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Abstract

Diabetes has a long asymptomatic period which
can often remain undiagnosed for multiple years.
In this study, we trained a deep learning model
to detect new-onset diabetes using 12-lead ECG
and readily available demographic information.
To do so, we used retrospective data where pa-
tients have both a hemoglobin A1c and ECG
measured. However, such patients may not be
representative of the complete patient popu-
lation. As part of the study, we proposed a
methodology to evaluate our model in the tar-
get population by estimating the probability of
receiving an A1c test and reweight the retrospec-
tive population to represent the general popula-
tion. We also adapted an efficient algorithm to
generate Shapley values for both ECG signals
and demographic features at the same time for
model interpretation. The model offers an auto-
mated, more accurate method for early diabetes
detection compared to current screening efforts.
Their potential use in wearable devices can fa-
cilitate large-scale, community-wide screening,
improving healthcare outcomes.
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1. Introduction

Diabetes mellitus affects 38.4 million Americans, 95%
of whom have type 2 diabetes, and is one of the lead-
ing causes of illness in the United States (CDC et al.,
2024). Due to its long asymptomatic period, early
diagnosis requires screening, which allows for interven-
tions that reduce diabetic complications (Simmons
et al., 2017). Several tests allow for the discovery
of diabetes in asymptomatic people, including gly-
cated hemoglobin (HbA1c), fasting plasma glucose
(FPG), and oral glucose tolerance test (OGTT). One
advantage that HbA1c offers over other tests is that

1. https://github.com/rajesh-lab/a1c_ecg
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no fasting is required, better preanalytical stability,
and less day-to-day variations (ElSayed et al., 2023).
Yet, even with current screening efforts, 1 in 5 people
with diabetes are not aware of their diabetes status
(CDC et al., 2024). To address this, public health
agencies such as the American Diabetes Association
(ADA) have promoted the use of risk tests. The
ADA Risk test uses simple-to-collect patient infor-
mation, such as family history and body mass index
(BMI), to identify high-risk patients (ElSayed et al.,
2023).

Artificial intelligence (AI), however, has created the
possibility of improving diabetes assessment by mak-
ing use of structured data in the electronic records
and high-dimensional biosignals like the electrocardio-
gram (ECG). ECGs are simple to collect, even in the
community setting, because of ECG-enabled mobile
fitness trackers. Further, ECGs are often collected at
a visit where labs were not, thus using the ECG alone
provides more opportunities to screen for diabetes.
In this study, we trained a deep learning model to
classify high HbA1c using a 12-lead/10 second ECG
and readily available demographic information and
evaluated its ability to screen for new-onset diabetes
in the outpatient population who receives an ECG.
To do so, we used retrospective data where patients
have both an HbA1c and ECG measured. However,
such patients may not be representative of the target
population, so we generated a pseudo-population that
better represents the target population, as visualized
in Figure 1. This procedure is important because
the AI-enhanced system must perform well on those
eligible for diabetes assessment, such as patients who
have an ECG collected, not only those with both con-
temporaneous ECG and HbA1c measurements. We
have also performed an external validation to demon-
strate how the model performs on a population the
models have not seen before to evaluate how well the
model is able to generalize across populations.

2. Related Work

Diabetes Detection Using AI-enhanced ECG
Systems AI-enhanced ECG systems have per-
formed tasks that are imperceptible by humans, such
as identifying age, sex (Attia et al., 2019a), and left
ventricular systolic dysfunction (Attia et al., 2019b).
Preliminary evidence suggests that a relationship be-
tween ECGs and diabetes exists. A deep learning
system using ECG data was able to detect nocturnal

hypoglycemic events (Porumb et al., 2020). Most
recently, researchers used an AI-enabled ECG system
to estimate HbA1c, where the estimates were asso-
ciated with many complications of diabetes such as
chronic kidney diseases and heart failure (Lin et al.,
2021). A limitation of this previous work is that the
population investigated includes many patients with
long-standing diabetes, as they are more likely to have
their A1c measured. Patients with long-standing dia-
betes often develop cardiovascular diseases; therefore,
it is less surprising that the ECG can help identify
such patients. Instead, we focus on detecting new-
onset diabetes in patients without a history of dia-
betes. There have been previous works in machine
learning algorithms that predicts new-onset diabetes
with structured lab features including triglycerides,
cholesterol, and fasting plasma glucose with decent
success (Nomura et al., 2021; Lai et al., 2019; Choi
et al., 2019; Zhang et al., 2020). However, the col-
lection of such lab features required drawing blood
and processing by a lab, where an HbA1c can also
be computed, might not be accessible to everyone,
especially in rural and underdeveloped areas.

Efficient Shapley Value Estimation with Fast-
SHAP Shapley value is a widely used approach to
interpret black-box models, but they are known to
be computationally expensive and can be hard to be
applied to large, high-dimensional models (Van den
Broeck et al., 2021). FastSHAP is a method to es-
timate Shapley values in a single forward pass us-
ing a learned explainer model (Jethani et al., 2022).
FastSHAP was trained via stochastic gradient de-
scent using a weighted least squares objective func-
tion, making the training efficient (Jethani et al.,
2022). FastSHAP can generate estimations at a frac-
tion of the time compared to other approaches like
KernelSHAP, with higher-quality explanations than
gradient-based methods (Jethani et al., 2022). Previ-
ous work has shown that FastSHAP can be adopted
to explain a deep learning model that detects right
bundle branch block from ECG inputs, but is limited
to a single data modality (Jethani et al., 2023). Here,
we customized the FastSHAP algorithm to estimate
Shapley values for both unstructured (ECGs) and
structured (demographics) inputs.
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Figure 1: Diagram of pseudo-population construction. The electronic health record provides a large amount
of data with which to train and evaluate an AI-enhanced ECG to estimate HbA1c. However, for many
patients ECGs or HbA1c tests are not performed. In order to understand how well the AI-enhanced ECG
will work in practice, one needs to estimate the performance on the complete population. This diagram
shows that by modeling the probability of ordering an HbA1c, the observed population can be re-weighted
to represent the complete population.

3. Methods

3.1. Study Overview

Training deep learning models for clinical screening
from retrospective data presents a fundamental chal-
lenge: our data contains only patients where both the
ECG and HbA1c were measured, yet the intended de-
ployment population includes all patients who receive
an ECG. Physicians selectively order HbA1c tests
based on risk factors like age, BMI, and comorbidi-
ties, meaning the observed population differs system-
atically from the target population. Models trained
naively on this selected sample may perform poorly
when deployed clinically. To address this selection
bias, we employ inverse probability weighting (IPW)
to reweight the observed population to represent the
target population (Figure 1). Our methodology pro-
ceeds in three stages. First, we model the probability
that a patient receives an HbA1c test given they re-
ceived an ECG (Section 3.4). Second, we apply IPW
during both model training and evaluation to ensure
our model optimizes performance on all ECG recipi-
ents, not just those selected for HbA1c testing (Sec-
tion 3.5). Third, we train a deep convolutional neural
network that fuses ECG signals with demographic in-

formation to detect new-onset diabetes (Section 3.6).
While IPW is established in dealing with missing data,
its integration into deep learning training and eval-
uation for clinical AI represents a novel application
addressing a critical gap, as most clinical AI studies
train on convenience samples without accounting for
how data acquisition differs from target deployment.
To ensure that future evaluations would yield similar
results, we examined the sensitivity of our results
when incorrect weights were applied under violations
of missing-at-random assumption (Section 3.8). Our
framework provides a principled solution to this perva-
sive problem. Additionally, we extend the FastSHAP
algorithm to generate explanations for multi-modal
inputs (ECG signals and tabular features simultane-
ously), enabling efficient interpretation of our model
(Section 3.10).

3.2. Study Population

We considered Manhattan, Brooklyn, and Mineola
in Long Island outpatient encounters within NYU
Langone Health system between January 1, 2013 and
September 17, 2021. We selected encounters in the
study period with HbA1c obtained and a standard
12-lead/10s ECG taken up to 30 days before the
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encounter. We then split the cohort into train, val-
idation, and test set with 3:1:1 ratio. We further
filtered the test set to those without prior history
of diabetes, which we defined as the absence of a
diagnosis for diabetes (ICD-10 Code E10, E11, or
E13) and no HbA1c ≥ 6.5% prior to encounter. The
test set was used to evaluate the model performance.
Patient characteristics and p-values were generated
using the “tableone” Python package (Pollard et al.,
2018).

