(

1

ε3
)

)
. (38)

Now recall that for any i, j ∈ I+,

d(1− ⟨wi(t),wj(t)⟩)
dt

= −⟨D+(t),wi(t) + wj(t)⟩(1− ⟨wi(t),wj(t)⟩)
≤ 2∥D+(t)∥2(1− ⟨wi(t),wj(t)⟩).

Notice from Equation (34) and the previous discussion that ∥D+(t)∥2 = O(1). As a consequence, a
simple Grönwall inequality with Equation (38) yields that for any t ∈ [τ2,+, τ3,+]:

⟨wi(t),wj(t)⟩ ≥ 1− (1− ⟨wi(τ2,+),wj(τ2,+)⟩) exp((t− τ2,+)O(1))

≥ 1−O
(
λ

1
2

ε2

)
exp

(
O
(

1

ε2
ln(

1

ε3
)

))
≥ 1−O

(
λ

1
2−ε
)
.

The second inequality comes from the value of (1− ⟨wi(τ2,+),wj(τ2,+)⟩), thanks to Lemma 5. The
last one comes from our choice of ε3 for a large enough α0 = Θ(1).
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In particular, this last inequality can be used to show9 that for any i, j ∈ I+ and t ∈ [τ2,+, τ3,+],

wi(t) = wj(t) +O
(
λ

1−2ε
4

)
. In particular, this yields for any i ∈ I+ and t ∈ [τ2,+, τ3,+]

β̂+(t) =
∑
j∈I+

aj(t)
2wj(t) (39)

=

∑
j∈I+

aj(t)
2

(wi(t) +O
(
λ

1−2ε
4

))
. (40)

Since ∥wi(t)∥2 = 1 − O
(
λ

1
2−ε
)

, this last equality actually yields the following comparison for
t ∈ [τ2,+, τ3,+]:

∥β̂+(t)∥2 ≤
∑
j∈I+

aj(t)
2 ≤ (1 +O

(
λ

1−2ε
4

)
)∥β̂+(t)∥2. (41)

In particular, since ∥β̂+(t)∥2 = O(1), this yields
∑

j∈I+
aj(t)

2 = O(1).
From there, for any xk ∈ S+ and i ∈ I+, ⟨wi(t), xk⟩ evolves as follows during the third phase

d⟨wi(t),
xk

∥xk∥ ⟩
dt

= ⟨D+(t),
xk

∥xk∥
⟩ − ⟨D+(t),wi(t)⟩⟨wi(t),

xk

∥xk∥
⟩

= ⟨βn,+ − β̂+(t),Σn,+
xk

∥xk∥
⟩ − O

(
⟨wi(t),

xk

∥xk∥
⟩
)

=
1

2
⟨βn,+ − β̂+(t),

xk

∥xk∥
⟩+ ⟨(Σn,+ − Id

2
)(βn,+ − β̂+(t)),

xk

∥xk∥
⟩ − O

(
⟨wi(t),

xk

∥xk∥
⟩
)
.

Note that

βn,+ = β⋆ +
Σ−1

n,+

n

∑
k∈S+

ηkxk.

This then yields, thanks to Equation (37)

d⟨wi(t),
xk

∥xk∥ ⟩
dt

≥ 1

2
⟨β⋆ − β̂+(t),

xk

∥xk∥
⟩+ ⟨(Σn,+ − Id

2
)(βn,+ − β̂+(t)),

xk

∥xk∥
⟩

− O

 1

n
∥
∑
k∈S+

ηkxk∥2

−O
(
⟨wi(t),

xk

∥xk∥
⟩
)
. (42)

From there, thanks to the third point of Assumption 1 and Equation (40):

⟨β⋆ − β̂+(t),
xk

∥xk∥
⟩ ≥ c√

d
−O

(
⟨wi(t),

xk

∥xk∥
⟩
)
−O

(
λ

1−2ε
4

)
. (43)

9For that, we decompose wi = αijwj + uij with uij ⊥ wj and show that αij = 1 − O
(
λ

1
2
−ε

)
and

∥uij∥2 = O
(
λ

1
2
−ε

)
.
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Additionally, using the fact that ∥βn,+ − β̂+(t)∥Σn,+
is decreasing over time and smaller than

