
Appendix

A Proof of Lemma 1

Fix a voter i, ranking σ̂i, and let a = σ̂i(1) be their top choice. Fix an alternative b ̸= a and let
jb = σ̂−1

i (b) be b’s position in σ̂i. Let r be a vector of plurality scores with ra > rb and let r′ be the
same vector but with the a and b components swapped.

Let P be an unconfident Mallows, Placket-Luce, or Thurstone-Mosteller belief. We show later how
this proof directly implies it for the confident version as well. We abuse notation slightly, and write
P[r | σ̂i] to denote the probability of the event that σ−i has plurality vector r, and P[r | τ ] for the
same under ground truth τ . We wish to show that

∑
τ P[r | τ ] · P[τ | σ̂i] ≥

∑
τ P[r′ | τ ] · P[τ | σ̂i],

or equivalently, ∑
τ

(P[r | τ ]− P[r′ | τ ]) · P[τ | σ̂i] ≥ 0.

Let τ be an arbitrary ground truth ranking with a ≻τ b and let τ ′ be the same ranking, but with a and
b switched. Notice that by symmetry, P[r | τ ] = P[r′ | τ ′] and P[r′ | τ ] = P[r | τ ′]. Hence, in the
above sum we can combine these two terms to be (P[r | τ ]− P[r′ | τ ])(P[τ | σ̂i]− P[τ ′ | σ̂i]). We
prove for all such τ with a ≻τ b, both of these terms are positive. Note that this immediately implies
that this also holds for the confident version, as for that, we simply need to show P[r | τ ]− P[r′ | τ ]
for τ = σ̂i, and we have a ≻σ̂i b.

We begin by showing P[r | τ ] − P[r′ | τ ] ≥ 0 for all τ with a ≻τ b. Fix such a τ . Notice that,
conditioned on τ , all other rankings are drawn independently from the same distribution, namely,
the corresponding model with ground truth τ . Let pc be the probability that a ranking drawn from
the corresponding model has top choice c. We can directly compute P[r | τ ] =

(
n−1
r

)∏
c∈A prcc and

P[r′ | τ ] =
(
n−1
r′

)∏
c∈A p

r′c
c , where

(
n−1
r

)
and

(
n−1
r′

)
are the multinomial coefficients, i.e., (n−1)!∏

c∈A rc!
.

To show the P[r | τ ] ≥ P[r′ | τ ], observe that the two multinomial coefficients are equal as r and r′

are the same up to swapping components. Further, since rc = r′c for all c ̸= a, b, the terms other than
a and b are equal. Hence, all we need to show is that praa prbb ≥ p

r′a
a p

r′b
b . This will be directly implied

by pa ≥ pb.

For Mallow’s, it is known that if c = τ(j), then the probability c is the highest rank is proportional to
φj . Hence, since τ−1(a) < τ−1(b), pa > pb. For Placket-Luce, observe that each pc is proportional
to wc. Hence, pa > pc.

For Thurstone-Mosteller, things are more technical. Let µa > µb be the corresponding means. We
condition on arbitrary samples xc for c ̸= a, b, and show that even conditioned on this, the probability
Xa is largest is greater than the probability that Xb is largest. Since the conditioning was arbitrary,
the law of total probability tells us that this is true in general.

Let xmax
c = maxc ̸=a,b xc. Then, integrating over the standard normal PDF, the probability that Xa is

the largest is exactly∫ ∞

−∞

∫ ∞

−∞

1

2π
e−

1
2 (x−µa)

2

e−
1
2 (y−µb)

2

I[x > max(y, xmax
c )] dx dy.

We can break up this integral depending on whether Xb ≥ xmax
c or not, to get that this is equal to

1

2π

(∫ xmax
c

−∞

∫ ∞

xmax
c

e−
1
2 (x−µa)

2

e−
1
2 (y−µb)

2

dx dy

+

∫ ∞

xmax
c

∫ ∞

xmax
c

e−
1
2 (x−µa)

2

e−
1
2 (y−µb)

2

I[x > y] dx dy

)
.

The same can be done symmetrically for Xb. To show the probability is larger for Xa, we show that
each of the terms is bigger, i.e.,∫ xmax

c

−∞

∫ ∞

xmax
c

e−
1
2 (x−µa)

2

e−
1
2 (y−µb)

2

dx dy ≥
∫ xmax

c

−∞

∫ ∞

xmax
c

e−
1
2 (x−µb)

2

e−
1
2 (y−µa)

2

dx dy
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and ∫ ∞

xmax
c

∫ ∞

xmax
c

e−
1
2 (x−µa)

2

e−
1
2 (y−µb)

2

I[x > y] dx dy

≥
∫ ∞

xmax
c

∫ ∞

xmax
c

e−
1
2 (x−µb)

2

e−
1
2 (y−µa)

2

I[x > y] dx dy.

Both of these inequalities are implied by the fact that for all fixed x > y,

e−
1
2 (x−µa)

2

e−
1
2 (y−µb)

2

> e−
1
2 (x−µb)

2

e−
1
2 (y−µb)

2

.

Note that this is equivalent to showing

−1

2
(x− µa)

2 +−1

2
(y − µb)

2 ≥ −1

2
(x− µb)

2 +−1

2
(y − µb)

2.

Indeed, we have that

−1

2
((x− µa)

2 + (y − µb)
2) +

1

2
((x− µb)

2 + (y − µb)
2) = xµa + yµb − xµb − yµa

= (x− y)(µa − µb).

Since x > y and µa > µb, this is positive, as needed.

Next, we wish to show P[τ | σ̂i] ≥ P[τ ′ | σ̂i]. Recall that by Baye’s rule, these are each proportional
to P[σ̂i | τ ] and P[σ̂i | τ ′], where these are the probabilities of drawing σ̂i from the corresponding
model with ground truth τ and τ ′. In the Mallows model, note d(σ̂i, τ) < d(σ̂i, τ

′) because a ≻σ̂i
b,

so swapping them can only increase the distance. Hence, P[σ̂i | τ ] ≥ P[σ̂i | τ ′]. For Placket-Luce,
observe that the probability of generating a ranking σ is

m∏
j=1

wσ(j)∑
j′≥j wσ(j′)

.

