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1 GUIDING SAMPLING UNDER A LIMITED INPUT BUDGET

We conduct experiments in Active Learning settings using the ActiveNeRF Pan et al. (2022) codebase.
In traditional NeRF Mildenhall et al. (2021), we obtain a volume parameter σ and color values
c = (r, g, b) for a specific position and direction. In ActiveNeRF, it simultaneously outputs both
mean and variance, following a Gaussian distribution. For simplicity, we adopt the ActiveNeRF
version and apply its pipeline to our baseline methods (NeRF+Random, NeRF+FVS) as well as our
proposed strategy. The primary modification we make is in the evaluation step, which is central to
this active learning setting.

Its original codebase only provides training configuration files for a portion of the LLFF dataset and
the Blender dataset. We observe that for the Blender dataset, the codebase used a fixed number (20)
of initial training samples so we cannot decide the initial training set size. We then modify it to allow
the selection of the initial training set size, with the remaining images serving as a holdout set. For
instance, in Setting I, for each object in the Blender dataset with 100 ordered images, we choose the
first 4 images as the initial set and use the remaining 96 images as the holdout set. Due to excessive
memory requirements, training on the LLFF dataset is not feasible even on a 48GB A40 GPU, so we
temporarily refrain from conducting experiments on it. However, we believe that the results on the
Blender dataset sufficiently validate our claims.

Due to the randomness of the strategy and potential variations in the training process, we conducted
three experiments for each result and selected the best outcome. In Table 1, We provide a detailed
breakdown of the specific results for each object on Blender in Setting I.

PSNR↑ hotdog lego chair drums ficus materials mic ship Avg.
NeRF + Rand 22.19 19.85 19.99 10.93 18.13 8.73 17.85 15.31 16.62
NeRF + FVS 23.87 17.83 20.06 15.38 17.91 13.76 17.91 15.94 17.83
ActiveNeRF 17.87 18.96 20.20 14.82 22.55 18.19 17.92 19.34 18.73

Ours (C→U)) 24.01 20.48 26.21 16.78 18.49 13.95 17.57 13.95 18.93
Ours (U→C) 23.14 22.90 20.08 17.96 20.99 15.16 24.01 16.50 20.09

SSIM↑ hotdog lego chair drums ficus materials mic ship Avg.
NeRF + Rand 0.919 0.838 0.848 0.793 0.845 0.762 0.881 0.689 0.822
NeRF + FVS 0.922 0.798 0.853 0.776 0.838 0.776 0.879 0.706 0.819
ActiveNeRF 0.860 0.829 0.858 0.768 0.886 0.813 0.876 0.716 0.826

Ours (C→U)) 0.918 0.852 0.898 0.793 0.848 0.789 0.883 0.789 0.846
Ours (U→C) 0.916 0.851 0.849 0.814 0.859 0.812 0.924 0.704 0.841

LPIPS↓ hotdog lego chair drums ficus materials mic ship Avg.
NeRF + Rand 0.089 0.152 0.165 0.231 0.152 0.241 0.138 0.317 0.186
NeRF + FVS 0.082 0.197 0.158 0.239 0.167 0.205 0.140 0.304 0.186
ActiveNeRF 0.172 0.150 0.149 0.253 0.116 0.145 0.142 0.319 0.181

Ours (C→U)) 0.089 0.135 0.109 0.218 0.152 0.177 0.139 0.177 0.149
Ours (U→C)) 0.099 0.153 0.165 0.183 0.136 0.159 0.093 0.306 0.162

Table 1: Quantitative comparison on Blender in Setting I. We provide a detailed listing of the
metric values for each object on Blender, which is the same in Table 1 in the manuscript.
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2 REGULARIZATION TERM FOR GENERAL NERF ON DTU.
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Figure 1: Example of our results with 3 input views on the DTU dataset.

Object Full-image
Method PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

SRF Chibane et al. (2021) 15.32 0.671 15.84 0.532
PixelNeRF Yu et al. (2021) 16.82 0.695 18.74 0.618

MVSNeRF Chen et al. (2021) 18.63 0.769 16.33 0.602
SRF ft Chibane et al. (2021) 15.68 0.698 16.06 0.550
PixelNeRF ft Yu et al. (2021) 18.95 0.710 17.38 0.548

MVSNeRF ft Chen et al. (2021) 18.54 0.769 16.26 0.601
Mip-NeRF Barron et al. (2021) 8.68 0.571 7.64 0.227

DietNeRF Jain et al. (2021) 11.85 0.633 10.01 0.354
RegNeRF Niemeyer et al. (2022) 18.89 0.745 15.33 0.621

mip-NeRF concat. (repro.) 9.10 0.578 7.94 0.235
RegNeRF concat. (repro.) 18.50 0.744 15.00 0.606

FreeNeRFYang et al. (2023) 19.92 0.787 18.02 0.680
FreeNeRF + Ours 20.11(+0.19) 0.785(-0.002) 18.41(+0.39) 0.681(+0.001)

Table 2: Quantitative comparison on DTU. We follow the experiment setting in FreeNeRF and
present the PSNR and SSIM scores of foreground objects and full images. Compared with FreeNeRF
and other baselines, We can observe that ours based on FreeNeRF can better synthesize foreground
objects and full images, especially in PSNR.

In 3-view setting, we also conduct additional experiments on the DTU datasetJensen et al. (2014)
following the setting of FreeNeRF. It contains 124 scenes and we follow Niemeyer et al. (2022) to
optimize NeRF models directly on the 15 test scenes. The test scan IDs are: 8, 21, 30, 31, 34, 38,
40, 41, 45, 55, 63, 82, 103, 110, and 114. In each scan, the images with the following IDs (counting
from “0”) are used as the input views: 25, 22, 28, 40, 44, 48, 0, 8, 13. We use the first 3 images as the
input views in a 3-view setting. The 25 images with IDs in [1, 2, 9, 10,11, 12, 14, 15, 23, 24, 26, 27,
29, 30, 31, 32, 33, 34, 35, 41, 42, 43, 45, 46, 47] serve as the novel views for evaluation. We follow
Niemeyer et al. (2022); Yu et al. (2021) to use a 4× downsampled resolution, resulting in 300 × 400
pixels for each image.

Table 2 and Figure 1 show quantitative and qualitative results on the DTU dataset. We find that masks
of the DTU dataset do not always help improve PSNR ans SSIM and sometimes the PSNR score in a
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specific scene drops a lot. For a fair comparison, we train one model for one scene to produce the
results in the object and full-image setting at the same time. Transfer learning-based methods Chibane
et al. (2021); Yu et al. (2021); Chen et al. (2021) that require expensive pre-training underperform
ours in almost all settings, except the full-image PSNR score of Yu et al. (2021). This may be due
to the bias introduced by the white table and black background present in many scenes in the DTU
dataset. Compared with FreeNeRF, our method can get better performance in the full-image setting.
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