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A APPENDIX

A.1 PAPER OVERVIEW

Table 1: Overview of evaluation questions, their GLM-based implementation, and corresponding
paper sections.

QUESTION GLM IMPLEMENTATION IN

How does my autograder Include both grader and LLM Question 1
compare to humans?

Do my autograder(s) favour Include an interaction between grader Question 2
their own output? and LLM

Is there a general human vs Use a hierarchical GLM with grader-level Question 3
autograder difference? effects nested in grader type

(e.g., human vs. autograder).

Are some graders more lenient Estimate individual grader effects; Question 3
or strict than others? inspect variation across graders.

Do some items receive Include item as predictor; test whether Question 4
higher or lower scores? some items are systematically easier/harder

Do graders disagree more on Include grader-item interaction; test for Question 4
some items than others? grader-specific scoring patterns

What is the uncertainty around Simulate scores from the model and compute Question 4
inter-rater agreement metrics? agreement (e.g., Krippendorff’s ↵)

with uncertainty.

Do grader(s) favour longer Include token length (or token length Question 5
responses? difference) as a predictor.

Do my grader(s) exhibit intransitive Estimate pairwise probabilities and Question 5

Is my grading scale well Inspect cutpoints from ordered regression Appendix A.4
calibrated? to analyse spacing and interpretability

of score intervals.
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A.2 PRIORS

Below are the priors used across the models described in this paper. They were selected to reflect
weakly informative assumptions about effect sizes and score thresholds.

• Intercept: �0 ⇠ N (0, 1)

• Main effects of grader: �grader ⇠ N (0, 1)

• Main effects of LLM: �LLM ⇠ N (0, 1)

• Interaction effects: �interaction ⇠ N (0, 1)

• Group-level mean for grader type: µgraderType ⇠ N (0, 3)

• Group-level standard deviation: �2
graderType ⇠ HalfCauchy(1)

• First cutpoint: c1 ⇠ N (�4.0, 0.2)

• Cutpoint differences: cj � cj�1 ⇠ LogNormal(�0.5, 0.3) for j = 2, . . . ,K � 1

To ensure ordered and well-separated cutpoints, the cutpoint differences are shifted by a small con-
stant before summing: �j = (cj � cj�1) + 0.3.

13
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A.3 SUPPLEMENTARY FIGURES: MODEL COMPARISONS

Figure 7: Model comparison for the statistical analysis in Question 2 (Do autograders favour their
own generation?). Left panel: Leave-One-Out cross-validation (LOO) scores. Right panel: Widely
Applicable Information Criterion (WAIC). Both metrics approximate the Expected Log Predictive
Density (ELPD), a measure of predictive accuracy (higher values indicate better performance).
Comparing models helps determine whether the added complexity of including an interaction term
is justified by improved predictive performance. In this case, the model with the graderLLM inter-
action (Equation 2) performs slightly better than the model without interaction, supporting a closer
examination of potential self-bias effects.

Figure 8: Model comparison for the statistical analysis in Question 3 (Do autograders differ system-
atically from human experts?). Left panel: Leave-One-Out cross-validation (LOO) scores. Right
panel: Widely Applicable Information Criterion (WAIC). Both metrics approximate the Expected
Log Predictive Density (ELPD), a measure of predictive accuracy (higher values indicate better
performance). The models perform similarly, which is expected given that the data is simulated
without an explicitly hierarchical structure. Here we choose the hierarchical model (Equation 3) to
demonstrate how to interpret its parameters. In practice, when models perform similarly, researchers
should favour the simpler model unless theoretical or interpretability considerations justify the added
complexity.
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Figure 9: Model comparison for the statistical analysis in Question 5 (Do autograders favour longer
outputs?). Left panel: Leave-One-Out cross-validation (LOO) scores. Right panel: Widely Applica-
ble Information Criterion (WAIC). Both metrics approximate the Expected Log Predictive Density
(ELPD), a measure of predictive accuracy (higher values indicate better performance). Comparing
these models tests whether including a length-effect term (Equation 5) significantly improves pre-
dictive performance. The model including the length effect clearly outperforms the simpler model
without it, justifying a closer investigation into grader-specific length biases.

Table 2: Example of a rubric score that a researcher might create to grade open-ended question.

POINTS DESCRIPTION

1 Completely off-topic or no relevant content.
2 Minimal response with no clear concepts or severe confusion.
3 Mentions a relevant idea but largely undeveloped or inaccurate.
4 States one relevant concept with limited clarity or major misconceptions.
5 Mentions key concepts but lacks depth and contains notable flaws.
6 Covers some key concepts with partial accuracy and development.
7 Addresses key concepts clearly, with minor omissions or inaccuracies.
8 Explains most important concepts with accuracy and reasonable depth.
9 Thorough and accurate response with clear development and insight.
10 Complete responses with deep understanding and insightful connections.