Notice that even reordering the weights w, the product of the numerators is always
∏

c∈A wc.
However, the denominators can change. Let wa and wb be the weights of a and b under τ , so
wa > wb. The only difference between the denominators are those in terms with j = 2, . . . jb. Under
τ these denominators include wb while under τ ′, this is replaced with wa. Hence, under τ ′, all the
denominators are at least as large, and hence the overall probability is less.

Finally, we handle Thurstone-Mosteller. Notice that under both ground truths τ and τ ′, Xc for
c ̸= a, b follow the same distributions. Hence, as before, we condition on values xc for c ̸= a, b. If
we show conditioned on any values, it is more likely to generate σ̂i under τ then τ ′, then we are done.
We first restrict to xc such that their order matches σ̂i, as otherwise, the probability of generating σ̂i

is 0. Again, let xmax
c = maxc xc. We now split into two cases based on if jb = 2 or if jb > 2. If

jb = 2. Then, the probability of generating σ̂i under τ is∫ ∞

xmax
c

∫ ∞

xmax
c

e−
1
2 (x−µa)

2

e−
1
2 (y−µb)

2

I[x > y] dx dy.

Under τ ′, it is the same with µa and µb swapped. Similarly, when jb > 2, then let cu = σ̂i(j
b − 1)

and let cℓ = σ̂i(j
b + 1) be the candidates appearing directly before and after b in σ̂i. The probability

here of generating σ̂i under τ is∫ xcu

x
cℓ

∫ ∞

xmax
c

e−
1
2 (x−µa)

2

e−
1
2 (y−µb)

2

I[x > y] dx dy.

Under τ ′, it is again the same with µa and µb swapped. The proof that the τ versions are larger than
the τ ′ follow the identical argument to the earlier ones showing pa > pb.

B Proof of Lemma 3

Recall that Ebc is the event that a wins in (σ−i, σ̂i) but not (σ−i, σ
′
i) where σ̂i = abc and σ′

i = acb.
Notice that in terms of scores, the only change when swapping from σ′

i to σ̂i is that b has increased
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by r1 while c has decreased by r1. We claim that a necessary condition on σ−i such that the
probability of a winning increases under this switch is that both SCc(σ−i, σ

′
i) ≥ SCa(σ−i, σ

′
i) and

SCa(σ−i, σ̂i) ≥ SCb(σ−i, σ̂i). Indeed, if SCc(σ−i, σ
′
i) < SCc(σ−i, σ

′
i), then even before the switch,

c was not a winning candidate, so decreasing their score and increasing b’s cannot improve a’s chances.
Further, if SCa(σ−i, σ̂i) < SCb(σ−i, σ̂i), then a is winning with probability 0 on (σ−i, σ̂i), so this
cannot be an increase. Writing this only as a function of σ−i, we have that a necessary condition is
that SCc(σ−i) + r2 ≥ SCa(σ−i) + r1, SCa(σ−i) + r1 ≥ SCb(σ−i) + r2, and (transitively from the
previous two) SCc(σ−i) ≥ SCb(σ−i).

We will show that for any τ = xyz, P[SCz(σ−i) ≥ SCx(σ−i) | τ ] ∈ O(cn2 ) (for c2 to be chosen
later). The above necessary conditions imply that this upper bounds each P[Ebc | τ ] term.

To upperbound P[SCz(σ−i) ≥ SCx(σ−i) | τ ], we will use a Chernoff bound. We begin by rewriting
it as

P[SCz(σ−i)− SCx(σ−i) ≥ 0 | τ ] = P

∑
j ̸=i

SCz(σj)− SCx(σj) ≥ 0

∣∣∣∣∣ τ
 .

Notice that conditioned on a ground truth τ , each σj (for j ̸= i) is sampled independently from a
Mallow’s distribution around τ . Hence, if we write Xj = SCz(σj)− scx(σj), this is now the sum of
independent random variables. To apply Chernoff, we will need that these are bounded between 0

and 1. As they are currently bounded in [−r1, r1], we define Yj =
Xj

2r1
+ 1/2, which is now bounded

in [0, 1]. Hence, we wish to upperbound

P

 1

n− 1

∑
j ̸=i

Yj ≥ 1/2

∣∣∣∣∣ τ


To compute E[Yj ], we first compute E[Xj ]:

E[Xj ] =
∑

σ∈{xyz,xzy,yxz,zxy,yzx,zyx}

(SCz(σ)− SCx(σ))φ
d(σ,τ)

=
(0− r1) · 1 + (r2 − r1) · φ+ (0− r2) · φ+ (r1 − r2) · φ2 + (r2 − 0) · φ2 + (r1 − 0) · φ3

1 + 2φ+ 2φ2 + φ3

=
(−1− φ+ φ2 + φ3)r1 + (φ− φ− φ2 + φ2)r2

1 + 2φ+ 2φ2 + φ3

= r1 ·
(1 + φ)(φ2 − 1)

(1 + φ)(1 + φ+ φ2)
= r1 ·

φ2 − 1

1 + φ+ φ2
.

From this we have that

E[Yj ] =
1

2r1
E[Xj ] + 1/2 =

φ2 − 1 + (1 + φ+ φ2)

2(1 + φ+ φ2)
=

φ(1 + 2φ)

2(1 + φ+ φ2)
.

We will use the form of the Chernoff bound that states that if each W1, . . .Wk is i.i.d. drawn from a
distribution supported on [0, 1] with E[Wj ] = µ, then

Pr

1
k

∑
j

Wj ≥ (1 + δ)µ

 ≤
(

eδ

(1 + δ)1+δ

)kµ

=

(
e(1+δ)µ−µ

(
µ

(1 + δ)µ

)(1+δ)µ
)k

. (4)

Notice that in our case, k = n − 1, µ = φ(1+φ)
2(1+φ+φ2) , and (1 + δ)µ = 1/2. Hence, plugging in our

values, we get that this is at most(
e

1−φ2

2(1+φ+φ2)

√
φ(1 + 2φ)

1 + φ+ φ2

)n−1

.