3.3. Data

Encounter data were collected from the electronic
health record (EHR) system and ECGs were retrieved
from MUSE (GE Healthcare, Chicago, IL). ECGs
were measured at sampling rates of either 250 or
500 Hz. The signals were filtered using the biosppy
Python package with a finite impulse response (FIR)
filter and an additional band-pass filter (Bota et al.,
2024). For each encounter, we extracted the patient’s
demographics as well as active problems (from ICD-
10 codes), medications, and laboratory results, in-
cluding their HbA1c values, prior to the encounters
(Supplementary Table B1). Diagnoses covered risk
factors for diabetes/cardiovascular disease, disease
complications, or medications for the treatment of
diabetes/cardiovascular diseases. Variables with miss-
ing values were imputed by multivariate imputation
with chained equations using the scikit-learn package
(Pedregosa et al., 2011).

3.4. Probability of Measurement Model

To model the mechanism of data acquisition, we sam-
pled one outpatient encounter per patient in the study
period. We trained an XGBoost model to classify
whether or not an HbA1c were acquired given the
patient had an ECG measured. A single encounter
was randomly selected for each patient in the study
cohort to train the IPW model, yielding 483,289 en-
counters. The patient characteristics of the data set
can be found in Supplementary Table G2. The full
set of variables summarized in Supplementary Table
B1 that would inform a physician’s decision to ac-
quire an HbA1c was considered and labeled the data
with whether an HbA1c were obtained. Any variables
with missing values were imputed to mimic a clin-
ician’s ability to make decisions with the available
information about a patient. We tuned the XGBoost
algorithm’s hyperparameters and selected the best
performing model (the one with the highest area un-

der the precision-recall curve (AUPRC)) using 5-fold
cross-validation.

3.5. Inverse Probability Adjustment

The probability of acquiring an HbA1c was obtained
by running each sample through the probability of
measurement model. To reduce the variability in
downstream inverse probability weighted estimates,
the most extreme probabilities were truncated to the
[0.02-0.98] range. Expanding this range to [0.005-
.995], where less than 10% of the probabilities are
truncated, did not affect the estimated model per-
formances. Inverse probability weighting (IPW) re-
weighs each encounter by the inverse probability of
acquiring an HbA1c. To ensure equal emphasis across
all patients for which predictions would be made,
patients that, for example, were less likely to have
the HbA1c measured were up-weighted (Horvitz and
Thompson, 1952). The inverse probability weighted
estimator is described in detail in Probability of Mea-
surement Modeling. Further, for training, each en-
counter was down-weighted for patients with multiple
encounters in the dataset by dividing by the number
of encounters to ensure that each patient had equal
representation in the dataset.

3.6. Model Architecture

We implemented a convolutional neural network
(CNN) to learn a concise 1-dimensional representa-
tion of the ECG time series. This representation
was fused with the tabular data then fed through a
fully-connected neural network with a softmax output
layer to generate the probability of each class. We
selected tabular features that are routinely collected
in clinical settings without additional testing and that
are established diabetes risk factors. Such tabular
features include: age, sex, race, ethnicity, and BMI.
The CNN architecture was based on the current state
of the art for arrhythmia detection and is a 34-layer
ResNet CNN consisting of 16 residual connections as
depicted in Supplementary Figure A1 (Hannun et al.,
2019). The input to the network was an 8 x 2,500 ma-
trix, representing the 8 measured leads (lead III and
the augmented leads are arithmetically computed) by
10-second duration sampled at 250 Hz (ECGs sam-
pled at 500Hz were down-sampled to 250 Hz). Model
training details can be found in Appendix E.
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3.7. Model Evaluation

The evaluation task is new-onset diabetes detection.
The test set consists of 28,907 encounters involving
25,951 patients without prior history of diabetes, of
which 4.9% have an HbA1c ≥6.5%. Table G1 de-
scribes the patient characteristics. We labeled each
encounter by binarizing whether the HbA1c measured
was ≥ 6.5%, indicating new-onset diabetes. Accord-
ingly, for each encounter, we obtained the scores out-
putted by the model, and summed the scores under
bins with HbA1c ≥ 6.5%. We then re-weighted each
encounter by their inverse probability of ECG/HbA1c
measurement. We constructed the receiver-operator
(ROC) and precision-recall (PRC) curves and calcu-
lated the area under the ROC (AUC) and PRC (AU-
RPC). We set up two baselines for diabetes screening:
1) the ADA Risk test, 2) QDiabetes-2018 (Hippisley-
Cox and Coupland, 2017). We did not include ad-
ditional features added to 2018 version of the QDi-
abetes risk score because prior validations showed
similar performance to prior version of the risk score
(Hippisley-Cox and Coupland, 2017). QDiabetes-2018
scores were generated using the “QDiabetes” R pack-
age.

To evaluate each model against the ADA Risk Test,
we binarized the ADA Risk Test score at each level
from 1 to 7 and computed the true positive rate
(TPR). We then calculated model thresholds that
correspond to each ADA Risk Test score TPR, which
is used to binarized the model output. We finally
assessed the positive predictive value (PPV) at each
TPR for all models. This evaluation quantifies the
difference in false alarms. As the ADA recommends
that people with ADA risk score ≥ 5 should follow
up with their doctor, we paid particular attention
to the performance across models at this level. For
each model, the threshold that matched the TPR
of the ADA risk score when the ADA risk score is
≥ 5 was defined as the high-risk threshold for that
model.

To assess its impact on current clinical practice, we
looked at those patients that have no history of dia-
betes . We first classified these patients for new-onset
diabetes using the model predictions at the high-risk
threshold, and then used the ECG model’s PPV at
this threshold to estimate how many additional pa-
tients have diabetes but were missed during screening.
The idea is that if testing rates are low in patients
with a high estimated likelihood of diabetes, where

the likelihood is indicated by the PPV, then there is
an opportunity to improve the quality of care.

For all evaluation metrics in this section, we adopted
the bootstrap method to calculate confidence intervals
as well as p-values when comparing models. We
bootstrapped for 1000 rounds for each metric, thus
p-values have a resolution of 1

1001 .

3.8. Sensitivity Analysis

The inferences in patients with ECG measured rely on
assumptions about the mechanism controlling the ac-
quisition/missingness of HbA1c data – that they are
missing at random (MAR) given the set of observed
risk factors (Supplementary Table B1). Violations
of this assumption may arise due to recording errors
in the electronic health record or other bits of pa-
tient information that goes unrecorded. They can be
reflected in the degree to which the probability for
inverse weighting differs using the recorded informa-
tion from the true probability that would render the
data MAR.

Therefore, we examined how the results change when
significant violations to the MAR assumptions were
made. We considered the following two violations:
1) removing age from the probability of measure-
ment model, and 2) ignore the weight completely
(unweighted). The first violation simulated a scenario
where the clinicians order HbA1cs without consider-
ing the patient’s age. The second violation indicated
that the HbA1cs were ordered at random. We thresh-
olded each model using the high-risk threshold, and
compared the AUC and PPV across models for each
reweighting scheme.

3.9. Prospective Analysis

We hypothesized that the false positives identified
by the model may still present a higher risk of devel-
oping diabetes in the future. To evaluate the model
on a longer time horizon, we followed up patients
within the test set who did not develop diabetes at
the time, and collected any HbA1c measurements or
diabetes diagnoses within one year since the origi-
nal measurements. To test the hypothesis, patients
were categorized into high-risk and low-risk groups
according to the ECG model’s and ADA Risk Test’s
respective thresholds. We then generated Kaplan-
Meier curves and compared the cumulative incidence
of future diabetes in one year between high-risk and
low-risk groups based on only the model thresholds.
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For the analysis, we treated the comparisons as two
separate analyses, one for each model. The curves
were generated using the lifelines Python package.
Confidence intervals were calculated using Green-
wood’s exponential formula and log-rank tests were
used to compute p-values.

3.10. Model Interpretations

We calculated Shapley values to provide explanations
for how each of tabular feature and the ECG signal
influence predictions. To efficiently calculate Shapley
values, we adopted FastSHAP algorithm and cus-
tomized the code to generate explanations for tabular
features and ECG signal at the same time. The algo-
rithm is a two-step process (Jethani et al., 2022). We
first trained a surrogate model that learns to gener-
ate predictions with masked input, then an explainer
model which generates Shapley values using the sur-
rogate model. The superpixel size is 1 for tabular
features, and 25 for ECG signals, which corresponds
to 0.1 seconds of ECG signal. All eight leads were
considered at once when calculating the Shapley val-
ues for the ECG signal. Details on FastSHAP can be
found in Appendix D.