A.4 SUPPLEMENTARY QUESTION: IS THE GRADING SCALE WELL CALIBRATED?

In this section we explore the grading process, and why we chose an ordered logistic regression
model. To ensure consistent evaluation, Florence needs to establish standardised scoring across all
graders. One simple approach would be to instruct everyone (humans and autograders) to count the
number of relevant keywords from a predefined list. Besides obvious issues (e.g., synonyms need to
be accounted for), this approach is not scalable as it require building explicit keyword lists for each
open-ended question. Florence, as often done in practice, will instead develop a grading rubric that
can be applied to each question. She might come up with something like in Table 2.

Having an ordinal scale, instead of just a description, is of course very useful. But this scale is
not as simple to interpret as an interval scale (e.g., temperature). If Florence wants to make claims
like “autograder A increases the score by 1 point,” she needs to be aware of whether the intervals
between categories are equivalent. If they are not (which is often the case with ordinal scales),
a 1-point increase will mean something different depending on where it occurs on the scale. For
example, moving from 5 to 6 might represent crossing some fundamental threshold, while moving
from 9 to 10 might just be a small qualitative improvement between two already good responses.

In an ordered logistic regression model, the scores are considered individual categories with a mean-
ingful order. The model maps the observed scores onto a continuous latent scale and, if necessary,
can estimate the category boundary values (called cutpoints) on this latent scale. By examining the
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Table 3: Cutpoints and interpretations for score intervals

CUTPOINT VALUE RANGE SCORE THRESHOLD

c1 -4.07 – 0–1 Starting point
c2 -3.25 0.82 1–2 Narrow
c3 -2.39 0.86 2–3 Narrow
c4 -1.28 1.11 3–4 Moderate
c5 -0.20 1.08 4–5 Moderate
c6 1.29 1.49 5–6 Wide
c7 3.11 1.82 6–7 Wide
c8 4.71 1.60 7–8 Wide
c9 5.60 0.89 8–9 Narrow
c10 6.22 0.62 9–10 Narrow

spacing between these cutpoints, we can determine whether the intervals in our grading scale are
equivalent across the range. If they are not, we can make inferences from the distances between
cutpoints. For example, if some cutpoints are widely spread, it could indicate that we are capturing
an important threshold (i.e., substantial changes in the underlying latent score is required to move
between categories), that there is a gap in the measurement scale or that graders are reluctant to use
certain portions of the scale. Conversely, if some cutpoints are close together, it could indicate that
the scale is very sensitive in that region (i.e., small changes in the latent score result in different
observed scores), that models have similar latent abilities in that “region” or that the scale contains
redundant categories.

Building great scales is by no means an easy task. It is a well-established challenge that has been
thoroughly studied in the field of psychometrics, but is beyond the scope of the presented paper.
However, using a GLM with an ordered logistic regression is a useful tool to examine the properties
of a given scale and can help identify areas that require caution during interpretation.

Going back to Florence, to better capture differences in model capabilities, she decides to examine
her grading scale. To do this, she can look at the learned cutpoint parameters of the ordered logistic
regression. Taking Equation 1 for example, we can write the cumulative probability more explicitly
as:

�i = �0 + �1 ·Xgrader
i + �2 ·XLLM

i

pij = logit�1
(cj � �i)

(6)

where �i is the linear predictor, representing the location of response i on an unobserved latent
scale. This latent scale is assumed to underlie the observed ordinal scores (e.g., 110). The cutpoints
cj divide the latent scale into discrete intervals corresponding to the observed score categories. The
probability pij represents the cumulative probability that the score assigned to response i is less than
or equal to category j, and is calculated as the inverse logit of the difference between the cutpoint cj
and the linear predictor �i.

Conceptually, this means that the probability of scoring at (or below) a certain grade j (on the ob-
served scale) is calculated by comparing the linear predictor to the cutpoint (on the latent scale).
These cutpoints are the mechanism through which ordered logistic models maintain the ordinal
structure of the data. They were therefore naturally present in the previously discussed models, but
were not mentioned as the focus was on the predictor variables.

Once Florence fits this model, she can analyse the inferred cutpoint values. Those can be found in
Table 3. She observes that the distance c1-c2, and c2-c3, is below 1 unit, whereas the distance c6-c7
and c7-c8 is above 1.5 units. This large jump suggests that her scale lacks sensitivity around c6-c8
(i.e., many performance scores are clustering there). From this, she could decide that she wants to
better capture difference in that region and therefore adds some intermediate categories in this area.

16


	Introduction
	Methods
	How do scores from an autograder compare to scores from an expert?
	Do autograders favour their own generation?
	Do autograders differ systematically from human experts?
	How do scores differ at an item level?
	Do autograders favour longer outputs?

	Appendix
	Paper overview
	Priors
	Supplementary figures: Model comparisons
	Supplementary question: Is the grading scale well calibrated?