Therefore, this quantity is O(cn2 ) for c2 = e
1−φ2

2(1+φ+φ2)

√
φ(1+2φ)
1+φ+φ2 .
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C Proof of Lemma 4

To lower bound P[Ecb | τ = abc], our strategy will be the following. First, we call a vector
h = (hσ)σ∈L of integers indexed by L a histogram, and we will say that a profile σ has histogram
h if |{i | σi = σ}| = hσ. For all sufficiently large n, we will find histograms (hσ)σ∈L with∑

σ∈L hσ = n− 1 such that on profiles (σ−i, σi) with histogram h, a is tied with b for the largest
score, while on (σ−i, σ

′
i), a is the unique winner. This implies that the probability a wins for

such profiles increases by at least 1/2. We will then show that the probability that σ−i has the
corresponding histogram hσ is lower bounded by Ω(cn1 ).

To do this, we first must understand how likely it is to sample a profile with specific histogram
h. Let pσ = φd(σ,a≻b≻c)/Z be the probability of sampling σ from the Mallow’s distribution.
Notice that sampling σ−i and considering the counts |{i ∈ σ−i | σi = σ}| is equivalent to
drawing from a multinomial distribution over the alphabet L with probabilities (pσ)σ∈L of size
n − 1. If we write qσ = hσ/(n − 1) as the proportion of voters with σ, it is known that the

probability of observing (hσ)σ∈L (with each hσ > 0) is at least
(∏

σ

(
pσ

qσ

)qσ
− o(1)

)n−1

. Note

that
∏

σ

(
pσ

qσ

)qσ
= 1/eDKL(p∥q) where DKL is the KL-divergence and p and q are treated as

probability distributions over L. This is essentially (without uniform convergence) an immediate
consequence of the tightness of Sanov’s theorem [21], although it can easily be derived by known
bounds on multinomial coefficients [4].

With this property in hand, we now wish to find profiles satisfying the tie conditions such that
(

pσ

qσ

)qσ
is bounded away from e

1−φ2

2(1+φ+φ2)

√
φ(1+2φ)
1+φ+φ2 . To that end, we now show the following:

Lemma 5. For all φ ≤ .988 and positional scoring rules (r1, r2, 0), there exists real numbers
(qσ)σ∈L such that:

1. They are valid proportions:
∑

σ qσ = 1 and each qσ > 0.

2. Candidates a and b are tied in score:
∑

σ SCa(σ)qσ =
∑

σ scb(σ)qσ .

3. Candidate c is not beating a and b:
∑

σ SCa(σ)qσ ≥
∑

σ scc(σ)qσ .

4. The objective of these q’s are large
∏

σ

(
pσ

qσ

)qσ
> e

1−φ2

2(1+φ+φ2)

√
φ(1+2φ)
1+φ+φ2 .

Proof. We first handle the case where φ ≤ 0.1. Under this assumption of φ, we can explicitly choose
qσ as follows.

qabc = qbac =

√
pabcpbac

2(
√
pabcpbac +

√
pacbpbca +

√
pcabpcba)

qacb = qbca =

√
pacbpbca

2(
√
pabcpbac +

√
pacbpbca +

√
pcabpcba)

qcab = qcba =

√
pcabpcba

2(
√
pabcpbac +

√
pacbpbca +

√
pcabpcba)

.

Since all pσ are positive, each qσ is positive. Further, they are explicitly chosen to add up to
one. In addition, due to the symmetry between a and b (they appear in each position at the same
frequency), their corresponding scores are equal. Finally, since pabc > pbac ≥ pacb > pbca ≥
pcab > pcba, it follows that qabc = qbac > qacb = qbca > qcab = qcba, so the score of c is strictly

less than the score of a. It remains to be shown that
∏

σ

(
pσ

qσ

)qσ
> e

1−φ2

2(1+φ+φ2)

√
φ(1+2φ)
1+φ+φ2 . Let

d = 2(
√
pabcpbac +

√
pacbpbca +

√
pcabpcba) be the denominator in each of the q values. Let us

consider the contribution to the product of the abc and bac terms. We have,(
pabc
qabc

)qabc

·
(
pbac
qbac

)qbac

=

(
dpabc√
pabcpbca

)qabc

·
(

dpbac√
pabcpbca

)qbac
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= dqabc+qbac ·
(

pabc√
pabcpbca

· pbac√
pabcpbca

)qabc

= dqabc+qbca · 1

The same argument holds for the other two pairs, which implies that∏
σ

(
pσ
qσ

)qσ

= d
∑

σ qσ = d.

Expanding the value of d,

2

(√
φ0 · φ1

Z2
+

√
φ1 · φ2

Z2
+

√
φ2 · φ3

Z2

)
=

2
√
φ(1 + φ+ φ2)

Z

=
2
√
φ(1 + φ+ φ2)

1 + 2φ+ 2φ2 + φ3

=
2
√
φ

1 + φ
.

Finally, using the assumption that φ ≤ .1, we have

2
√
φ

1 + φ
≥

2
√
φ

1.1

=
√
e · 1.2 · √φ

≥ e1/2 ·
√

φ(1 + 2φ)

> (e1/2)
1−φ2

1+φ+φ2 · 1√
1 + φ+ φ2

·
√

φ(1 + 2φ)

= e
1−φ2

2(1+φ+φ2)

√
φ(1 + 2φ)

1 + φ+ φ2
,

where the second inequality uses the fact that 2/1.1 ≈ 1.82 >
√
1.2e ≈ 1.81.

Next, we consider φ > 0.1. We formalize finding valid qs in the following form. Notice first that
we can rescale the scoring vector to be of the form (1, α, 0) where α = r2/r1 ∈ [0, 1]. We will use
SCα

x(σ) to denote the score of candidate x on ranking σ with the positional scoring rule (1, α, 0). Let
Qα be the set of vectors q (indexed by L), which satisfy the constraints for a specific α. Expanding

the objective in terms of φ, let dσ = d(σ, a ≻ b ≻ c), f(φ,q) = 1
1+2φ+2φ2+φ3

∏
σ

(
φdσ

qσ

)qσ
,

and ℓ(φ) = e
1−φ2

2(1+φ+φ2)

√
φ(1+2φ)
1+φ+φ2 . Let g(φ,q) = f(φ,q) − ℓ(φ). Our goal is to show that for all

φ ∈ (.1, .99] and for all α ∈ [0, 1], there is a q ∈ Qα such that g(φ,q) > 0. When q satisfies this,
we will say that q is a solution for φ and α.