We generated a violin plot for the tabular features to
plot Shapley values for each data point and colored by
the feature value, where red means high feature value
and blue means low feature value. For ECG signal,
we selected three samples from the most positively-
scored by the our ECG model, and overlaid top 20%
absolute Shapley values for each sample, colored with
the same palette as the tabular features.

4. Results

4.1. Model Performance

The ECG model, which takes in age, sex, race, ethnic-
ity, BMI, and ECG, achieved the best performance
(Table 1, AUC, 0.80 [95% CI, 0.79-0.80]), outperform-
ing scores based on using the ADA Risk test (AUC,
0.68 [95% CI, 0.67-0.69]), and QDiabetes-2018 AUC,
0.70 [95% CI, 0.69-0.70]). Comparing positive predic-
tive value (PPV) across models, matching the TPR
of ADA ≥ 5 (TPR 0.72), the ECG model showed
significantly superior precision (PPV, 0.11 [95% CI,
0.11-0.12]) than ADA Risk Test (PPV, 0.08 [95%
CI, 0.07-0.08]) and QDiabetes-2018 (PPV, 0.08 [95%
CI, 0.07-0.08]). The PPV for the ADA Risk Test is
consistent with prior assessment of the ADA Risk

Test (Bang et al., 2009). The p-values < 0.01 for all
comparisons. This indicates that at the same detec-
tion rate as ADA risk test, ECG model generated
significantly less false alarms than the baselines. The
AUROC curve, PPV at all ADA Risk Test scores, and
additional results can be found in Appendix F.

Using the high-risk threshold, we evaluated how well
the ECG model can automatically screen patients that
receive an ECG. In the clinical utility set , 112,403
encounters (103,865 patients) where an ECG was
acquired for patients without a prior history of di-
abetes. 13.6% of the set had both an ECG and an
HbA1c measured, leaving with 87,183 patients were
not assessed with an HbA1c test. The ECG model
identified 36,922 of these patients as highly likely to
have diabetes. We found that the ECG model outper-
formed (PPV, 0.14 [95% CI, 0.13-0.14]) the ADA risk
test (PPV, 0.08 [95% CI, 0.07-0.08]) and QDiabetes
(PPV, 0.09 [95% CI, 0.08-0.10]). The estimated PPV
implies that 14% of this cohort or 4,501 additional
patients would have been newly diagnosed with dia-
betes had the ECG model been applied clinically to
this cohort.

4.2. Prospective Analysis

Kaplan-Meier curves on the subset of the test set
who did not develop diabetes by the time of the
encounter were illustrated in Figure 2. Both high-risk
groups identified by the ADA risk test and the ECG
model presented significantly higher risk than the
low risk groups (p-value <0.001). However, the high-
risk group by the ECG model presented a higher,
4.5-fold increase in cumulative incidence rate over
the corresponding low-risk group, compared to the
ADA risk test, which had only a 2.7-fold increase
(p-value < 0.001). That is, the ECG model is better
at separating those who have high future high-risk
from low-risk than ADA risk test.

4.3. Sensitivity Analysis

Figure 3(a) and Figure 3(b) compares the AUC and
PPV of the ECG model to the baselines when signifi-
cant violations were made to the MAR assumptions.
The ECG model significantly (p-value < 0.01) outper-
formed the baselines both when the age was taken out
of consideration or the model completely unweighted.
The results showed that even under impossible situ-
ations like ordering HbA1c without considering age
or ordering randomly, the ECG model is still su-
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Metric ECG Model ADA Risk Test QDiabetes-2018
Recall (TPR) 0.72 0.72 0.72
Precision (PPV) 0.11 [0.11–0.12] 0.08 [0.07–0.08] 0.08 [0.07–0.08]
F1-Score 0.19 [0.18–0.20] 0.14 [0.13–0.15] 0.14 [0.13–0.15]
AUC 0.80 [0.79–0.80] 0.68 [0.67–0.69] 0.70 [0.69–0.70]

Table 1: Model performance on test set Matching the TPR of ADA ≥ 5 (TPR 0.72), the ECG model
outperformed ADA Risk Test and QDiabetes-2018 across metrics including PPV, F1-score, and
AUC.
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Figure 2: Kaplan-Meier analysis. High-risk group
identified by the ECG Model showed signif-
icant higher cumulative incidence compared
to the high-risk group identified by the ADA
Risk Test.

perior over the baselines. We have also conducted
additional sensitivity analysis that can be found in
Appendix C.2.

4.4. Model Interpretation

Shapley values were generated both for the tabular
inputs were shown in Figure 4(a). The tabular fea-
tures were ranked by their average absolute Shapley
values. Samples of the most positively-scored ECGs
and their corresponding Shapley values can be seen
in Figure 4(b) (ECGs are periodic and contain re-
dundant information across beats). We have also
performed additional analysis on the explanations
generated by the Shapley value algorithm (see Ap-
pendix D), where we have shown that by only using
a few ECG features identified as important by the
Shapley values, we were able to recover 50% of the
performance supplied by the ECG waveform.
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Figure 3: Sensitivity analysis. Even with significant
violations made to MAR, the ECG model still
outperformed both baselines.

5. Discussion

Undiagnosed diabetes leads to increased morbidity
and a higher overall burden on the healthcare system
(Harris and Eastman, 2000; Dall et al., 2019). The
capacity to screen for diabetes is primarily limited by
both the frequency of visits and the time available at
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Figure 4: Shapley values quantifying feature contributions to model predictions. (a) Distribution of
Shapley values for demographic features across test set, ranked by mean absolute value. Each point is one
patient; color indicates feature value (red=high, blue=low). Positive values increase predicted diabetes
probability. (b) Shapley values for three highest-scoring ECG samples. Top 20% absolute values (0.1s
superpixels, all leads) overlaid on Lead I. Red segments increase predicted probability; blue decrease it.

those visits. Improving this capacity requires better
use of existing patient interactions in clinical settings
and an improved capacity to screen for diabetes in the
community. Such improvements will be crucial for
identifying the 8.5 million US adults with undiagnosed
type 2 diabetes (CDC et al., 2024).

This work demonstrates how diabetes assessment ben-
efits from the incorporation of ECGs. We have shown
that ECG-based assessment outperforms existing as-
sessment tools, achieving a higher PPV at the desired
TPR (0.72). The higher PPV implies that using the
ECG reduces false alerts relative to the ADA risk
score. At the same PPV level (0.08), the ECG had
far fewer missed cases than the ADA risk score. In
the outpatient settings, the AI-enhanced model can
be run in the background and identify patients with
diabetes who had their ECGs taken. If a patient has
an ECG taken, the model scores can be then incorpo-
rated into routine practice. As 87% of high-likelihood
patients did not have their HbA1c assessed, the ECG
model would improve the quality of clinical care and
screening for diabetes by detecting cases that would
otherwise be missed.

Community-wide AI-enhanced ECG diabetes assess-
ment can be carried out via mobile devices that col-
lect single-lead (Lead-I) ECGs. We found that an

AI-enabled single-lead ECG (Lead I), while it is in-
ferior to the 12-lead ECG model, retains much of
the discriminative performance (AUC, 0.78 [95% CI,
0.77-0.79] vs. 0.80 [95% CI, 0.79-0.80]) (Supplemen-
tary Figure F2). These findings suggest that an
AI-enabled ECG system could be utilized both at
the community level and within outpatient clinics to
automate the identification of patients who are likely
to have diabetes. With the improved capacity for
diabetes screening enabled by the ECG-based assess-
ment, more diabetes would be captured and the rate
of undiagnosed diabetes would go down.

Based on our prospective validation, even if the pa-
tient does not have diabetes at the time of inference,
those with scores that were above the high-risk thresh-
old showed a greater chance of developing diabetes
in one year, and is superior relative to ADA risk
test. This suggests that the model can act not only
as a screening tool, but a prediction tool as well.
In practice, the model can aide clinicians to decide
whether to order more frequent monitoring and/or
interventions for these high-risk patients. We have
also shown that the model is able to maintain perfor-
mance on a different population the model has not
seen before, demonstrating the generalizability of the
model.
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We have considered incorporating FGP and OGTT in
addition to HbA1c. However, because the volume of
FGP/OGTT being ordered in ambulatory setting is
much smaller than that of HbA1c, and FGP/OGTT
subjects to more day-to-day variations compared to
HbA1c, we eventually opted for using HbA1c only.
We have also considered the task as a regression model
by estimating the HbA1c directly, then classify the pa-
tient based on the estimated value. The performance
is statistically worse than classification (AUC, 0.78
[95% CI, 0.77-0.79], p-value < 0.01). When training
the model, we have also found that having four bins
also allowed for easier training compared to binarizing
HbA1c at the diabetic threshold.

