
A Derivation of the fixed-point equations

In this Appendix, we will derive the fixed-point equations for the order parameters presented in
the main text, following and generalising the analysis in Ref. [43]. The problem will be presented
in a slightly more general setting then the one considered in the main text, namely considering
a multiclass classification task on  classes. The dataset D B {(xa , Ha)}
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consider consists of = independent datapoints x

a 2 R3 each associated with a label Ha 2 Y ✓ R,
where Y = {H:}:2 [ ] is a finite set of  elements (for example, for  = 2 it is standard to choose
Y = {�1, 1}). The elements of the dataset are independently generated by using a law %(x, H) which
we assume can be put in the form %(x, H) ⌘
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The vectors -
:
2 R3 play the role of centroids of each cluster H = : 2 Y. We will perform our

classification task searching for a set of parameters (w¢, 1¢), called respectively weights and bias,
that will allow us to construct an estimator via a certain classifier
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to estimate the label of a new, unobserved datapoint x. Here i : R ! Y. To fix the ideas, in all
our numerical experiments we used  = 2 and i(G) = sign(G). The choice of the parameters is
performed by minimising an empirical risk function constructed via a loss function ✓ : Y ⇥R! R
and a proper regularisation A : R3 ! R, in the form
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i.e., they are given by
(w¢, 1¢) ⌘ arg min

w2R3

12R

R(w, 1). (21)

We will assume that the loss function ✓ is convex with respect to its second argument. The parameter
_ � 0 tunes the strength of the regularisation A, which also is assumed to be convex. The starting
point of our approach is the reformulation of the task as an optimisation problem by introducing a
Gibbs measure over the parameters (w, 1) depending on a non-negative parameter V,
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so that, in the V ! +1 limit, `V (w, 1) concentrates on the values (w¢, 1¢) that minimize the
empirical risk R(w, 1) and are therefore the goal of the learning process. The functions %H and %F
can be interpreted as (unnormalised) likelihood and prior distribution respectively. Our analysis will
go through the computation of the average free energy density associated with this Gibbs measure in
a specific proportional limit, i.e.,
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where ED [•] is the average over the training dataset. To perform the computation of such quantity,
we use the so-called replica method.

A.1 Replica approach

We proceed in our calculation by assuming no prior on 1, which will play a role of an extra (low-
dimensional) parameter whose optimal value will be derived extremising with respect to it the final
result for the free energy. We need to evaluate
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Here and in the following, for the sake of brevity, %: ([) ⌘ %H (H: |[) and similarly ✓: ([) ⌘ ✓(H: |[).
Let us take the inner average introducing a new set of variables [0,
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where we used the superstatistical form of the distribution of a datapoint x. Using the shorthand
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In the equation above we introduced the order parameters
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At this point, the free energy 5V should be computed functionally extremisizing with respect to all the
order parameters by virtue of the Laplace approximation (in addition to 1),
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However, the convexity of the problem allows us to make an important simplification.

Replica symmetric ansatz Before taking the B ! 0 limit we make the replica symmetric assump-
tions
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By means of the replica symmetric hypothesis, we can write
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whereas
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with Z ⇠ N(0, 1) normally distributed random variable. In the expression above, we have also
introduced the function
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In the expression above we have introduced / ⇠ N(0, O3) and denote the average over it by E/ [•].
Therefore, the (replicated) replica symmetric free-energy is given by
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and introduced, for future convenience,
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Note that we have separated the contribution coming from the chosen loss (the so-called channel part
 out) from the contribution depending on the regularisation (the prior part  F). To write down the
saddle-point equations in the V ! +1 limit, let us first rescale our order parameters as <̂: 7! V<̂: ,
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A similar expression can be obtained for  F . Introducing the proximal
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We can rewrite the prior contribution  F as
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The analogy between the two contributions is evident, aside from the different dimensionality of
the involved objects. The replica symmetric free energy (23) in the V ! +1 limit is computed by
extremising with respect to the introduced order parameters,
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To do so, we have to write down a set of saddle-point equations and solve them.

Saddle-point equations The saddle-point equations are derived straightforwardly from the obtained
free energy functionally extremising with respect to all parameters. A first set of equations is obtained
from  out. Introducing
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Observe that the equations above imply that +� = E� and &� = @�, where E and @ are some constant
that do not depend on �2. We can rewrite
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and the remaining equations as
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To obtain the replica symmetric free energy, therefore, the given set of equation has to be solved, and
the result then plugged in Eq. (45).