To that end, we will first show using the smoothness of g and the Qα sets that as long as a solution q
for a specific φ and α satisfies reasonable conditions, then that will imply the existence of solutions
for nearby φ and α. We will then present several solutions found using a computational search that
cover the α and φ region, implying the existence of solutions for all necessary values.

Fix α, φ, and suppose we have a corresponding solution q. Fix some ε > 0, we now find sufficient
conditions such that for all φ′ ∈ [φ− ε, φ+ ε] and α′ ∈ [α− ε, α+ ε], there exists a solution q′ for
φ′ and ε′. We begin by extending it to the same α, but for φ′ ∈ [φ− ε, φ+ ε]. We first show that ℓ is
an increasing function on [0, 1] which implies (as long as φ+ ε ≤ 1), on [φ− ε, φ+ ε], it is upper
bounded by ℓ(φ+ ε).

Indeed, notice that µ (from (4)) is equal to φ+2φ2

2(1+φ+φ2) = 1/2 − 1−φ2

2(1+φ+φ2)and its derivative with

respect to φ is φ2+4φ+1
(φ2+φ+1)2 > 0. Therefore, it is an increasing function of φ bounded in [0, 1/2].

As a function of µ, ℓ(φ) is equal to (e/2)1/2e−µ√µ. The derivative of this with respect to µ is
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(e/2)1/2e−µ(1 − 2µ)/(2
√
µ), positive for µ ∈ [0, 1/2). Therefore, as the composition of two

increasing functions, ℓ(φ) is increasing on [0, 1].

Next, we wish to lower bound f(φ′,q). To do this, suppose the derivative ∂f
∂φ (φ

′,q) for φ′ ∈
[φ − ε, φ + ε] lower bounded by B ≤ 0. Notice that −B upper bounds the rate at which f can
decrease, so we get that f(φ′,q) ≥ f(φ − ε,q) + 2εB. To compute such a B, we first compute
∂f
∂φ (φ

′,q). We will use the fact that ∂f
∂φ (φ

′,q) = ∂ log(f)
∂φ (φ′,q) · f(φ′,q). Since log(f(φ′,q)) =∑

σ qσ(dσ log(φ
′)− qσ)− log(1 + 2φ′ + 2φ′2 + φ′3), we have that

∂f

∂φ
(φ′,q) =

(∑
σ qσdσ
φ′ − 2 + 4φ′ + 3φ′2

1 + 2φ′ + 2φ′2 + φ′3

)
· f(φ′,q).

Notice that
∑

σ qσdσ

φ′ is decreasing in φ′. Further, we can also show that 2+4φ′+3φ′2

1+2φ′+2φ′2+φ′3 is decreasing,
as its derivative is

−φ′(3φ′3 + 8φ′2 + 8φ′ + 2)

(φ′3 + 2φ′2 + 2φ′ + 1)2
,

negative for all positive values of φ′. Finally, notice that f is defined as 1/eDKL(q∥p) and DKL is
nonnegative, f is upperbounded by 1. Hence, for all φ′ ∈ [φ− ε, φ+ ε],

∂f

∂φ
(φ′,q) ≥ min

(∑
σ qσdσ
φ+ ε

− 2 + 4(φ− ε) + 3(φ− ε)2

1 + 2(φ− ε) + 2(φ− ε)2 + (φ− ε)3
, 0

)
.

Let B(φ,q, ε) = min
(∑

σ qσdσ

φ+ε − 2+4(φ−ε)+3(φ−ε)2

1+2(φ−ε)+2(φ−ε)2+(φ−ε)3 , 0
)

. We then have that for all φ′ ∈
[φ− ε, φ+ ε], g(φ′, q) ≥ f(φ− ε,q) + 2εB(φ,q, ε)− ℓ(φ+ ε,q).

Next, we consider modifying α to α′ ∈ [α − ε, α + ε]. Let β = α′ − α. Notice that the current
q may not be an element of Qα′ . Although

∑
σ qσ = 1, and each qσ > 0, it may not be the

case
∑

σ SCα′

b (σ)qσ =
∑

σ SCα′

a (σ)qσ. Instead, we have that
∑

σ SCα′

b (σ)qσ + β(qabc + qcba) =∑
σ SCα′

a (σ)qσ + β(qbac + qcab). Let r = qabc + qcba − qbac − qcab; this is the current amount b is
beating a by (it may be negative). Notice that we can find a q′ ∈ Qα′ by simply shifting r/2 · β mass
from qacb to qbca. This will result in a valid q′ as long as qacb > r/2 · β when r/2 · β is positive or
qbca > −r/2 · β when it is negative. A sufficient condition for this is that both qacb > |rε/2| and
qbca > |rε/2|. Under this assumption, we now consider the effect on the solution value g(φ,q′). To
do this, we can consider the directional derivative of g with respect to increasing qacb and decreasing
qbca. We have that for each σ,

∂g

∂qσ
= f(φ,q) ·

(
log

(
φdσ

qσ

)
− 1

)
.

Therefore, the derivative with respect the the vector of increasing qacb and dcreasing qbca is

∂g

∂qacb
− ∂g

∂qbca
= f(φ,q)·

(
log(φdacb−dbca) + log

(
qbca
qacb

))
= f(φ,q)·

(
log

(
qbca
qacb

)
− log(φ)

)
.

We will now upperbound the magnitude of this. Recall that f is upper bounded by 1. Further, for any
φ′ ∈ [φ+ ε, φ− ε] and q′ constructed by shifting at most rε/2 mass between qacb and qbca,

log

(
qbca − |rε/2|
qacb + |rε/2|

)
− log(φ+ ε) ≤ log

(
qbca
qacb

)
− log(φ) ≤ log

(
qbca + |rε/2|
qacb − |rε/2|

)
− log(φ− ε).

Hence, the magnitude of the derivative is always at most:

max

(∣∣∣∣log(qbca − |rε/2|
qacb + |rε/2|

)
− log(φ+ ε)

∣∣∣∣ , ∣∣∣∣log(qbca + |rε/2|
qacb − |rε/2|

)
− log(φ− ε)

∣∣∣∣) .