A strength of our study lies in our methodology for
training a model to screen for diabetes in yet unseen
populations, recently described as integrative mod-
eling (Hofman et al., 2021). Practitioners require a
large amount of data to train deep learning models.
The ideal training and validation is a complete set
of data, however collecting a complete set of data
requires a new study, and these studies demand prior
evidence. Therefore, studies rely on retrospective
study designs. Researchers look for patient encoun-
ters in a retrospective dataset where the input variable
(i.e., ECGs) can be paired with an outcome variable
(i.e., HbA1c) (Attia et al., 2019a; Lin et al., 2021).
Yet, it is likely that patient risk factors influence
the measurement of these variables. This influence
means evaluations under the retrospective population,
where both the input and output are known, do not
match evaluations under the complete population of
interest.

In our work, we looked at the test set representa-
tive of the population that would receive an HbA1c
measurement using IPW. This procedure ensured
that we optimized over the intended population dur-
ing training and evaluated our models’ ability to
screen the general outpatient population for diabetes.
Next, we evaluated the sensitivity of our results when
incorrect weights were applied under violations to
MAR assumptions. These steps help ensure that
further prospective evaluation on a complete popu-
lation would yield similar results. The framework
we lay out for handling missing data using IPW dur-
ing model training and evaluation will be of use in
other domains that make use of retrospective data to
build AI models (Mitani et al., 2020; Hughes et al.,
2021).

Finally, using FastSHAP, we were able to draw in-
sights from the ECG model. Previous work has shown
that FastSHAP can be adopted to explain a deep
learning model that detects right bundle branch block
from ECG inputs (Jethani et al., 2023). This is the
first application of the explanation algorithm on a
multi-modal model that takes in both structured and
unstructured data.

5.1. Limitations

Despite inverse probability weighting to address se-
lection bias, unmeasured confounding and residual
bias may remain. While there is no patient crossover
between test set and external set, the retrospective,
single-institution design may limit generalizability,
as data completeness, coding accuracy, and patient
characteristics can differ across settings. Prospec-
tive, multi-institutional studies are needed to validate
the model’s real-world performance and clinical im-
pact.

5.2. Conclusion

Our proposed model significantly outperforms exist-
ing screening tools for detecting new-onset diabetes.
Applied clinically, our model could identify an esti-
mated 4,501 additional patients with undiagnosed
diabetes who were not assessed with HbA1c test-
ing. A key methodological contribution is our inverse
probability weighting framework that addresses selec-
tion bias in retrospective EHR data, ensuring models
generalize to target deployment populations. This
approach provides a template for clinical AI research.
As ECG acquisition becomes increasingly accessible
through wearable devices, our model offers scalable,
automated diabetes screening beyond traditional clin-
ical settings, improving early detection and enabling
timely intervention.
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Appendix A. Selected Model Architecture

Figure A1: ECG model architecture. A 34-layer ResNet CNN (16 residual connections) processes 8-lead
× 2,500 ECG input through temporal convolutions with batch normalization, ReLU, dropout, and
max-pooling. The 128-dimensional ECG embedding is concatenated with demographic features
and fed through three fully-connected layers (hidden-size 1000, 1000, 1000) to a softmax output
layer predicting four HbA1c bins.

13



New-Onset Diabetes Assessment Using Artificial Intelligence-Enhanced Electrocardiography

Appendix B. List of Covariates

Table B1: List of Covariates. For each covariate, the data source is provided. For each model, the set of
inputs are identified. The covariate grouping and the corresponding collection period are defined.

Covariate Source ECG Model ADA Risk
Score

QDiabetes-
2018

Propensity
Score Models

Demographics (During or prior to Encounter)
Age Epic ✓ ✓ ✓ ✓
Sex Epic ✓ ✓ ✓ ✓
Race Epic ✓ ✓ ✓
Ethnicity Epic ✓ ✓ ✓

Vital Signs (During or prior to Encounter)
BMI Epic ✓ ✓ ✓ ✓
Blood Pressure Epic ✓ ✓

Personal History (During or prior to Encounter)
Physical Activity ICD-10 (Z72.3) ✓ ✓
Smoking History Patient Dim ✓ ✓

Family History
Diabetes Epic ✓ ✓ ✓
Cardiovascular Diseases Epic ✓

Labs (Prior to Encounter)
HDL Epic ✓
LDL Epic ✓
TG Epic ✓
HbA1c Epic ✓

Diagnoses (Prior to Encounter)
Type 1 Diabetes ICD-10 (E10) ✓
Type 2 Diabetes ICD-10 (E11) ✓
Gestational diabetes ICD-10 (O24.4) ✓
PCOS ICD-10 (E28.2) ✓
Atherosclerosis ICD-10 (I70,I75) ✓
Ischemic Heart disease ICD-10 (I20-26) ✓
Heart Failure ICD-10 (I50) ✓
Cerebrovascular disease ICD-10 (I60-69) ✓
Peripheral vascular disease ICD-10 (I73) ✓
Arrhythmia ICD-10 (I48,I49) ✓
Hypertension ICD-10 (I10-16) ✓ ✓
Hypercholesterolemia ICD-10 (E78.0) ✓
Hyperlipidemia ICD-10 (E78.2-78.6) ✓
Hyperglycemia ICD-10 (E78.1,R73) ✓

Diabetic Complications (Prior to Encounter)
Retinopathy ICD-10 (E11.3) ✓
Neuropathy ICD-10 (E11.4) ✓
Nephropathy ICD-10 (E11.2) ✓
Other diabetic complications ICD-10 (E13) ✓

Acute Conditions (During Encounter)
Polydipsia ICD-10 (R63.1) ✓
Polyuria ICD-10 (R35) ✓
Polyphagia ICD-10 (R63.2) ✓
Weight Loss ICD-10 (R63.4) ✓
Chest pain ICD-10 (R07.1,R07.8-9) ✓
SOB ICD-10 (R06) ✓
Dizziness ICD-10 (R42) ✓

Diabetic Medications (Currently Prescribed)
Insulins Epic ✓
Amylinomimetic Epic ✓
Biguanides Epic ✓
Alpha-glucosides inhibitors Epic ✓
DPP-4 inhibitors Epic ✓
GLP-1 receptor agonists Epic ✓
Meglitinides Epic ✓
SGLT 2 inhibitors Epic ✓
Sulfonylureas Epic ✓
Thiazolidinediones Epic ✓

Cardiovascular Medications (Currently Prescribed)
ACE inhibitors Epic ✓
A-II Receptor Blockers Epic ✓
Beta blockers Epic ✓
Cholesterol lowering Epic ✓
Calcium Channel Blockers Epic ✓
Diuretics Epic ✓
Vasodilators Epic ✓
Digitalis Preparations Epic ✓
Antiplatelet Epic ✓
Anticoagulants Epic ✓
Antihypertensives Epic ✓

Other Medications (Currently Prescribed)
Corticosteroids Epic ✓
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Appendix C. Probability of Measurement Modeling

C.1. Inverse Probability Weighted Estimator

Let y ∈ {0, 1} be a categorical variable indicating that a patient’s HbA1c is ≤ 6.4%, ≥ 6.5%. Let x represent
a patient’s ECG, z represent a patient’s clinical factors driving the acquisition of an HbA1c given that an ECG
was ordered, and m ∈ {0, 1} indicate whether or not an HbA1c were acquired. HbA1c is observed only when
acquired by a physician, indicated that access to samples y,x, z ∼ p(x,y, z | m = 1) are available. However,
we want to estimate the model performance (the mean of some loss function f) on the complete distribution
p(x,y, z); Ex,y,z∼p(x,y,z) [f(x,y)]. To achieve this using samples from only from p(x,y, z | m = 1), we express
the expectation on the complete distribution as a weighted expectation on the observed distribution.