A.2 Training and test errors

The order parameters introduced to solve the problem allow us to reach our ultimate goal of computing
the average errors of the learning process. We will start with the estimation of the training loss
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in the =! +1 limit. The complication in computing this quantity is that the order parameters found
in the learning process are, of course, correlated with the dataset D used for the learning itself. The
best way to proceed is to observe that

ED [R(w¢, 1¢)] = � lim
V!+1

ED [mV lnZV] = _ED [A (w¢)] + n✓

where

n✓ = � lim
V!+1

mV (V out) = lim
V!+1

E:,�,Z

266664
π

✓: ([) e
�

V ([�<¢

:
)2

2�E¢
�V✓: ([)p

2cV�1
E
¢� /: (l¢

:
, V

�1
E
¢�)

d[

377775
. (52)

2This was largely expected in our setting, but we preferred to keep a redundant derivation as this factorisation
cannot be performed when the derivation is generalised to the case of random covariance matrices which are not
multiple of the identity.
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In the V ! +1 limit, the integral concentrates on the minimiser of the exponent, that is, by definition,
the proximal ⌘: . In conclusion,

n✓ = E:,�,/ [✓: (⌘:)] . (53a)

By means of the same concentration result, the training error is
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The expressions above hold in general, but, as anticipated, important simplifications can occur in
the set of saddle-point equations (50) and (49) depending on the choice of the loss ✓ and of the
regularisation function A . The generalisation (or test) error can be written instead as
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This expression can be rewritten as
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This can be easily computed numerically once the order parameters (including their functional
dependence on �) are given.

A.3 Ridge regularisation

Figure 7: Test error n6 (top) and training error
nC (bottom) as predicted by Eq. (8) in the unbal-
anced d = 1/4 case. The dataset distribution is
parametrised as in Eq. (12). The classification task
is solved using a quadratic loss with ridge regu-
larisation with _ = 10

�5. Dots correspond to the
average outcome of 50 numerical experiments in
dimension 3 = 10

3. In our parametrisation, the
population covariance is ⌃ = O3 for all values of 0
and moreover, for 0 ! +1, the case of pure Gaus-
sian clouds %(x |-) = N(x |-, O3) is recovered.

Let us fix now A (w) = 1

2
kwk2. In this case, the

computation of  F can be performed explicitly
via a Gaussian integration, and the saddle-point
equations can take a more compact form that is
particularly suitable for a numerical solution. In
particular
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_ + Ê (54)

so that the prior saddle-point equations obtained
from  F become

E =
1
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Quadratic loss If we consider a quadratic loss
✓(H, G) = 1

2
(H � G)2, then an explicit formula

for the proximal can be found, namely
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so that the second set of saddle-point equations (50) can be written as
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so that E satisfies the self-consistent equation
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As a complement to the information given in the main text, in Fig. 7 we give some numerical
results for the case of unbalanced clusters, which show a perfect agreement between the theoretical
predictions and the numeral results.

Logistic loss Let us now consider  = 2 and Y = {�1, 1}: in the following, we will label
the different classes by : = ±. In this context, we discuss the relevant case of the logistic loss
✓±(G) = ln(1 + e

⌥G). The proximal equation for this loss is the solution of the equations:

5± = arg min
D


�ED2

2
+ ln

⇣
1 + e

⌥(�ED+l±)
⌘�

(59)

having only one solution for which, however, there is no closed-form expression; the equation can
be solved numerically. Interestingly, the _ ! 0 limit of such loss recovers the hinge loss with zero
margin [64]. It is numerically convenient in this case to consider Ê 7! _Ê, E 7! _
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implying that in the _ ! 0 limit the original order parameters diverge.

The zero-regularisation limit of the logistic loss can help us study the separability transition. To
obtain the position of the separability transition, we follow the derivation proposed by Mignacco et al.
[49]. Let us assume for simplicity that -+ = �-� ⌘ - with k-k = 1 for simplicity. It is immediate to
see that in this case <+ = �<� ⌘ <, and it is, therefore, possible to introduce <̂ B <̂+ + <̂� , so that
the saddle-point equations can be written as
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(_+Ê)2