∥βn,+∥Σn,+
+O

(
λ2−4ε

)
at the beginning of the second phase,

⟨(Σn,+ − Id
2
)(βn,+ − β̂+(t)),

xk

∥xk∥
⟩ ≥ −

∥∥∥∥Σn,+ − Id
2

∥∥∥∥
op
∥βn,+ − β̂+(t)∥2

≥ −1

2
∥Σ− Id∥op

√
1

λmin(Σn,+)
∥βn,+ − β̂+(t)∥Σn,+

−O
(√

d+ log n

n

)

≥ −1

2
∥Σ− Id∥op

√
1

λmin(Σn,+)

(
∥βn,+∥Σn,+

+O
(
λ2−4ε

))
−O

(√
d+ log n

n

)

≥ −1

2
∥Σ− Id∥op

√
λmax(Σn,+)

λmin(Σn,+)
∥βn,+∥2 −O

(
λ2−4ε +

√
d+ log n

n

)

≥ −1

2

√
λmax(Σn,+)

λmin(Σn,+)
∥Σ− Id∥op ∥β⋆∥2

−O

λ2−4ε +
1

n
∥
∑
k∈S+

ηkxk∥2 +
√

d+ log n

n


Now using Equation (37) and the fourth point of Assumption 1, note that√

λmax(Σn,+)

λmin(Σn,+)
≤ 2 +O

(√
d+ log n

n

)
.

So that the previous inequality yields

⟨(Σn,+−
Id
2
)(βn,+−β̂+(t)),

xk

∥xk∥
⟩ ≥ −∥Σ− Id∥op ∥β⋆∥2−O

λ2−4ε +
1

n
∥
∑
k∈S+

ηkxk∥2 +
√

d+ log n

n

 .

(44)
Finally, thanks to Equation (32), 1

n∥
∑

k∈S+
ηkxk∥2 ≤ z′ with probability at least 1 − O

(
d

z′2n

)
.

Using Equations (43) and (44) in Equation (42) finally yields for the third phase:

d⟨wi(t),
xk

∥xk∥ ⟩
dt

≥ c

2
√
d
− ∥Σ− Id∥op∥β⋆∥2 −O

(
λ

1−2ε
4 + z′ +

√
d+ log n

n

)
−O

(
⟨wi(t),

xk

∥xk∥
⟩
)
.

Thanks to the fourth point of Assumption 1, c
2
√
d
− ∥Σ − Id∥op∥β⋆∥2 > 0, so that we can choose

λ⋆, z′ = Θ(1) small enough and n⋆ = Θ(d3 log d) large enough so that the previous inequality
becomes, with probability at least 1−O

(
d
n

)
d⟨wi(t),

xk

∥xk∥ ⟩
dt

≥ Ω(
1√
d
)−O

(
⟨wi(t),

xk

∥xk∥
⟩
)
.

A simple Grönwall argument with the second point of Lemma 5 then implies that for any t ∈
[τ2,+, τ3,+], i ∈ I+ and k ∈ S+,

⟨wi(t),
xk

∥xk∥
⟩ ≥ Ω(

1√
d
).

Since the term Ω( 1√
d
) here does not depend on δ3, we can choose δ3 = Θ( 1√

d
) small enough so that

⟨wi(t),
xk

∥xk∥
⟩ ≥ 2δ3.

We can show similarly for k ∈ S−, so that point 1 in Lemma 6 holds, which concludes the proof.
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E.6 PHASE 4: FINAL CONVERGENCE

The last phase is defined for some ε4 > ε3 by the following stopping time, for any ◦ ∈ {+,−}:

τ4,◦ = inf{t ≥ τ3,◦ | ∥β̂◦(t)− β̂◦(τ3,◦)∥Σn,◦ ≥ ε4}.