First, as f(x,y) does not depend on m, Ex,y,z∼p(x,y,z) [f(x,y)] = Ex,y,z,m∼p(x,y,z,m) [f(x,y)]. The latter
expectation can be expanded using the law of total expectation when conditioning on the missingness indicator
m as follows:

E
x,y,z,m∼p(x,y,z,m)

[f(x,y)] = E
x,y,z∼p(x,y,z|m=1)

[f(x,y) | m = 1] p(m = 1)+

E
x,y,z∼p(x,y,z|m=0)

[f(x,y) | m = 0] p(m = 0)

The first expectation on the right hand side is with respect to the observed data distribution and therefore
can be directly estimated using the observed data. Focusing instead on the second expectation on the left
hand side, we make the MAR assumption that y,x ⊥ m | z and expand it as follows:

E
x,y,z∼p(x,y,z|m=0)

[f(x, y) | m = 0] p(m = 0)

= E
z∼p(z|m=0)

[
E

x,y∼p(x,y|m=0,z)
[f(x,y) | m = 0, z] p(m = 0)

]
= E

z∼p(z|m=0)

[
E

x,y∼p(x,y|z)
[f(x,y) | z] p(m = 0)

]
= E

z∼p(z|m=0)

[
E

x,y∼p(x,y|z)

[
p(m = 1|z)p(z)
p(m = 1|z)p(z)f(x,y) | z

]
p(m = 0)

]
=

∫
E

x,y∼p(x,y|z)

[
p(m = 1 | z)p(z)
p(m = 1 | z)p(z)f(x,y) | z

]
p(m = 0)p(z | m = 0)dz

=

∫
E

x,y∼p(x,y|z)

[
p(m = 0)p(z | m = 0)

p(m = 1 | z)p(z) f(x,y) | z
]
p(m = 1 | z)p(z)dz

= E
z∼p(z|m=1)

[
E

x,y∼p(x,y|z)

[
p(m = 0 | z)
p(m = 1 | z)f(x,y) | z

]
p(m = 1)

]
= E

x,y,z∼p(x,y,z|m=1)

[
p(m = 0 | z)
p(m = 1 | z)f(x,y)

]
p(m = 1)
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Combining the two terms results in the following:

E
x,y,z,m∼p(x,y,z,m)

[f(x, y)]

= E
x,y,z∼p(x,y,z|m=1)

[f(x, y) | m = 1] p(m = 1)

+ E
x,y,z∼p(x,y,z|m=1)

[
p(m = 0 | z)
p(m = 1 | z)f(x,y)

]
p(m = 1)

= E
x,y,z∼p(x,y,z|m=1)

[(
1 +

p(m = 0 | z)
p(m = 1 | z)

)
f(x,y)

]
p(m = 1)

= E
x,y,z∼p(x,y,z|m=1)

[(
p(m = 1 | z)
p(m = 1 | z) +

p(m = 0 | z)
p(m = 1 | z)

)
f(x,y)

]
p(m = 1)

= E
x,y,z∼p(x,y,z|m=1)

[
1

p(m = 1 | z)f(x,y)
]
p(m = 1)

The expectation can also be computed with respect to the whole population by constructing a random variable that is
zero when there is missing data (m = 0). With 1 as the indicator function:

Ex,y,z∼p(x,y,z|m=1)

[
1

p(m = 1 | z)f(x,y)
]
p(m = 1)

= E
x,y,z∼p(x,y,z|m=1)

[
1

p(m = 1 | z)f(x,y)
]
(p(m = 1)1(1 = 1) + p(m = 0)1(0 = 1))

= E
x,y,z∼p(x,y,z|m=1)

[
1

p(m = 1 | z)f(x,y)
]
(p(m = 1)1(1 = 1))

+ E
x,y,z∼p(x,y,z|m=1)

[
1

p(m = 1 | z)f(x,y)
]
p(m = 0)1(0 = 1)

= E
x,y,z∼p(x,y,z|m=1)

[
1

p(m = 1 | z)f(x,y)
]
(p(m = 1)1(1 = 1))

+ E
x,yz∼p(x,y,z|m=0)

[
1

p(m = 1 | z)f(x,y)
]
p(m = 0)1(0 = 1)

= E
x,y,z∼p(x,y,z,m)

[
1(m = 1)

p(m = 1 | z)f(x,y)
]

The estimator above is known as the inverse probability weighted (IPW) estimator. We parametrically model
p(m = 1 | z) and use the IPW estimator in order to estimate the expected performance in the complete
population using only the data observed.

C.2. Additional Sensitivity Analysis

In addition to the comparison to the two violations, we defined a range over which the probabilities are
subject to change and examined how the results change in the worst-case scenario, using an approach inspired
by Zhao et al. (2019). To compare the models, we thresholded each model using the TPR corresponding
to the ADA Risk Test score of ≥ 5. We then minimized the difference in F1-score, the harmonic mean of
the PPV and TPR, between the ECG model and the baseline models. To minimize this difference, all the
encounters where the ECG model produced an incorrect classification were up-weighted, while the correctly
classified encounters were down-weighted. We defined the quantity that minimized the different in F1-score
as the adversarial weight.

We then calculated the ratio of false positives (FP) to true positives (TP), weighted by the average normalized
weight for each classification. We then compare the following weighting schemes: original weights to adjust
sampling bias, no-age weighting, adversarial weighting, and unweighted. For a list of weights w, lists of
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Figure C1: Calibration curve for the probability of measurement model on held-out test data.
The probability estimates outputted by the model plotted against the true frequency of the positive
label for binned probabilities. Plotted below the curve is a histogram depicting the number of
encounters included in each bin. The low calibration error and similarity to a perfectly calibrated
curve indicate that the model is well-calibrated. Further, bins with small calibration errors tend
to have more samples. Results showed the measurement probability model is well-calibrated.

Table C1: FP/TP for each weighting scheme. Adversarial weights had a ratio that is higher than both
no-age weights and unweighted, indicating that such reweighting schemes are implausible.

Weights to Adjust
Sampling Bias

No-Age
Weights Unweighted Adversarial

Weights

FP/TP 8.15 9.21 8.15 14.33

weights of the true positives and false positives wTP ,wFP , the average weight w, and the number of weights
in w |w|. The ratio of false positives to true positives TP/FP is:

FP/TP =
wFP × |wFP |
wTP × |wTP |

The idea is that as these performance metrics like AUC and PPV depend on the true positives and false
positives, the higher the ratio, the more influence false positives have on these metrics. By comparing these
metrics, we can then put the adversarial weight in context.

Figure C2 depicted that in the worst-case scenario, where the F1-score of the ECG model is selectively
minimized, the important place on each incorrectly classified encounter would have to be increase by a factor
of 1.35 for each incorrectly identified encounter and decrease by a factor of 1.35 for each correctly identified
encounter to invalidate the results. To put this in context, Table C1 details the TP/FP ratio for each
weighting scheme. A ratio > 1 means the PPV were lowered. Adversarial weights had a ratio that is higher
than both no-age weights and unweighted, indicating that such reweighting schemes are implausible.
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Figure C2: Additional sensitivity analysis. The ECG model is robust to inaccuracies in estimating the
probability of HbA1c acquisition, requiring relatively large re-weighting schemes to invalidate the
superiority of the ECG model in terms of the F1-score (left) and PPV (right). The sensitivity
weight determines the multiple by which the inverse probability weights can be altered. The
ECG model’s performance (F1-score) is selectively minimized as the sensitivity weight increases.
The effect of extreme inaccuracies, omitting the contribution of age or the inverse weight entirely
(unweighted), is provided as context to indicate that an invalidating re-weighting scheme would
be implausible.

Appendix D. FastSHAP Algorithm

As discussed in Methods, we opted for FastSHAP algorithm to explain model predictions. To accommodate
both tabular inputs and ECG inputs, modifications were made based on the Tensorflow version of the
FastSHAP code (Jethani et al., 2022). Here we lay out the changes made for this task.

D.1. Surrogate Model

We took the already-trained ECG model as our basis for the surrogate model used it to score subsets of
inputs for each instance (Jethani et al., 2022, 2021).

As the tabular inputs and ECG inputs have different dimensions, we first tiled the tabular inputs to match
shape of the ECG inputs, and concatenated the two into a single tensor. The single tensor was then connected
to a custom layer to generate a single mask that can randomly mask portions of both inputs. Based on the
mask, tabular features that were masked had their values replaced with −1, and 0 for the ECG features. The
masked tensor was then split up back into tabular and ECG inputs, and were fed into their respective portion
of the model illustrated in Figure A1. We used the same training and validation to train this model as the
ECG model. The model was trained using an Adam optimizer up to 100 epochs to minimize the categorical
cross-entropy loss. A learning rate scheduler was put in place that multiplies the learning rate by 0.8 after
two epochs of no validation loss improvement, and early stopping was trigger after the validation loss did not
improve for five epochs. The initial learning rate was 1e−3 and batch size was 128. The model was trained
for a total of 42 epochs before early stopping.
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D.2. Explainer Model

Once we have the surrogate model trained, we then train the explainer model, another neural network, that
generates Shapley values. This network is ϕfast. We define a value function:

vx(s) = log(y = pos|psurr(m(x, s)),

which is the natural logarithm of surrogate model score of the positive class given a masked input m(x, s),
where x is the input and s is the mask.