< = <̂

_+Ê .
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We can start with the fact that
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We state now that the separable phase corresponds to the limit Ẽ ! +1 as _ ! 0 when using
the logistic loss, keeping \ and 1 fixed. In this case, indeed, we have that 5± = ✓0±(⌘±) ! 0, i.e.,
⌘± ! ± +1, which is the condition to have separability, lim_!0 n✓ = lim_!0 E[✓±(⌘±)] = 0.
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with �(I) = P[Z  I] for a standard Gaussian random variable I ⇠ N(0, 1). By consequence, using
the fact that EZ [ 5 2
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Eq. (62) allows us to express Ẽ ⌘ Ẽ(\, 1, @). It turns out that Ẽ = Ẽ(\, 1̃, @) is finite for any finite
@, and, at 1̃ and \ fixed, can diverge for @ ! +1 only. If we assume @ to be finite and we take
limẼ!+1 S(Ẽ, \, 1̃, @), the expression diverges giving therefore an inconsistency (as ✓̃0±(� 5/Ẽ) ! ±1).
On the other hand, by taking the limit @ ! +1, the function lim@!+1 S(Ẽ, \, 1̃, @) has a finite limit
and it is monotonically increasing in Ẽ, so that Eq. (62) allows for a finite Ẽ as long as
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As a result, given that \ 2 (0, 1], the smaller value for which Ẽ is finite is
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1 � \2

S¢(\, 1̃)
. (67)

This corresponds to the threshold value for the separability transition.

A.4 The Bayes optimal error in the  = 2 case

We derive here the Bayes optimal error in the case of two clusters  = 2 with centroids in 1/p3-± =
±1/p3-, with - ⇠ N(0, O3). The derivation is a variation of the arguments in Ref. [49]. Given an
estimate of -, it is possible to compute ?(H, x |-) = ?(x |H, -)?(H) = E[N(x; H/p3-,�O)]?(H) with
?(H) = dXH,+1 + (1 � d)XH,�1. We assume for now that both E[�] and E[��2] are finite. We can
write down the posterior for - given a dataset D = {(Ha , xa)}=

a=1
of observations as
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where the expectation is over the set � B {�a}a2 [=] . Given a new pair (H0, x0), we can now estimate

P[H0 = ±1| (x0,�0), {(Ha , xa ,�a}=a=1
] / ?(H0)
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where we condition on the values of the set {�a}=
a=0

as well. The integral can be computed as
π
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where we have omitted a coefficient independent of H0, and we have introduced the harmonic mean

X= B
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=

=’
a=1

1

�a

!�1

. (71)
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For the sake of brevity, let us an auxiliary random variable correlated with the harmonic mean, namely

X̂= B
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at the leading order in =, 3, where Z ⇠ N(0, 1). We have also introduced ⌫(X, X̂) B 1 + X
2

UX̂

. In the
large =, 3 limit therefore
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where �(X) B U

U+X . The conditional optimal estimator is then
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the dependence on x
0 being expressed by Z and �¢

0
. The probability that such an estimator is in fact

not exact is
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If �̂(G) B 1 ��(G) = 1p
2c

Ø 1
G

e
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2/2
dC, then the Bayes optimal error is therefore
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where, observing that X�1
=

! E[��1] and X̂�1
=

! E[�]E[��2],
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A.5 The uncorrelated-teacher case and universality in binary classification

In the present section, we will focus on the  = 2 case, assuming labels to be given by Y = {�1, +1}.
In a recent paper, Gerace et al. [25] showed that a classification task on Gaussian clouds exhibits
universality features in the case in which the labels are randomly assigned to the dataset points. Under
the hypothesis of a loss function satisfying ✓(H, [) = ✓(�H,�[) with ridge regularisation, they show
that a dataset obtained from a mixture of Gaussian clouds with equal covariance ⌃ is equivalent to a
dataset obtained from a single Gaussian cloud with zero mean and covariance ⌃. Moreover, using
ridge regression, the training loss n✓ is shown to depend on the sample complexity only (and not
on ⌃) in the _ ! 0

+ limit. This result has been generalised immediately afterwards by Pesce et al.
[59], who showed that the same picture holds in the case in which labels are generated by a “teacher”
modeled by a distribution %0 (H |g), with %0 (H |g) = %0 (�H |� g), and parametrised by vector )0 2 R3 ,
which is uncorrelated with the data structure.
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In our setting, this would amount to considering a database D generated from the joint distribution

%(x, H) = %0
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p
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◆ ’
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x

��-
:
,�O3

�
], (77)

the random labels case corresponding to %0 (H |g) given by a Rademacher distribution in H independent
of g. The condition of uncorrelated teacher is expressed by3

lim
3!+1

)
|
0
-±
3

= 0. (78)

Let us assume for simplicity that we adopt ridge regularisation, A (w) = _

2
kwk2. The analysis of this

setting is perfectly analogous to the one discussed above, but provides slightly different fixed-point
equations for the order parameters, and in particular, it requires introducing the overlap between the
weights w and the teacher parameter )0, C = 1

3
w
|
)0, and its corresponding Lagrange multiplier Ĉ.