Lemma 7. If Assumption 1 holds, for any ε ∈ (0, 1
4 ), there exist λ⋆ = Θ( 1d ), ε

⋆
2 = Θ(d−

3
2 ),

n⋆ = Θ(d3 log d), α0 = Θ(1), δ3 = Θ( 1√
d
), ε⋆3 = Θ( 1√

d
) and ε4 = Θ(ε⋆3) such that for any λ ≤ λ⋆,

n ≥ n⋆, ◦ ∈ {+,−}, ε2 ∈ [λ2−4ε, ε⋆2] and ε3 ∈ [λα0εε2 , ε⋆3], with probability 1 − O
(

d2

n + 1
2m

)
,

τ4,◦ = +∞ and

1. neurons in I◦ are in the same cone as ◦β⋆ for any t ≥ τ3,◦:

∀i ∈ I◦, min
k∈S◦

⟨wi(t),
xk

∥xk∥
⟩ > 0 and max

k∈S−◦
⟨wi(t),

xk

∥xk∥
⟩ < 0.

2. limt→∞ ϑ(t) exists and limt→∞ β̂◦(t) = βn,◦.

Proof. Similarly to the previous phases, we assume that ◦ = +, that the random event I+ ̸= ∅,
Equations (17), (18) and (37) and the statements of Lemma 6 all hold.

Define in the following the positive loss L+ for any ϑ+ ∈ R(d+1)×I+ by

L+(ϑ) =
1

2n

∑
k∈S+

(∑
i∈I+

ai⟨wi, xk⟩ − yk

)2

.

Note that the autonomous system given by Equation (23) actually defines a gradient flow over L+,
i.e., for ϑ+ = (ai,wi)i∈I+

,

dϑ+(t)

dt
= −∇L+(ϑ+(t)).

The main argument for this phase is to prove a local Polyak-Łojasiewicz inequality:

∥∇L+(ϑ+)∥22 ≥ Ω(1)(L+(ϑ+)− Ln,+) (45)

for any ϑ+ such that ∥
∑
i∈I+

aiwi − β̂+(τ3,◦)∥Σn,+ ≤ ε4,

where Ln,+ =
1

2n

∑
k∈S+

(⟨βn,+, xk⟩ − yk)
2
.

Indeed, we can lower bound ∥∇L+(ϑ+)∥2 for any such ϑ+ as follows

∥∇L+(ϑ+)∥22 ≥
∑
i∈I+

∥∥∥∥∂L+(ϑ+)

∂wi

∥∥∥∥2

=

∑
i∈I+

ai(t)
2

 ∥D+(t)∥22

≥ λmin(Σn,+)

∑
i∈I+

ai(t)
2

 ∥β̂+ − βn,+∥2Σn,+

where β̂+ =
∑

i∈I+
aiwi. The last inequality comes from Equation (34). Note that for a small

enough choice of ε⋆3 = O(1) and ε4 = Θ(ε⋆3),
∑

i∈I+
ai(t)

2 = Ω(1) in the considered set. Moreover,
Equation (37) implies λmin(Σn,+) = Ω(1), so that

∥∇L+(ϑ+)∥22 ≥ Ω(1)∥β̂+ − βn,+∥2Σn,+
. (46)
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On the other hand, a simple algebraic manipulation yields for any ϑ+:

L+(ϑ+)− Ln,+ =
1

2n

∑
k∈S+

(
⟨β̂+, xk⟩ − yk

)2
− (⟨βn,+, xk⟩ − yk)

2

=
1

2n

∑
k∈S+

(
β̂+ − βn,+

)⊤
xk −

(
x⊤
k (β̂+ − βn,+ + 2βn,+)− 2yk

)
=

1

2

(
β̂+ − βn,+

)⊤
Σn,+

(
β̂+ − βn,+

)
+

1

n
Xn,+(X

⊤
n,+βn,+ − y),

where Xn,+ is the |S+| × d matrix, whose rows are given by xk for k ∈ S+. By definition of the
OLS estimator βn,+, X⊤

n,+βn,+ − y = 0, so that

L+(ϑ+)− Ln,+ =
1

2
∥β̂+ − βn,+∥2Σn,+

. (47)

Combining Equation (46) with Equation (47) finally yields the Polyak-Łojasiewicz inequality given
by Equation (45).

From there, this implies by chain rule for any t ∈ [τ3,+, τ4,+]

dL+(ϑ+(t))

dt
= −∥∇L+(ϑ+)∥22
≤ −Ω(1)(L+(ϑ+(t))− Ln,+).