The inputs of the explainer model were masked in similar fashion as the surrogate model, and the rest of
the model architecture follows the original FastSHAP explainer implementation. We used additive efficiency
normalization to adjust Shapley value predictions. The model was trained using an Adam optimizer up to
200 epochs to minimize the mean squared error FastSHAP loss. The same learning rate scheduler mentioned
earlier was put in place for training the explainer model. The initial learning rate was 1e−5 and batch size
was 32. The model was trained for a total of 13 epochs before early stopping. Finally, the Shapley values
ϕeff

fast equals to (Jethani et al., 2022):

ϕeff
fast(x; θ) = ϕfast(x; θ) +

1

d
(vx(1)− vx(0)− 1⊤ϕfast(x; θ))︸ ︷︷ ︸

efficiency gap

.

This applies the additive efficiency normalization to the model’s outputs for the efficiency constraint.

D.3. Explanations Analysis

To evaluate the quality of the ECG explanations, we trained another deep learning model that inputs the
same demographics features as the ECG model and features from regions of the ECG that were identified
by the algorithm to have high correlation with HbA1c (Puli et al., 2024). To do so, we inspected the beat
average Shapley values and chose regions of the beat where the absolute Pearson correlation is the highest
(reddest/bluest regions in figure). The computed features include: Average R-peak, Average S-peak, Average
RS-interval, Average T-peak, Average T-Onset, and Average Heart Rate and were inputted as tabular features.
Compared to the model using only the demographics features (AUROC 0.72 [95%CI, 0.72-0.74]), the model
using such extracted features recovered about 50% of the performance that the full ECG signal added in
addition to the tabular features (AUROC 0.76 [95%CI, 0.75-0.76]).

Appendix E. Training Details

To train a binary classifer for new-onset diabetes, we used HbA1c measured at encounter as the training
target. During training, the value was discretized into four bins: < 5.7%, 5.7-6.4%, 6.5-7.9%, and ≥ 8.0%.
These values were set according to the guidelines (ElSayed et al., 2023), see Discussion for more details
on this choice. We trained the models using an Adam optimizer for 25 epochs to minimize the categorical
cross-entropy loss. After each epoch, we evaluated the models on the validation set. We used a learning rate
scheduler that multiplies the learning rate by 0.8 after two epochs of no validation loss improvement. Early
stopping was triggered after the validation loss ceased to improve for five epochs. The model was trained a
single Nvidia A100 GPU.

We used the validation set to select the best network architecture and hyperparameter configuration. We
selected the model with the highest inverse-weighted micro-averaged area under the precision-recall curve
(AUPRC). We examined the effect of varying the number and dimensionality of the fully-connected layers,
considering 1, 2, or 3 layers of dimension 100 or 1000. We considered the effect of temporal dimensionality
reduction by modifying the stride lengths to reduce the input 2,500-dimensional vector to either a 10-
dimensional vector or an 80-dimensional vector. We also tuned the batch size (32, 64, 128) and learning rate
(10−5, 10−4, 10−3). Analogously, using the inverse-weighted AUPRC on the validation set, we tuned the
number and dimensionality of the fully-connected layers as well as the batch size, and learning rate.
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Appendix F. Additional Results

F.1. Additional figures

Additionally, we calculated model thresholds that correspond to each ADA Risk Test score PPV then assess
the TPR for all models. This evaluation quantifies the difference in missed cases. Comparing TPR across
models (Figure F1(c)) matching the PPV of the ADA ≥ 5, the ECG model again showed significantly better
sensitivity at ADA ≥ 5 (PPV 0.08) (ECG model TPR, 0.94 [95% CI, 0.92-0.95]; ADA risk test TPR, 0.72
[95% CI, 0.67-0.77]; QDiabetes-2018 TPR, 0.74 [95% CI, 0.70-0.77]; p-value < 0.01). This implies that at the
same false alarm rate as the ADA risk test, ECG model was able to capture almost all patients with diabetes,
that is, it had far fewer missed cases.
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Figure F1: New-onset diabetes assessment results. (a) The ECG model is more discriminative of new-onset
diabetes as indicated by the IPW receiver operator curve (ROC). (b) The ECG model has a higher positive
predictive value (PPV) for detecting new-onset diabetes at the true positive rate (TPR) corresponding to
the ADA’s Risk Test threshold of ≥5. (c) At ADA ≥ 5, the ECG model also had superior TPR than
ADA Risk Test and QDiabetes-2018.

F.2. Single-Lead ECG Model
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Figure F2: Area under the receiver operator curve (AUC) for a model using single lead ECGs.
The AUCs are plotted for each method, with the results for a model using single-lead ECGs
plotted in purple. These results indicate that the single-lead ECG model outperforms both the
ADA Risk Test and QDiabetes-2018; however, it under-performs the 12-Lead ECG model when
estimating the likelihood of new-onset diabetes.
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F.3. Ablation Studies

Table F1: Comparison of AUC across subgroups
Group (n) ECG Model ADA Risk Test QDiabetes-2018

Male (13,902) 0.80 [0.79–0.81] 0.67 [0.66–0.68] 0.69 [0.67–0.70]
Female (15,005) 0.79 [0.78–0.80] 0.68 [0.67–0.69] 0.70 [0.68–0.71]
White (18,085) 0.81 [0.80–0.82] 0.71 [0.69–0.72] 0.69 [0.68–0.70]
Black (3,682) 0.75 [0.73–0.77] 0.64 [0.61–0.66] 0.65 [0.62–0.67]
Asian (7,099) 0.79 [0.78–0.80] 0.69 [0.68–0.71] 0.69 [0.67–0.71]
18–40 (4,505) 0.83 [0.81–0.87] 0.74 [0.71–0.78] 0.72 [0.68–0.76]
40–64 (14,914) 0.81 [0.80–0.82] 0.68 [0.67–0.69] 0.70 [0.69–0.71]
64+ (9,488) 0.74 [0.72–0.75] 0.59 [0.58–0.61] 0.62 [0.60–0.64]
BMI<18.5 (1,502) 0.80 [0.77–0.84] 0.66 [0.62–0.71] 0.68 [0.64–0.73]
18.5 ≤ BMI < 25 (7,383) 0.85 [0.84–0.87] 0.72 [0.70–0.75] 0.75 [0.73–0.77]
25 ≤ BMI < 30 (10,401) 0.80 [0.78–0.81] 0.65 [0.64–0.66] 0.67 [0.65–0.69]
BMI ≥ 30 (9,971) 0.74 [0.73–0.75] 0.62 [0.61–0.63] 0.64 [0.62–0.65]

F.4. External Validation

We collected data from patients in the external set to evaluate how well the model is able to generalize across
populations. The external validation set came from a hospital that was later merged into the hospital system,
and we also ensured that no patient crossover occurred between our main cohort and the external set. Similar
to the test set, we selected encounters from patients to those without prior history of diabetes and defined
them as the external validation set. No crossover of patients occurs between the distinct locations used for
external validation and the original study population, which ensures true external validation. We assessed
the AUROC, and TPR and PPV at the same high-risk thresholds as the test set.

External validation set consisted of 24,273 encounters from 21,975 patients, of which 3.5% have an HbA1c
≥ 6.5. The characteristics for the external validation cohort can be found in Supplementary Table G3. The
ECG model, again, achieved the best performance (AUC, 0.81 [95%CI, 0.80-0.82]), and outperforming the
two baselines (ADA risk test AUC, 0.73 [95%CI 0.71-0.74], QDiabetes AUC, 0.74 [95%CI 0.73-0.76]).

Using the thresholds derived from the test set, we compared the PPVs across models on the external validation
set. We again focus on the high-risk threshold, the ECG model showed significantly superior precision (PPV,
0.09 [95%CI 0.08-0.09]) over ADA risk Test (PPV, 0.06 [95%CI 0.06-0.06]; p-value<0.01) and QDiabetes
(PPV, 0.06 [95%CI 0.06-0.07]; p-value<0.01), while the recall level is similar to the main analysis (0.72). The
results were consistent with the test set.
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Appendix G. Patient Characteristics

Table G1: Patient Characteristics for the train, validation, and test set. The test contains patients without
history of diabetes prior to the visit.

