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1 BLEEP Additional Results and Implementation Details

1.1 TImage Encoder Selection

Table presents the performance evaluation of ResNet and ViT image encoders, along with
their corresponding number of parameters. Both ResNet50 and ResNet101 exhibit competitive
performance. However, ViT-Base and ViT-Large demonstrate reduced expression prediction accuracy,
with fewer genes scoring above 0.3 correlation compared to the original expression profiles. A
plausible explanation for this discrepancy is that the utilization of larger models, when combined with
a relatively small training dataset (n = 9269), may encourage the memorization of information within
the network weights rather than effective encoding in the projections. Consequently, the learned joint
embedding becomes less effective for downstream imputation in our specific use case.

Supplementary Table 1: The choice of image encoder versus the number of genes with predicted
expression correlation > 0.3 to original.

Image Encoder  # Parameters # Genes > 0.3 corr.

ResNet50 26 M 20+1
ResNet101 45 M 2042
ViT-Base 86 M T2
ViT-Large 305 M 242

1.2 Additional Results

Figure S[I]depicts the spatially resolved gene expressions of GLUL and CYP2EL, two key proteins
known to be associated with liver zonation [[6]. These two genes ranked highly among the top most
well predicted genes across all three methods. It can be seen that BLEEP accurately captures the
range of variation and the spatial heterogeneity of these genes in clear contrast to HisToGene and
ST-Net, where only the mean expression is captured. The variation of the predicted expressions of
HisToGene and ST-Net were not well predicted, as evident in the scale range of the color bars in
Figure ST} This finding is in accordance with both Figure 2 and Figure 3 from the main text.
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Supplementary Figure 1: Original and predicted spatially resolved expression levels for GLUL (top)
and CYP2E1 (bottom) ploted using variable scale and overlaid to the H&E image.

Table S2|presents the results of unsupervised clustering for the predicted expression profiles of spatial
spots, compared to the original data. Although HisToGene exhibits higher performance than BLEEP,
we caution that it may not be the most appropriate measure for assessing prediction quality due
to several reasons. Firstly, the absence of a definitive ground truth for comparison is a challenge.
The dataset used in our study primarily consists of human liver hepatocytes, which dominates the
biological variations present. The expression of many genes is expected to be similar across tissue
spots with relatively small variations, contributing to the difficulty of this application. Consequently,
defining discrete clusters for these spatial spots becomes somewhat arbitrary compared to benchmark-
ing datasets used in related studies, which often involve more spatially and expressionally distinct

cell types [, 7, [8].

Furthermore, given the continuous gradient of biological variation in our dataset, the exact clustering
method and parameters used significantly impact the definition of discrete clusters. Consequently,
while BLEEP does not surpass other methods in terms of clustering metrics such as NMI and ARI, the
predicted expression by BLEEP still produces sensible unsupervised clusters that roughly correspond
to the periportal and percentral regions of the liver tissue, as demonstrated in Figure 5. Further work
involving expert annotation of these slices is required for a more robust comparison.

Supplementary Table 2: NMI and ARI of the predicted expression matrix after clustering

Method NMI ARI
HisToGene 0.242+0.008 0.317+0.008
ST-Net 0.1594+0.029 0.185+0.039

BLEEP 0.186+0.010  0.202+0.014




1.3 BLEEP Default Configuration and Experimental Setting

Here we present the default configuration and experimental setting for BLEEP in Table 3]

Supplementary Table 3: Default configuration and experimental setting for BLEEP.

config value
image encoder resnet50
embedding dimension 2048
projection dim. 256

# projection layers 1

batch size 512
topK 50
imputation method weighted avg.
optimizer AdamW
base learning rate 1.0e-4
weight decay 1.0e-5

optimizer momentum  f31, 52=0.9,0.0.999

2 Comparison Method Implementation Details

We evaluate our method against two of the most commonly cited H&E image-to-expression prediction
tools, HisToGene [5] and ST-Net [3]]. HisToGene is a vision transformer[2] based model, utilizing
neighbouring H&E image patches as input and yielding expression profiles as output. ST-Net is a
convolutionally backboned model which processes image tiles for the prediction of gene expressions.
In our comparison, we adopt the default architecture configurations as reported in their respective
original publications (shown in Supplementary Table 4] and Supplementary Table[5). We also align
the experimental settings closely with those used in BLEEP (detailed in[3).

Supplementary Table 4: Default model configurations for HisToGene[3].

config value
embedding dimension 1024
transformer layer 8
attention head 16
MLP ratio 2.0

Supplementary Table 5: Default model configurations for ST-Net[3]].

config value
convolution backbone  Densenet121[4]]
embedding dimension 2048
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