Let m(φ,q, ε) be this value. Then, from shifting the at most rε/2 mass between qacb and qbca, this
decreases g(φ,q) by at most rε/2 ·m(φ,q, ε). Hence, putting this all together, we have that for any
vector q, as long as both qacb, qbca > rε/2, and as long as

f(φ− ε,q) + 2εB(φ,q, ε)− ℓ(φ+ ε,q)− rε

2
m(φ,q, ε) > 0,

17



then this implies that for all φ′ ∈ [φ− ε, φ+ ε] and α′ ∈ [α− ε, α+ ε], there exists a solution q′.

Finally, for all 0.1 ≤ φ ≤ .988 and 0 ≤ α ≤ 1 that are multiples of 1/1000, we compute
corresponding q that satisfy the above conditions with ε = 1/2000. Together, these cover the space
of φ and α, which implies that the lemma holds. This can be done (approximately enough) using a
convex program to find q that maximizes f given φ and α. The computed values can be found in the
supplementary material.

Notice that the solutions (qσ)σ∈L from Lemma 5 need not be rational which would be necessary for a
valid profile with corresponding (hσ)σ∈L to be sampled. However, we claim that given a non-rational
solution, we can always find a rational one, so it is without loss of generality to assume they are.
Notice that since the strict inequalities are all continuous functions of q, so there must be an ε > 0
such that all q vectors in an ε-ball around these qs (in R6) satisfy the strict inequalities. In addition,
the linear equalities form an affine subspace. Since all coefficients are rational, all-rational vectors
are dense within this subspace. Hence, there are rational (q′σ)σ∈L within ε of (qσ)σ∈L that satisfies
the equalities and is, therefore, a rational solution to the four properties.

Using rational q, we can find a corresponding integral h such that on profiles with ranking counts
equal to h, a and b are tied for winning. Let s =

∑
σ hσ be the number of rankings in h. For

a ranking σ, let eσ be the unit vector with 1 in the σ coordinate and 0 elsewhere. Notice that if
n− 1 = ks+ 1 for some integer k and σ−i has ranking counts equal to kh+ ebac, then it is indeed
the case that on (σ−i, a ≻ b ≻ c), a is tied with b, while on (σ−i, a ≻ c ≻ b), a is the unique winner.

To handle cases where n− 2 is not a multiple of s, suppose we write n− 1 = k · h+ 1 + r where
2 ≤ r ≤ s+ 1. If r is odd, we can first add a cycle eabc + ebca + ecab which does not affect relative
scores. After doing this, we can add r/2 (or (r − 3)/2 if r was odd) copies of eabc + ecab which
again keeps a and b at the same relative scores and only pushes c down. By doing this, we can get a
histogram of arbitrary size where (σ−i, a ≻ b ≻ c) has a tied with b and (σ−i, a ≻ c ≻ b) has a as
a unique winner. Finally, notice that as n grows large, the proportion of this histogram approaches
q. Hence, for sufficiently large n, the probability of sampling this histogram will be Ω(cn1 ) for any

c1 <
∏

σ

(
pσ

qσ

)qσ
. Since

∏
σ

(
pσ

qσ

)qσ
> c2, we can choose c1 > c2. This completes the proof.

D Proof of Theorem 3

Consider the Borda scoring rule (2, 1, 0), and a voter i with unconfident Mallows belief P with φ < 1.
As usual, we will describe how to extend it to confident Mallows later. The proof begins identically to
Theorem 2, up to the point of needing to show (3) is nonnegative. We restate (3) here for convenience.

(
P[Ecb | τ = a ≻ b ≻ c]− P[Ebc | τ = a ≻ b ≻ c]

)
+ φ

(
P[Ecb | τ = b ≻ a ≻ c]− P[Ebc | τ = b ≻ a ≻ c]

)
+ φ2

(
P[Ecb | τ = b ≻ c ≻ a]− P[Ebc | τ = b ≻ c ≻ a]

)
.

Here, we show each of the probability differences are nonnegative, and the first is strictly positive.
This also implies that the result holds for confident Mallows where only the first strict inequality is
necessary.

To do this, we provide an equivalent way of computing P[Ecb | τ ]− P[Ebc | τ ]. Let us consider the
profiles σ−i where swapping from a ≻ b ≻ c to a ≻ c ≻ b leads to an increase in the probability a
wins. Notice that the swap decreases the score of b by 1 and increases the score of c by 1. For this to
help a win, b must have been one of the winners before. Therefore, one of the following must hold.

1. On (σ−i, σi), a was tied with b with c being at least two behind them. Then, after the swap,
a wins outright, an increase in winning probability of 1/2.

2. On (σ−i, σi), b was winning outright, a was one point behind, and c was more than one point
behind a, then, after the swap, a and b are tied winners, an increase in winning probability
of 1/2.

3. On (σ−i, σi), b was winning outright, a was one point behind, and c was one point behind
a, then, after the swap, all three are tied, an increase of winning probability of 1/3.
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We define sets A1, A2, A3 of profiles σ−i that correspond to these three events. More formally,

A1 = {σ−i | SCb(σ−i) = SCa(σ−i) + 1 ≥ SCc(σ−i) + 1},
A2 = {σ−i | SCb(σ−i) = SCa(σ−i) + 2 ≥ SCc(σ−i) + 2},
A3 = {σ−i | SCb(σ−i) = SCa(σ−i) + 2 = SCc(σ−i) + 1}.

We can analogously define B1, B2, and B3 with b and c swapped, which correspond to profiles where
swapping causes the probability of a winning to decrease. From this, we get that

P [Ecb | τ ]− P[Ebc | τ ] =1

2
P[A1 | τ ] + 1

2
P[A2 | τ ] + 1

3
P[A3 | τ ]

−
(
1

2
P[B1 | τ ] + 1

2
P[B2 | τ ] + 1

3
P[B3 | τ ]

)
Further, notice that there is a natural bijection π between the sets of profiles Ak and Bk for k ≤ 3,
namely, swapping every occurrence of b with c and vice-versa.