Following therefore a procedure that combines the one presented above and the derivation given in
Ref. [59] for the Gaussian case, we can obtain the following fixed-point equations,
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with W B 1

3
k)0k2 and
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that provide us the quantities to plug into Eqs. (53) to compute the asymptotic errors. In the equations
above, /0 (H,l, E) B EI [%0 (H |l + p

EI)] with I ⇠ N(0, 1).

Mean universality Following Ref. [59], let us now make the additional assumption %0 (H |g) =
%0 (�H | � g). This implies that /0 (H,l, E) = /0 (�H,�l, E). In this case, we claim that the solution
has <± = <̂± = 1 = 0. It is clear that if <̂± = 0, then <± = 0 and, moreover, because of parity,
the solution 1 = 0 is consistent. On the other hand, if <± = 0 and 1 = 0, remembering that
✓(H, [) = ✓(�H,�[), then 5 (1,l, E) = � 5 (�1,�l, E) so that the formula for <̂± involves a Gaussian
integral of an odd function which is, therefore, zero, implying <̂± = 0. We are left therefore with a
much simpler set of fixed-point equations, namely
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with

5 (H,l,E)BargminD

h
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, lB
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�@Z , (82)

which is exactly the formula we would have obtained assuming -± = 0, i.e., the presence of one cloud
only, so that %(x, H) = %0

�
H

�� 1p
3

)
|
0
x
�
E[N (x |0,�O3 )]. This mean universality result generalises the

result in Ref. [59] for Gaussian clouds.

3In our case, this condition is simpler than in Ref. [59] as we assume that each class has the same homogeneous
covariance.

23



Figure 8: Test error n̂6 (left) and training loss n✓ (right) obtained by running numerical experiments
for a classification task on two clouds with opposite means and randomly labeled points. Each cloud
is generated with distribution in Eq. (11b) for different values of 0 (i.e., different power-law decay).
All clouds with 0 > 1 have the same covariance ⌃ = O3 and are obtained using Eq. (12). The case
0 = 1/2 and 2 = 1, instead, corresponds to infinite f2 (note that in this case n̂6 is infinite and is
therefore not plotted). For each 0, the numerical experiments are compared with the theoretical
prediction for a random label classification task on a single cloud centered in the origin and with
the same parameter 0, showing an excellent agreement. Note that the training loss is found to be
universal and following (87), independently from the variance distribution.

Random labels under square loss The case of random label is particularly interesting as it exhibits
further universality when the square loss is adopted. In this case, %0 (H |g) is simply the Rademacher
distribution. Using ✓(H, [) = 1

2
(H � [)2, the equations greatly simplify and we obtain
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whereas C = Ĉ = 0, so that the test error, obtained by computing i(H, [) = (H � [)2 where [ are taken
to be pre-activations (because using post-activations would trivially yield n6 = 1/2 in this random label
setting), and the training loss are
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Note that the test error is infinite if f2 = +1. Introducing the notation X: B E[(1 + E�)�:], the
fixed-point equations above read(
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Observe now that in the limit _ ! 0
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which is solved by G = 1, so that in this limit n✓ = 1

2
X1. But, on the other hand, the fixed point

equation for Ê implies that E is such that X1 = 1 � 1/U if U � 1, and zero otherwise (as X1 � 0 by
definition) so that we recover the universal formula for the training loss obtained by Gerace et al.
[25],

n✓ =
1

2

✓
1 � 1

U

◆
+
, (87)

where (G)+ = G\ (G). Note that this formula does not depend on the choice of the distribution of �. We
verify this result in Fig. 8. We run numerical experiments using a quadratic loss on datapoints split in
two clouds of equal weights centered around -1 = �-2 ⇠ N(0, O3), and generated with distribution
as in (12), parametrised by 0, so that each cloud has ⌃ = O3 . Labels are assigned randomly with
Rademacher distribution. The results are compared with the prediction for one cloud with - = 0 but
with the same parameter 0. We see that mean-independence in this setting is indeed verified.
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B Note on numerical results

State evolution equations Each average appearing in the update of the order parameters was
performed using either the quadratic integration function quad from the SciPy package [73] or,
typically in the case of infinite variance distributions, Monte-Carlo averaging was used with 10

5 �10
6

samples of the variance. For the convergence criterion, we use a tolerance of 10
�5; the algorithm

stops and returns the parameters after at most 10
3 updates.

Numerical experiments Numerical experiments regarding the quadratic loss with ridge regularisa-
tion were performed by computing the Moore-Penrose pseudoinverse solution. For the logistic loss,
we used the LogisticRegression module from the Scikit-learn package [58].

Code An implementation of the solution of the fixed-point equations and numerical simulations for
the square loss and ridge regularisation can be found in https://github.com/urteado/super_
classification.
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