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1. Introduction 
      The global push for sustainable energy and the 
critical need to mitigate climate change drive the 
pursuit of transformative innovations in renewable 
energy technologies. Among these technologies, fuel 
cells stand out for their potential to revolutionize the 
transportation and energy sectors.[1] Alloying Pd 
with Au modulates the electronic structure and local 
coordination environment, offering an optimal 
adsorption for reaction intermediates that 
significantly enhance oxygen reduction reaction 
(ORR) activity with improved H2O selectivity and 
thus reducing overall cost.[2] 
 
2. Results and Discussions 
     In this study, we present an end-to-end machine 
learning-guided computational framework that 
uniquely integrates density functional theory (DFT) 
with a physics-based Gaussian Process Regression 
(GPR) model, amalgamating stability and reactivity 
predictions through an alliance of our bespoke model 
and available foundational models from the 
OpenCatalyst (OC) Project by FAIRCHEM, Meta.[3] 
This novel approach enables the design and 
optimization of AuPd random alloy bimetallic 
catalysts for fuel cell applications, achieving a balance 
of high accuracy and computational efficiency. Our 
methodology initiates with the identification of stable 
nanoparticle (NP) compositions and morphologies 
through excess energy predictions derived from 
cohesive energy calculations within the bond-cutting 
model framework.[4] By analyzing over 1100 
datasets across a spectrum of NP sizes (309 to 11000 
atoms), shapes (cuboctahedron, decahedron, 
octahedron, and icosahedron), and configurations (10 
random atomic arrangements), free energy 
evaluations, incorporating configurational entropy at 
700 K, revealed cuboctahedron and decahedron 
shapes with smaller atom counts (N < 1100) and 60-
80 % Pd compositions to exhibit potential for 
enhanced stability (Fig. 1a). The alignment of free and 
excess energy trends with established literature 
reinforces the robustness of our findings.5 To assess 
catalyst performance for fuel cell applications, we 
employed GPR models trained on small, high-quality 
DFT datasets, across diverse AuPd surface facets 
(111, 110, 100, 211, 221, 311) and compositions (5 
different composition along 0 to 100% Pd). Our 
model achieved a strong predictive accuracy for ORR 
intermediates (O* (shown in Fig. 1b), OH*, and OOH*) 
adsorption energies, with a mean absolute error 
(MAE) of 0.22 eV (averaged across all ORR 
intermediates), by harnessing only three critical 
fingerprints—cohesive energy, electronegativity, and 
bond distance. This streamlined yet effective 
approach effectively captured the complexity of 

surface interactions, demonstrating robust 
performance even for intricate bimetallic surfaces. In 
evaluating foundational models from OC20 and OC22 
dataset, we systematically compared different 
architectures including SCN, SchNet, GemNet, 
DimeNet++, and EquiFormerV2 from the OC20 and 
OC22 S2EF (including Total) model suite. 
Foundational models showed an MAE of 0.29 eV 
(averaged across all ORR intermediates) for selected 
model based on generalization capability, and 
alignment with DFT-calculated benchmarks.  
 
The observed errors revealed a critical trade-off 
between specificity and adaptability, highlighting 
where bespoke models thrive in precision, 
foundational models offer resilience and insight into 
unexplored chemical environments. The integration 
of OC models enables high-throughput screening of 
ORR active sites, guiding targeted DFT calculations to 
generate compact and high-quality training data for 
bespoke GPR models. This integrated approach will 
be further utilized to conduct a comprehensive 
analysis of catalytic activity, selectivity, and reactivity 
metrics to establish a correlation with DFT results 
and existing literature and provide overall catalytic 
performance under operational conditions.  
 

 
 
Fig. 1: Computational Design of AuPd alloy for enhanced 
ORR performance (a) Free energy of mixing varying along 
Pd compositions (%) in AuPd at temperature (T) of 700 K 
across different shapes and sizes (N). N varying between 
~300 to 11000 atoms. Convex hull (solid black line) 
identifies the thermodynamically stable structures 
highlighted through the points on or close to the convex 
hull. Insets show two representative most stable structures 
of the nanoparticles. (b) Predictive accuracy of machine 
learning models –GPR and OC20 model against DFT-
calculated energies for O* adsorbed on AuPd surfaces 
shown alongside the parity line (dashed). Insets depict 
surface structures used in the adsorption studies. 
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