By Grönwall inequality, this implies for some ν = Θ(1), for any t ∈ [τ3,+, τ4,+]

L+(ϑ+(t))− Ln,+ ≤ (L+(ϑ+(τ3,+))− Ln,+)e
−ν(t−τ3,+)

≤ ε23
2
e−ν(t−τ3,+). (48)

The last inequality comes from the fact that at the end of the third phase, ∥β̂+(t)− βn,+∥Σn,+ = ε3.

We bounded by below the norm of ∇L+(ϑ+(s)), but it can also easily be bounded by above as

∥∇L+(ϑ+(s))∥22 ≤

∑
i∈I+

ai(t)
2 + ∥wi(t)∥22

 ∥D+(t)∥22

≤ 2λmax(Σn,+)

∑
i∈I+

ai(t)
2

 ∥β̂+(t)− βn,+∥2Σn,+

≤ O(1) (L+(ϑ+(t))− Ln,+)

From there, the variation of ϑ+(t) can easily be bounded for any t ∈ [τ3,+, τ4,+] as

∥ϑ+(t)− ϑ(τ3,+)∥2 ≤
∫ t

τ3,+

∥∇L+(ϑ+(s))∥ds

≤ O(1) ε3
∫ t−τ3,+

0

e−
ν
2 sds

≤ O(ε3) . (49)

Moreover, note that

β̂+(t)− β̂◦(τ3,+) =
∑
I+

(ai(t)− ai(τ3,+))wi(τ3,+) +
∑
I+

(wi(t)− wi(τ3,+))ai(τ3,+).
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In particular,

∥β̂+(t)− β̂◦(τ3,+)∥2 ≤
∑
I+

|ai(t)− ai(τ3,+)|∥wi(τ3,+)∥2 +
∑
I+

∥wi(t)− wi(τ3,+)∥2ai(τ3,+)

≤
√∑

I+

(ai(t)− ai(τ3,+))2
√∑

I+

∥wi(τ3,+)∥22 +
√∑

I+

∥wi(t)− wi(τ3,+)∥22
√∑

I+

ai(τ3,+)2

≤ O(1) ∥ϑ(t)− ϑ(τ3,+)∥2
≤ O(ε3) .

We can thus choose ε⋆3 = O(1) and ε4 = Θ(ε⋆3) small enough such that Equation (46) still holds, but
ε4 large enough with respect to ε⋆3 such that the previous inequality ensures for any t ∈ [τ3,+, τ4,+]:

∥β̂+(t)− β̂◦(τ3,+)∥Σn,+
≤ ε4

2
.

In particular, this implies that τ4,+ = +∞. Since ϑ+(t) has finite variation (Equation 49), this
also implies that limt→∞ ϑ+(t) exists. The same holds for ϑ−(t) by symmetric arguments, so that
limt→∞ ϑ(t) exists. Moreover, Equations (47) and (48) imply that

lim
t→∞

β̂+(t) = βn,+.

This yields the second point of Lemma 7.

It now remains to prove the first point of Lemma 7. Note that for any t ≥ τ3,+ and i ∈ I+:

∥wi(t)− wi(τ3,+)∥2 ≤ 2

∫ t

τ3,+

∥D+(s)∥2ds

≤ O(ε3) .

Thanks to the first point of Lemma 6, we can choose ε⋆3 = Θ( 1√
d
) small enough so thatfor any

t ≥ τ3,+ and i ∈ I+:

min
k∈S+

⟨wi(t),
xk

∥xk∥
⟩ > 0 and max

k∈S−
⟨wi(t),

xk

∥xk∥
⟩ < 0,

which concludes the proof of Lemma 7.

Proof of Theorem 2. We can conclude the proof of Theorem 2 by noticing that we can indeed choose
ε, ε2, ε3, ε4 such that for any λ ≤ λ⋆ = Θ( 1d ) and n ≥ n⋆ = Θµ(d

3 log d), with probability

1−O
(

d2

n + 1
2m

)
, the statements of Lemmas 3 and 5 to 7 all simultaneously hold. In particular, the

stopping times T+ and T− defined in Lemma 4 are infinite. Lemma 4 then implies that for any t ≥ τ ,
ϑ(t) = θ(t). From then, Lemma 7 implies Theorem 2.
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