To prove a weak inequality, we will show that for each k and each τ , P[Ak | τ ] ≥ P[Bk | τ ]. Notice
that this is simply a statement about draws of profiles from a Mallows model; voter i and their report
do not have an impact. To make calculations less messy we will simply refer to these profiles without
i as σ instead of σ−i and refer to the set of voters V as the ones without i, and the size of these
profiles as n (even though this is technically n − 1). This means that our assumption now is that
n ≥ 1.

Next, as a simplifying step, fix an arbitrary partition of the voters K1,K2,K3, i.e., V = K1⊔K2⊔K3.
Let

AK1,K2,K3

k = {σ−i ∈ Ak | σj(1) = a,∀j ∈ K1 ∧ σj(2) = a,∀j ∈ K2 ∧ σj(3) = a∀j ∈ K3}.

In words AK1,K2,K3

k is the subset of Ak such that the voters in K1 rank a first, voters in K2 rank a
second, and voters in K3 rank a third. We define this analogously for the Bk sets. We will show
for all partitions K1,K2,K3, P[AK1,K2,K3

k | τ ] ≥ P[BK1,K2,K3

k | τ ] which implies it holds for the
original sets.

Fix an arbitrary K1,K2,K3 and k ≤ 3. Writing this out more explicitly and using the π bijection,
we see that it suffices to show for each τ ,∑

σ∈A
K1,K2,K3
k

(φd(σ,τ) − φd(π(σ),τ)) ≥ 0. (5)

We assume now that AK1,K2,K3

k ̸= ∅ as otherwise this inequality trivially holds.

Notice that for all σ ∈ AK1,K2,K3

k ,

SCa(σ) = 2|K1|+ |K2| (6)

In other words, the score of a on all profiles in AK1,K2,K3

k is constant. From this, we can derive the
scores of the other candidates.

SCb(σ) = SCa(σ) + κ = 2|K1|+ |K2|+ κ. (7)

where κ = 1, 2 depending on whether k = 1 or k ∈ {2, 3}. Finally, for all σ, SCa(σ) + SCb(σ) +
SCc(σ) = 3n. Therefore,

SCa(σ) = 3n− SC(a)− sc(b) = 3n− 4|K1| − 2|K2| − κ. (8)

Further, these equations are an equivalent condition for defining AK1,K2,K3

k , a profile σ ∈ AK1,K2,K3

k
if and only if the voters in each of K1,K2, and K3 rank a accordingly and Equations (6) to (8) are
all satisfied.

Additionally, we have that for any σ ∈ A1 ∪ A2 ∪ A3, SCc(σ) ≤ SCb(σ) − 1. Therefore, by the
assumption that AK1,K2,K3

k was nonempty, we can derive some constraints on |K1|, |K2|, and |K3|.
Namely, for any σ ∈ AK1,K2,K3

k ,

3(|K1|+ |K2|+ |K3|) = 3n
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= SCa(σ) + SCb(σ) + SCc(σ)

= SCa(σ) + 2SCb(σ)− 1

= 6|K1|+ 3|K2|+ 2κ− 1.

Therefore,

|K1| ≥ |K3| −
2κ− 1

3
. (9)

Recall that for a pair of candidates x and y, Nxy(σ) = |{i|x ≻i y}|. Note that Nbc(σ) = n −
Nbc(π(σ)) since all occurrences of b and c are swapped. It can be shown that for Borda scores,

SCx(σ) =
∑
y ̸=x

Nxy(σ) (10)

In addition, by the definition of the Kendall tau distance,

d(σ, xyz) = Nyx(σ) +Nzx(σ) +Nzy(σ), (11)

as this counts the total number of swapped pairs.

We now handle the cases of each τ ∈ {abc, bac, cba} separately.

Case 1: τ = abc. By Equations (10) and (11), we have that

d(σ, abc) = Nba(σ) +Nca(σ) +Ncb(σ)

= n−Nab(σ) + n−Nac(σ) + n−Nbc(σ)

= 2n− SCa(σ) + (n−Nbc(σ))

and

d(π(σ), abc) = Nba(π(σ)) +Nca(π(σ)) +Ncb(π(σ))

= 2n− SCa(π(σ)) + (n−Nbc(π(σ))

= 2n− SCa(σ) +Nbc(σ).

Substituting this into the left-hand side of (5), we have∑
σ∈A

K1,K2,K3
k

φd(σ,abc) − φd(π(σ),abc)

=
∑

σ∈A
K1,K2,K3
k

φ2n−SCa(σ)+n−Nbc(σ) − φ2n−SCa(σ)+Nbc(σ)

=
∑

σ∈A
K1,K2,K3
k

φ2n−2|K1|−|K2|
(
φn−Nbc(σ) − φNbc(σ)

)
Note that the term in front is always nonnegative and constant for fixed K1,K2,K3, so it is sufficient
to show ∑

σ∈A
K1,K2,K3
k

(
φn−Nbc(σ) − φNbc(σ)

)
≥ 0. (12)

Notice that these terms depend only on Nbc(σ) which must take on a value in {0, . . . , n}. Hence, we
can instead consider counting the number of profiles σ ∈ AK1,K2,K3

k with a specific Nbc(σ). More
formally, let Qj = |{σ ∈ AK1,K2,K3

k |Nbc(σ) = j}| for j ∈ {0, . . . , n}. We can now write∑
σ∈A

K1,K2,K3
k

(
φn−Nbc(σ) − φNbc(σ)

)
=

n∑
j=0

Qj

(
φn−j − φj

)
.

Notice that for each Qj(φ
n−j−φj) term in the sum, there is a corresponding term Qn−j(φ

j−φn−j).
Pairing up these opposite terms, we can rewrite the sum as

⌊(n−1)/2⌋∑
j=0

(Qn−j −Qj)
(
φj − φn−j

)
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The ⌊(n − 1)/2⌋ expression is simply the largest integer strictly less than n/2 (we exclude the
j = n/2 term since this is 0 if it exists). Note that (φj −φn−j) > 0 for j < n/2, so we have reduced
the problem to counting the number of profiles σ with a specific value of Nbc(σ). More formally,
Inequality (12) to show for j < n/2,

Qj ≤ Qn−j . (13)

Fix a j < n/2. For a profile σ ∈ AK1,K2,K3

k , define

t(σ) = {i ∈ K2|b ≻i c}
o(σ) = {i ∈ K1 ∪K3|b ≻i c},

In words, t(σ) is the number of voters in K2 that prefer b to c and o(σ) is the number of voters in
K1 ∪K3 that prefer b to c. This is useful for us because these values allow us to calculate SCb(σ).
Voters in |K3| give a minimum of one point to b. For all voters counted in o(σ), an additional one
point is given versus those not counted. For all voters counted in t(σ) an additional two points are
given versus those not counted. Hence,

SCb(σ) = |K3|+ 2t(σ) + o(σ).