Missing Overall Train Validation Test
n 199883 128209 42767 28907
Age, median [Q1,Q3] 357 60.7 [49.5,70.9] 61.3 [50.2,71.4] 61.2 [50.2,71.4] 57.2 [45.8,67.6]
Sex, n (%)

Female 108215 (50.6) 64948 (50.7) 21772 (50.9) 15180 (51.9)
Smoking, n (%)

Never 3301 121485 (61.8) 77327 (61.3) 26032 (61.9) 18126 (64.0)
Former 61205 (31.1) 39969 (31.7) 13199 (31.4) 8037 (28.4)
Current 13892 (7.1) 8897 (7.1) 2852 (6.8) 2143 (7.6)

Race, n (%)
White 42700 123127 (78.3) 78721 (78.1) 26321 (78.2) 18085 (79.7)
Black 27403 (17.4) 17834 (17.7) 5887 (17.5) 3682 (16.2)
Asian 5626 (3.6) 3591 (3.6) 1243 (3.7) 792 (3.5)
Multiracial 635 (0.4) 418 (0.4) 117 (0.3) 100 (0.4)
Pacific Islander 392 (0.2) 273 (0.3) 78 (0.2) 41 (0.2)

Ethnicity, n (%)
Hispanic 4191 (9.3) 2743 (9.3) 949 (9.6) 499 (8.8)

BMI, median [Q1,Q3] 16047 28.5 [25.0,33.0] 28.6 [25.1,33.1] 28.7 [25.1,33.2] 28.0 [24.6,32.2]
Systolic BP, median [Q1,Q3] 2992 124.0 [115.0,136.0] 124.0 [116.0,137.0] 124.0 [115.0,137.0] 122.0 [113.0,134.0]
Diastolic BP, median [Q1,Q3] 2992 77.0 [70.0,81.0] 77.0 [70.0,81.0] 77.0 [70.0,81.0] 78.0 [70.0,82.0]
HbA1c, median [Q1,Q3] 5.7 [5.3,6.2] 5.7 [5.4,6.3] 5.7 [5.4,6.3] 5.5 [5.3,5.8]
Prior HbA1c, median [Q1,Q3] 67541 5.7 [5.4,6.3] 5.8 [5.4,6.5] 5.8 [5.4,6.4] 5.5 [5.3,5.8]
Total cholesterol, median [Q1,Q3] 60683 176.0 [149.0,205.0] 175.0 [147.0,204.0] 175.0 [147.0,204.0] 185.0 [159.0,211.0]
HDL, median [Q1,Q3] 106243 52.0 [42.0,63.0] 51.0 [42.0,63.0] 51.0 [42.0,63.0] 54.0 [44.0,66.0]
LDL, median [Q1,Q3] 90810 95.0 [72.0,120.0] 93.0 [70.0,119.0] 93.0 [70.0,119.0] 103.0 [81.0,126.0]
TG, median [Q1,Q3] 83079 107.0 [76.0,154.0] 108.0 [77.0,157.0] 109.0 [77.0,155.0] 100.0 [72.0,142.0]
eGFR > 60 mL/min/1.73m2, n (%) 70114 112302 (86.5) 72427 (85.6) 24289 (85.9) 15586 (92.2)
Type 1 DM, n (%) 5162 (2.6) 3979 (3.1) 1183 (2.8)
Type 2 DM, n (%) 53273 (26.7) 40054 (31.2) 13219 (30.9)
Hyperglycemia, n (%) 66318 (33.2) 42834 (33.4) 14167 (33.1) 9317 (32.2)
FHx cardiovascular disease, n (%) 97042 (48.5) 62602 (48.8) 20820 (48.7) 13620 (47.1)
FHx Diabetes, n (%) 70147 (35.1) 45973 (35.9) 15358 (35.9) 8816 (30.5)
Gestational Diabetes, n (%) 551 (0.3) 355 (0.3) 112 (0.3) 84 (0.3)
Polycystic ovarian syndrome, n (%) 1346 (0.7) 856 (0.7) 293 (0.7) 197 (0.7)
Poor diet, n (%) 43 (0.0) 22 (0.0) 15 (0.0) 6 (0.0)
Lack of physical activity, n (%) 108 (0.1) 74 (0.1) 19 (0.0) 15 (0.1)
Hypertension, n (%) 104484 (52.3) 69987 (54.6) 23149 (54.1) 11348 (39.3)
Hypercholesterolemia, n (%) 52518 (26.3) 34924 (27.2) 11784 (27.6) 5810 (20.1)
Hyperlipidemia, n (%) 103899 (52.0) 69018 (53.8) 22980 (53.7) 11901 (41.2)
Cardiovascular disease, n (%) 12945 (6.5) 8734 (6.8) 2938 (6.9) 1273 (4.4)
Heart failure, n (%) 14360 (7.2) 10086 (7.9) 3295 (7.7) 979 (3.4)
Ischemic heart disease, n (%) 48873 (24.5) 33391 (26.0) 11039 (25.8) 4443 (15.4)
Peripheral vascular disease, n (%) 15382 (7.7) 10742 (8.4) 3610 (8.4) 1030 (3.6)
Arrhythmia, n (%) 32374 (16.2) 21913 (17.1) 7136 (16.7) 3325 (11.5)
Atherosclerosis, n (%) 15038 (7.5) 10328 (8.1) 3524 (8.2) 1186 (4.1)
Cerebrovascular disease, n (%) 22506 (11.3) 15397 (12.0) 4993 (11.7) 2116 (7.3)
Polydipsia, n (%) 74 (0.0) 49 (0.0) 12 (0.0) 13 (0.0)
Polyphagia, n (%) 59 (0.0) 39 (0.0) 11 (0.0) 9 (0.0)
Polyuria, n (%) 5699 (2.9) 3683 (2.9) 1171 (2.7) 845 (2.9)
Weight loss, n (%) 1243 (0.6) 794 (0.6) 288 (0.7) 161 (0.6)
Chest pain, n (%) 8763 (4.4) 5521 (4.3) 1847 (4.3) 1395 (4.8)
Dyspnea, n (%) 10922 (5.5) 7007 (5.5) 2325 (5.4) 1590 (5.5)
Dizziness, n (%) 4351 (2.2) 2796 (2.2) 922 (2.2) 633 (2.2)
Diabetic retinopathy, n (%) 4738 (2.4) 3617 (2.8) 1121 (2.6)
Diabetic nephropathy, n (%) 8114 (4.1) 6114 (4.8) 2000 (4.7)
Diabetic neuropathy, n (%) 9028 (4.5) 6771 (5.3) 2257 (5.3)
Other diabetic complications, n (%) 5908 (3.0) 4489 (3.5) 1419 (3.3)
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Table G2: Patient Characteristics for cohort used to build the probability of HbA1c acquisition model
stratified by whether an HbA1c were measured given that ECG was measured.

Missing Overall Missing HbA1c HbA1c Measured P-Value
n 483289 414089 69200
Age, median [Q1,Q3] 8386 60.3 [47.7,71.6] 61.1 [48.4,72.4] 56.0 [44.6,66.4] <0.001
Sex, n (%)

Female 0 255885 (52.9) 220159 (53.2) 35726 (51.6) <0.001
Smoking, n (%)

Never 19459 284173 (61.3) 239837 (60.5) 44336 (65.7) <0.001
Former 144842 (31.2) 127233 (32.1) 17609 (26.1)
Current 34815 (7.5) 29306 (7.4) 5509 (8.2)

Race, n (%)
White 106352 308623 (81.9) 269411 (83.1) 39212 (74.3) <0.001
Black 53557 (14.2) 42571 (13.1) 10986 (20.8)
Asian 12710 (3.4) 10508 (3.2) 2202 (4.2)
Pacific Islander 883 (0.2) 782 (0.2) 101 (0.2)
Multiracial 1164 (0.3) 924 (0.3) 240 (0.5)

Ethnicity, n (%)
Hispanic 9313 (9.6) 8203 (9.5) 1110 (10.2)

