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Inductive Biases for Predicting Deformation and Stress in
Deformable Object Grasps with Graph Neural Networks
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AN iImportant task in deformable object manipulation is

to predict object de

‘ormation and stress

-EM Is "gold standa

rd" given object and gripper meshes

Recent advances [1] use Graph Neural Networks (GNNSs)
to learn these fields with good accuracy
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1. Released codebase incomplete, e.q. preprocessing for
DefGraspSim data missing

2. Values can only be predicted at graph nodes, but FEM
computes stress values per tetrahedron

3. Slow propagation through network hurts edge cases

Our Contributions

PyTorch reimplementation of the DefGraspNets baseline to
a working state to support further research

Tetrahedron features

Introduction Baseline LLimitations Evaluation and Results

 DefGraspSim-generated dataset of six different objects

 Per object 80 training, 20 test grasps; 50 -

rames each
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Baseline [1]
A: Tet. Features
B: Tet. + Global Feat.
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Novel arc

Nitectura

CNN Is In

‘ormed a

extension to the GNN

oDouUt mesh tetrahedrons by giving a

Huang et al,, 2023: DefGraspNets [1]
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tetrahedron set as input, similar to the edge set
* |nput feature per tetrahedron, MLP encodes to latent
« Participates In message passing:
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Conclusion and Outlook

« Clobal feature significantly improves performance
« Tetrahedron features allow learning stress as tetra-
hedron value, more in line with the FEM mode|

« Codebase enables further research

O ENCOC

e mate

rlal pro

nerties In tetrahedrons

o Olbjects with nonisotropic material

Mesh vertices are graph nodes, mesh edges graph edges

Node and edge features encode relevant information

Encode-Process-Decode GNN architecture [3]:

Multi-Layer Perceptrons (MLPs) encode features to
common 128D latent space
Message passing propagates information:
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Decode deformation and stress prediction at each node

 Decode stress prediction at tetrahedron!

Global feature
« Architectural extension to the GNN
* |Nn Message passing, g
from all nodes in grap
« Act asshortcut for glo

oropagated through t

lobal feature receives information
N, and sends to all nodes
oally relevant information to be

ne graphn
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