When σ ∈ AK1,K2,K3

k , we know that SCb(σ) = SCa(σ) + κ, so we have that

2t(σ) + o(σ) = 2|K2|+ |K1|+ κ− |K3| (14)

Further,
t(σ) + o(σ) = Nbc(σ)

as it is simply a different way of counting the number of voters with b ≻ c.

Observe that if σ is counted toward Qj , both Equation (14) must hold and t(σ) + o(σ) = j. These
are two independent linear equations on t(σ) and o(σ) and hence there is exactly one solution for
t(σ) and o(σ) that satisfies them. Further, notice that this is a necessary and sufficient condition:
σ ∈ AK1,K2,K3

k is counted toward Qj if and only if it satisfies both Equation (14) and t(σ)+o(σ) = j
(along with the K1,K2,K3 constraint).

Let t and o be the solutions satisfying the above equations for Qj with 0 ≤ t ≤ |K2| and 0 ≤ o ≤
|K1| + |K3|. Note that if t or o are not integers or do not satisfy the inequalities then Qj = 0, so
Qj ≤ Qn−j as Qn−j is necessarily nonnegative. For t and o satisfying the inequalities, we have that

Qj =

(
|K2|
t

)(
|K1|+ |K3|

o

)
since we choose t voters in |K2| and o voters in |K1 ∪ |K3| to rank b ≻ c. We first claim that
t′ := t− n+ 2j and o′ := o+ 2n− 4j are solutions for Qn−j since

2t′ + o′ = 2(t− n+ 2j) + (o+ 2n− 4j) = 2t+ o = 2|K2|+ |K1|+ κ− |K3|

t′ + o′ = t− n+ 2j + o+ 2n− 4j = t+ o+ n− 2j = j + n− 2j = n− j

Since t and o were integers, so are t′ and o′. We want to show

Qj =

(
|K2|
t

)(
|K1|+ |K3|

o

)
≤
(
|K2|
t′

)(
|K1|+ |K3|

o′

)
= Qn−j

We will show individually that
(|K2|

t′

)
≥
(|K2|

t

)
and

(|K1|+|K3|
o′

)
≥
(|K1|+|K3|

o

)
. Notice that t′ ≤ t

and o′ ≥ o, so this is implied by showing that t′ ≥ |K2| − t and o′ ≤ |K1|+ |K3| − o. Both rely on
the inequality 2(2t+ o) > n+ |K2|, which follows from

2(2t+ o) = 2(2|K1|+ |K2|+ κ− |K3|)
= 4|K1|+ 2|K2| − 2|K3|+ 2κ

≥ |K1|+ 2|K2|+ 3|K3| − 2|K3|+ 2κ− (2κ− 1) (|K1| ≥ |K3| − 2κ−1
3 )

≥ n+ |K2| (|K1|+ |K2|+ |K3| = n)

Using the derived inequality, we have

t′ = t− n+ 2j

21



= t− n+ 2(t+ o)

= 3t+ 2o− n

= 2(2t+ o)− n− t

≥ n+ |K2| − n− t

= |K2| − t

and

o′ = o+ 2n− 4N

= o+ 2n− 4(o+ t)

= 2n− 3o− 4t

= 2n− 2(o+ 2t)− o

≤ 2n− (n− |K2|)− o

= n− |K2| − o

= |K1|+ |K3| − o, (|K1|+ |K2|+ |K3| = n)

Therefore, Inequality (13) holds, as needed.

Case 2: τ = bca. Again, by Equations (10) and (11), we have that

d(σ, bca) = Nab(σ) +Nac(σ) +Ncb(σ)

= SCa(σ) + n−Nbc(σ)

and

d(π(σ), bca) = Nab(π(σ)) +Nac(π(σ)) +Ncb(π(σ))

= SCa(π(σ)) + (n−Nbc(π(σ))

= SCa(σ) +Nbc(σ).

Substituting this into the left-hand side of (5), we have,∑
σ∈A

K1,K2,K3
k

φd(σ,bca) − φd(π(σ),bca) =
∑

σ∈A
K1,K2,K3
k

φSCa(σ)+(n−Nbc(σ)) − φSCa(σ)+Nbc(σ)

=
∑

σ∈A
K1,K2,K3
k

φ2|K1|+|K2|
(
φn−Nbc(σ) − φNbc(σ)

)
.

Again we notice that the term in front is always nonnegative and constant for fixed K1,K2,K3, so, it
is sufficient to show ∑

σ∈A
K1,K2,K3
k

(
φn−Nbc(σ) − φNbc(σ)

)
≥ 0,

which we already proved in the last case.

Case 3: τ = bac. Using Equations (10) and (11), we have

d(σ, bac) = Nab(σ) +Nca(σ) +Ncb(σ)

= (n−Nba(σ)) + (n−Nac(σ)) + (n−Nbc(σ))

+ (n−Nab(σ)−Nba(σ))︸ ︷︷ ︸
0

+(Nbc(σ)−Nbc(σ)︸ ︷︷ ︸
0

= 4n− SCa(σ)− 2SCb(σ) +Nbc(σ)

= 4n− 6|K1| − 3|K2| − 2κ+Nbc(σ)

= (−2|K1|+ |K2|+ 4|K3| − 2κ) +Nbc(σ)

Similarly,

d(π(σ), bac) = Nab(π(σ)) +Nca(π(σ)) +Ncb(π(σ))

= (n−Nab(σ)) + (n−Nca(σ)) + (n−Ncb(σ))
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= 3n− d(σ, bac)

= 3n− (−2|K1|+ |K2|+ 4|K3| − 2κ)−Nbc(σ)

Let C = (−2|K1|+ |K2|+ 4|K3| − 2κ). Substituting this into the left-hand side of (5), we have .∑
σ∈A

K1,K2,K3
k

φd(σ,bac) − φd(π(σ),cab) =
∑

σ∈A
K1,K2,K3
k

φC+Nbc(σ) − φ3n−C−Nbc(σ)

=

n∑
j=0

Qj

(
φC+j − φ3n−C−j

)
.