BMI, median [Q1,Q3] 61450 27.5 [24.1,31.9] 27.5 [24.0,31.7] 28.2 [24.7,32.7] <0.001
Systolic BP, median [Q1,Q3] 20491 124.0 [114.0,136.0] 124.0 [114.0,136.0] 124.0 [114.0,136.0] 0.167
Diastolic BP, median [Q1,Q3] 20491 76.0 [70.0,80.0] 75.0 [70.0,80.0] 78.0 [70.0,82.0] <0.001
HbA1c, median [Q1,Q3] 407616 5.6 [5.3,6.0] 5.6 [5.3,6.1] 5.6 [5.3,6.0] <0.001
Prior HbA1c, median [Q1,Q3] 300369 5.6 [5.3,6.1] 5.6 [5.3,6.1] 5.6 [5.3,6.1] 0.623
Total cholesterol, median [Q1,Q3] 250681 180.0 [152.0,208.0] 178.0 [151.0,207.0] 185.0 [159.0,212.0] <0.001
HDL, median [Q1,Q3] 338804 53.0 [43.0,65.0] 52.0 [43.0,65.0] 53.0 [44.0,65.0] <0.001
LDL, median [Q1,Q3] 306155 98.0 [75.0,122.0] 96.0 [74.0,121.0] 103.0 [80.0,126.0] <0.001
TG, median [Q1,Q3] 293032 103.0 [73.0,148.0] 102.0 [73.0,148.0] 105.0 [74.0,151.0] <0.001
Type 1 DM, n (%) 5742 (1.2) 4853 (1.2) 889 (1.3) 0.012
Type 2 DM, n (%) 74711 (15.5) 62303 (15.0) 12408 (17.9) <0.001
Hyperglycemia, n (%) 82895 (17.2) 66889 (16.2) 16006 (23.1) <0.001
FHx cardiovascular disease, n (%) 202350 (41.9) 173667 (41.9) 28683 (41.4) 0.016
FHx Diabetes, n (%) 127541 (26.4) 104386 (25.2) 23155 (33.5) <0.001
Gestational Diabetes, n (%) 1157 (0.2) 959 (0.2) 198 (0.3) 0.007
Polycystic ovarian syndrome, n (%) 2953 (0.6) 2463 (0.6) 490 (0.7) <0.001
Poor diet, n (%) 92 (0.0) 78 (0.0) 14 (0.0) 0.922
Lack of physical activity, n (%) 168 (0.0) 143 (0.0) 25 (0.0) 0.922
Hypertension, n (%) 212319 (43.9) 186566 (45.1) 25753 (37.2) <0.001
Hypercholesterolemia, n (%) 86854 (18.0) 74995 (18.1) 11859 (17.1) <0.001
Hyperlipidemia, n (%) 189432 (39.2) 164079 (39.6) 25353 (36.6) <0.001
Cardiovascular disease, n (%) 25993 (5.4) 24235 (5.9) 1758 (2.5) <0.001
Heart failure, n (%) 30443 (6.3) 28960 (7.0) 1483 (2.1) <0.001
Ischemic heart disease, n (%) 95398 (19.7) 88051 (21.3) 7347 (10.6) <0.001
Peripheral vascular disease, n (%) 24330 (5.0) 21866 (5.3) 2464 (3.6) <0.001
Arrhythmia, n (%) 76555 (15.8) 71941 (17.4) 4614 (6.7) <0.001
Atherosclerosis, n (%) 25960 (5.4) 23857 (5.8) 2103 (3.0) <0.001
Cerebrovascular disease, n (%) 41829 (8.7) 37991 (9.2) 3838 (5.5) <0.001
Polydipsia, n (%) 52 (0.0) 27 (0.0) 25 (0.0) <0.001
Polyphagia, n (%) 171 (0.0) 159 (0.0) 12 (0.0) 0.009
Polyuria, n (%) 5370 (1.1) 3480 (0.8) 1890 (2.7) <0.001
Weight loss, n (%) 1820 (0.4) 1421 (0.3) 399 (0.6) <0.001
Chest pain, n (%) 23422 (4.8) 19840 (4.8) 3582 (5.2) <0.001
Dyspnea, n (%) 27597 (5.7) 23993 (5.8) 3604 (5.2) <0.001
Dizziness, n (%) 8789 (1.8) 7202 (1.7) 1587 (2.3) <0.001
Diabetic retinopathy, n (%) 4784 (1.0) 4066 (1.0) 718 (1.0) 0.178
Diabetic nephropathy, n (%) 8734 (1.8) 7811 (1.9) 923 (1.3) <0.001
Diabetic neuropathy, n (%) 9503 (2.0) 8086 (2.0) 1417 (2.0) 0.099
Other diabetic complications, n (%) 5996 (1.2) 5017 (1.2) 979 (1.4) <0.001
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Table G3: Patient Characteristics for the external set stratified by whether the patient is newly diagnosed
with diabetes (HbA1c >6.4).

Missing Overall Diabetic Normal
n 24273 840 23433
Age, median [Q1,Q3] 29 57.2 [44.2,68.4] 63.3 [53.9,72.5] 56.9 [43.7,68.2]
Sex, n (%)

Female 12583 (51.8) 338 (40.2) 12245 (52.3)
Smoking, n (%)

Never 421 15634 (65.5) 497 (60.9) 15137 (65.7)
Former 6565 (27.5) 260 (31.9) 6305 (27.4)
Current 1653 (6.9) 59 (7.2) 1594 (6.9)

Race, n (%)
White 5664 16246 (87.2) 491 (77.6) 15755 (87.5)
Black 1801 (9.7) 111 (17.5) 1690 (9.4)
Asian 452 (2.4) 24 (3.8) 428 (2.4)
Multiracial 107 (0.6) 5 (0.8) 102 (0.6)
Pacific Islander 23 (0.1) 2 (0.3) 21 (0.1)

Ethnicity, n (%)
Hispanic 79 (3.7) 2 (2.8) 77 (3.7)

BMI, median [Q1,Q3] 945 27.3 [24.1,31.2] 31.6 [27.5,36.2] 27.2 [24.0,31.1]
Systolic BP, median [Q1,Q3] 130 122.0 [114.0,130.0] 128.5 [120.0,140.0] 121.0 [114.0,130.0]
Diastolic BP, median [Q1,Q3] 130 75.0 [70.0,80.0] 80.0 [70.0,82.0] 74.0 [70.0,80.0]
HbA1c, median [Q1,Q3] 0 5.5 [5.2,5.8] 6.9 [6.6,7.6] 5.5 [5.2,5.7]
Prior HbA1c, median [Q1,Q3] 7101 5.5 [5.2,5.7] 6.5 [6.2,6.7] 5.5 [5.2,5.7]
Total cholesterol, median [Q1,Q3] 5860 184.0 [159.0,210.0] 179.0 [152.0,205.5] 184.0 [160.0,210.0]
HDL, median [Q1,Q3] 10152 56.0 [46.0,68.0] 47.0 [38.2,55.0] 56.0 [46.0,68.0]
LDL, median [Q1,Q3] 9647 101.0 [80.0,124.0] 99.5 [75.0,120.0] 101.0 [80.0,124.0]
TG, median [Q1,Q3] 10792 105.0 [75.0,148.0] 141.0 [107.0,208.0] 104.0 [74.0,147.0]
eGFR > 60 mL/min/1.73m2, n (%) 9512 13607 (92.2) 371 (89.0) 13236 (92.3)
Hyperglycemia, n (%) 8836 (36.4) 359 (42.7) 8477 (36.2)
FHx cardiovascular disease, n (%) 9375 (38.6) 362 (43.1) 9013 (38.5)
FHx Diabetes, n (%) 5448 (22.4) 282 (33.6) 5166 (22.0)
Gestational Diabetes, n (%) 90 (0.4) 5 (0.6) 85 (0.4)
Polycystic ovarian syndrome, n (%) 136 (0.6) 2 (0.2) 134 (0.6)
Poor diet, n (%) 7 (0.0) 7 (0.0)
Lack of physical activity, n (%) 1 (0.0) 1 (0.0)
Hypertension, n (%) 9928 (40.9) 445 (53.0) 9483 (40.5)
Hypercholesterolemia, n (%) 6011 (24.8) 182 (21.7) 5829 (24.9)
Hyperlipidemia, n (%) 11474 (47.3) 388 (46.2) 11086 (47.3)
Cardiovascular disease, n (%) 838 (3.5) 30 (3.6) 808 (3.4)
Heart failure, n (%) 813 (3.3) 54 (6.4) 759 (3.2)
Ischemic heart disease, n (%) 2951 (12.2) 160 (19.0) 2791 (11.9)
Peripheral vascular disease, n (%) 870 (3.6) 37 (4.4) 833 (3.6)
Arrhythmia, n (%) 2713 (11.2) 105 (12.5) 2608 (11.1)
Atherosclerosis, n (%) 770 (3.2) 24 (2.9) 746 (3.2)
Cerebrovascular disease, n (%) 1488 (6.1) 60 (7.1) 1428 (6.1)
Polydipsia, n (%) 8 (0.0) 1 (0.1) 7 (0.0)
Polyphagia, n (%) 0 (0.0) 0 (0.0) 0 (0.0)
Polyuria, n (%) 914 (3.8) 37 (4.4) 877 (3.7)
Weight loss, n (%) 112 (0.5) 5 (0.6) 107 (0.5)
Chest pain, n (%) 1139 (4.7) 53 (6.3) 1086 (4.6)
Dyspnea, n (%) 1785 (7.4) 99 (11.8) 1686 (7.2)
Dizziness, n (%) 426 (1.8) 18 (2.1) 408 (1.7)
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