Observe that
(
φC+j − φ3n−C−j

)
is negative only for j > 3n

2 − C. Additionally, for each of these
terms, there is a corresponding positive term in the sum for j′ = 3n− 2C − j < 3n

2 − C, where

(
φC+j′ − φ3n−C−j′

)
=
(
φC+3n−2C−j − φ3n−C−3n+2C+j

)
= −

(
φC+j − φ3n−C−j

)
.

Thus, it suffices to show for j > 3n
2 − C that Qj ≤ Qj′ where j′ = 3n− 2C − j.

As before, let t and o be solutions for Qj . Then we have the following solutions for Qj′

t′ = t+ (j − j′)

o′ = o− 2(j − j′)

since

t′ + o′ = t+ (j − j′) + o− 2(j − j′) = j′

2t′ + o′ = 2t+ 2(j + j′)o− 2(j − j′) = 2t+ o.

Recall that

Qj =

(
|K2|
t

)(
|K1|+ |K3|

o

)
and Qj′ =

(
|K2|
t′

)(
|K1|+ |K3|

o′

)
.

We will show that
(|K2|

t

)
≤
(|K2|

t′

)
and

(|K1|+|K3|
o

)
≤
(|K1|+|K3|

o′

)
. Note that t′ ≥ t and o′ ≤ o, so it

suffices to show that t′ ≤ |K2| − t and o′ ≥ |K1|+ |K3| − o. Let us directly consider

t′ = t+ (j − j′)

= t+ (2j − 3n+ 2C)

= t+ (2(t+ o)− 3n+ 2C)

= 2(2t+ o)− 3n+ 2C − t

= 2(2|K1|+ |K2|+ κ− |K3|)− 3n+ 2(−2|K1|+ |K2|+ 4|K3| − 2κ)− t

= −3n+ 4|K2|+ 6|K3| − 2κ− t

= −3|K1|+ 3|K3| − 2κ+ |K2| − t

< |K2| − t.

We also have that

o′ = o− 2(j − j′)

= o− 2(2j − 3n+ 2C)

= o− 2(2(t+ o)− 3n+ 2C)

= −2(2t+ o) + 6n− 4C − o

= −2(2|K1|+ |K2|+ κ− |K3|) + 6n− 4(−2|K1|+ |K2|+ 4|K3| − 2κ)− o

= 6n+ 4|K1| − 6|K2| − 14|K3|+ 6κ− o

= 10|K1| − 8|K3|+ 6κ− o

= 9|K1| − 9|K3|+ 6κ+ |K1|+ |K3| − o

> |K1|+ |K3| − o.
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Report Probability a wins
abc 1φ0 + 4φ1 + 7φ2 + 8φ3 + 8/3φ4 + 0φ5 + 0φ6

bac 1φ0 + 2φ1 + 3φ2 + 2φ3 + 2/3φ4 + 0φ5 + 0φ6

acb 1φ0 + 4φ1 + 7φ2 + 8φ3 + 8/3φ4 + 0φ5 + 0φ6

bca 1φ0 + 2φ1 + 5/3φ2 + 0φ3 + 0φ4 + 0φ5 + 0φ6

cab 1φ0 + 4φ1 + 11/3φ2 + 0φ3 + 0φ4 + 0φ5 + 0φ6

cba 1φ0 + 2φ1 + 5/3φ2 + 0φ3 + 0φ4 + 0φ5 + 0φ6

Report Probability c wins
abc 0φ0 + 0φ1 + 0φ2 + 0φ3 + 5/3φ4 + 2φ5 + 1φ6

bac 0φ0 + 0φ1 + 0φ2 + 0φ3 + 5/3φ4 + 2φ5 + 1φ6

acb 0φ0 + 0φ1 + 0φ2 + 0φ3 + 11/3φ4 + 4φ5 + 1φ6

bca 0φ0 + 0φ1 + 2/3φ2 + 2φ3 + 3φ4 + 2φ5 + 1φ6

cab 0φ0 + 0φ1 + 8/3φ2 + 8φ3 + 7φ4 + 4φ5 + 1φ6

cba 0φ0 + 0φ1 + 8/3φ2 + 8φ3 + 7φ4 + 4φ5 + 1φ6

Table 3: Probability that a and c each win under different reports for voter i. This assumes their
observed ranking was abc.

This completes the proof for the weak inequality.

To show that the first inequality is strict, observe that in case 1, all of the inequalities about Qj ≤ Qn−j

can be shown to be strict. Hence, all we need to show is that there is some k such that Ak is nonempty.
Fix some arbitrary n. If n is even, we can take a profile σ where n/2 + 1 voters have the ranking
bac and n/2− 1 have abc. Such a profile is always an element of A2 since SCb(σ) = SCa(σ) + 2
and SCa(σ) ≥ SCc(σ). Similarly, if n is odd, we can take a profile σ where ⌈n/2⌋ voters have
the ranking bac and ⌊n/2⌋ have the ranking acb. Such a profile is always an element of A1 since
SCb(σ) = SCa(σ) + 1 and SCa(σ) ≥ SCc(σ).

E OBIC Positional Scoring Rule Example

Let f be a scoring rule (r1, r2, 0) such that r2/r1 < 1/3. Note that on three voters, all these rules
coincide. Indeed, if there is a strict plurality winner, that candidate is necessarily the winner. If not,
this means each candidate appeared first exactly once. I some candidate appears in second twice,
then that candidate is the winner. Finally, if no candidate appears in second twice, they all appear
in second once, and therefore all appear in third once, so there is a three-way tie. Under such rules
with a confident Mallows prior with a fixed φ, we can explicitly compute the probability that each
candidate wins as a function of φ. This assumes, without loss of generality, that the voter’s observed
ranking is abc. The probability that a and c each win under possible reports are shown in Table 3.
One can check that reporting anything other than abc neither increases the probability that a wins or
decreases the probability that c wins, which means the rule is OBIC.
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